1
|
Molet-Rodríguez A, Martín-Belloso O, Salvia-Trujillo L. Incorporation of β-carotene O/W emulsions into dairy foods: Impact of the colloidal stability during in vitro digestion on the lipolysis and bioaccessibility. Food Chem 2025; 484:144464. [PMID: 40286720 DOI: 10.1016/j.foodchem.2025.144464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/17/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
O/W emulsions have been proposed as delivery systems of lipophilic bioactive compounds into water-based foods. This work aimed to study the impact of the food matrix on the colloidal stability of β-carotene-loaded O/W emulsion incorporated into dairy products (milk and yogurt) before and during in vitro gastrointestinal (GI) digestion. The relationship between colloidal stability, lipolysis and β-carotene bioaccessibility was also evaluated. The colloidal stability of the O/W emulsion was maintained once it was incorporated into dairy products and during GI conditions, without a significant impact of the food matrix. However, lipolysis, as FFA release, was faster and higher once the O/W emulsion (64.58 ± 2.76 %) was co-digested with dairy products (>81 %). Nevertheless, they presented non-significant differences in β-carotene bioaccessibility (38-44 %), thus dairy matrices would limit mixed micelles formation or β-carotene micellarization. This work provides valuable insight for designing dairy products fortified with bioactive compounds by using emulsions as delivery systems.
Collapse
Affiliation(s)
- Anna Molet-Rodríguez
- Department of Food Technology, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| | - Olga Martín-Belloso
- Department of Food Technology, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| | - Laura Salvia-Trujillo
- Department of Food Technology, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| |
Collapse
|
2
|
Akbal S, Uğur Geçer E, Ertürkmen P. Probiotic Viability and Bioactive Properties of Buffalo Yoghurt Produced Using High Cholesterol-Assimilating Probiotic Strains. Vet Med Sci 2025; 11:e70233. [PMID: 39912884 PMCID: PMC11800370 DOI: 10.1002/vms3.70233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND This study aimed to produce yoghurt with reduced cholesterol levels, enhanced antioxidant activity and angiotensin-converting enzyme (ACE) inhibitory activity while maintaining acceptable health properties, using buffalo milk and probiotic microorganisms. METHOD Buffalo yoghurts were produced using three different probiotic strains, including Lactobacillus acidophilus, Lactiplantibacillus plantarum and Bifidobacterium lactis. ACE-inhibitor activities (%), antioxidant activities as DPPH (%), and cholesterol activities in HPLC of these yoghurts were determined during the 28-day storage period. In addition, probiotic microorganisms, total aerobic mesophilic bacteria and yeast mould were counted during storage. RESULTS The viability of probiotic microorganisms in buffalo yoghurts remained above 5 log CFU/g at the end of the storage period. Antioxidant activity ranged from 9.30% to 27.20%. Buffalo yoghurt is produced with Lpb. plantarum, which exhibited the highest viability (9.12 log CFU/g) and antioxidant activity values of 61.48%. Gastrointestinal digestion affected the antioxidant and ACE-inhibitor properties of the yoghurt samples. The highest ACE-inhibitory effect after gastric digestion on the 28th day was observed in yoghurt-produced Lpb. plantarum and B. lactis, with 24.30% and 25.14% values, respectively. Also, the ACE-inhibitory activity of the outer (OUT) phase for all yoghurt samples was higher than that of undigested samples. According to cholesterol peaks obtained in HPLC, the highest cholesterol assimilation was detected in yoghurt produced using Lpb. plantarum. CONCLUSION The data obtained from the study may contribute to research on the potential of probiotic microorganisms with cholesterol-assimilation ability and probiotic food products produced using them to reduce cholesterol risk.
Collapse
Affiliation(s)
- Sinan Akbal
- Department of Food ProcessingAcıpayam Vocational SchoolPamukkale UniversityDenizliTürkiye
| | - Esra Uğur Geçer
- Faculty of EngineeringDepartment of Food EngineeringSüleyman Demirel UniversityIspartaTürkiye
| | - Pelin Ertürkmen
- Department of Food ProcessingBurdur Food, Agriculture and Livestock Vocational SchoolBurdur Mehmet Akif Ersoy UniversityBurdurTürkiye
| |
Collapse
|
3
|
Ajayi FF, AlShebli F, Yap PG, Gan CY, Maqsood S, Mudgil P. Assessment of hypolipidemic potential of cholesteryl esterase inhibitory peptides in different probiotic fermented milk through in vitro, in silico, and molecular docking studies. Food Chem X 2024; 24:101998. [PMID: 39634518 PMCID: PMC11616526 DOI: 10.1016/j.fochx.2024.101998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Fermented milk (FM) is well-known to confer health-promoting benefits, particularly for managing chronic metabolic diseases. However, the specific cholesterol esterase (CE) inhibitory activities of FM produced from different animal milk sources have not been extensively explored. This study for the first time investigates the CE inhibition potential of FM derived from bovine (F_BM), camel (F_CM), sheep (F_SM), and goat milk (F_GM), each fermented with five different probiotic strains and stored for 14 days under refrigeration. Further, peptides identification was performed and in silico approaches were used to dock potent peptides with CE enzyme (PDB: 1AQL) to decipher mechanism of enzyme inhibition. Comprehensive approach of this study combined CE inhibition assays, peptide identification, and in silico molecular docking with the CE enzyme (PDB: 1AQL) to elucidate mechanisms underlying enzyme inhibition. Upon fermentation improvements in CE-inhibition (lower IC50 values) were observed compared to non-fermented counterparts. Moreover, the CE-inhibition potency of the FM varies significantly among the milk types and probiotic strain (p < 0.05). Regardless of probiotic strains, CE-inhibition was more evident for F_GM followed by F_CM. Peptide sequencing and molecular docking studies revealed APSFSDIPNPIGSENSEKTTMPLW from F_BM showed potent binding to CE's active site, while peptides from F_CM, F_SM, and F_GM showed indirect CE-inhibitory mechanisms. These findings suggest potential anti-hypercholesteremic effects of bovine and non-bovine fermented milk, indicating their potential use in developing novel dairy products with hypolipidemic activities.
Collapse
Affiliation(s)
- Feyisola Fisayo Ajayi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Fatimah AlShebli
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Pei-Gee Yap
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Zayed Centre of Health Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| |
Collapse
|
4
|
Du C, Gong H, Zhao H, Wang P. Recent progress in the preparation of bioactive peptides using simulated gastrointestinal digestion processes. Food Chem 2024; 453:139587. [PMID: 38781909 DOI: 10.1016/j.foodchem.2024.139587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Bioactive peptides (BAPs) represent a unique class of peptides known for their extensive physiological functions and their role in enhancing human health. In recent decades, owing to their notable biological attributes such as antioxidant, antihypertensive, antidiabetic, and anti-inflammatory activities, BAPs have received considerable attention. Simulated gastrointestinal digestion (SGD) is a technique designed to mimic physiological conditions by adjusting factors such as digestive enzymes and their concentrations, pH levels, digestion duration, and salt content. Initially established for analyzing the gastrointestinal processing of foods or their constituents, SGD has recently become a preferred method for generating BAPs. The BAPs produced via SGD often exhibit superior biological activity and stability compared with those of BAPs prepared via other methods. This review offers a comprehensive examination of the recent advancements in BAP production from foods via SGD, addressing the challenges of the method and outlining prospective directions for further investigation.
Collapse
Affiliation(s)
- Chao Du
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; BioNanotechnology Institute, Ludong University, 186 Middle Hongqi Road, Yantai Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Hansheng Gong
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Huawei Zhao
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; BioNanotechnology Institute, Ludong University, 186 Middle Hongqi Road, Yantai Shandong Province 264025, PR China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA.
| |
Collapse
|
5
|
Wang X, Zhang L, Wang M, Ma H, Liu S, Wang M, Yu Y, Liu G, Cao Q, Wang X, Ma X, Yuan P, Liu J, Zhang Y, Duan S. A novel multiple plant-based milk alternative containing various preprocessed grains achieves better performance in protein digestibility and free amino acid profile via in vitro gastrointestinal digestion analysis. Food Sci Nutr 2024; 12:6637-6647. [PMID: 39554344 PMCID: PMC11561810 DOI: 10.1002/fsn3.4177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 11/19/2024] Open
Abstract
Plant-based milk alternatives are sustainable, hypoallergenic, and nutrient-rich, but challenges related to their lower bioavailability compared with animal-based milk still exist. In this study, we developed a multiple plant-based milk alternative using germinated soybeans and fermented cereals, and compared the protein digestible behaviors with commercial soy and bovine milk via in vitro gastrointestinal digestion. The multiple plant-based milk alternative possessed a higher level of essential amino acids and amino acid scores than the soy milk and a smaller percentage of low-molecular-weight peptides than the bovine milk. It displayed better protein-digestible responses with no apparent gastric coagulation. Moreover, the relatively larger particles in the multiple plant-based milk alternative had few effects on protein digestibility, with the highest proteolytic degree and a better free amino acid profile. The findings suggest that the multiple plant-based milk alternative presents higher protein digestibility behavior, and it could be a promising industrial plant-based product.
Collapse
Affiliation(s)
- Xue Wang
- Heilongjiang Feihe Dariy Co., Ltd.BeijingChina
- Heilongjiang Beiwei 47 Plant Protein Co., Ltd.HeilongjiangChina
| | - Lu Zhang
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic DiseasesChina National Research Institute of Food and Fermentation Industries Co., Ltd.BeijingChina
| | - Mohan Wang
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic DiseasesChina National Research Institute of Food and Fermentation Industries Co., Ltd.BeijingChina
| | - Hongjiang Ma
- Heilongjiang Feihe Dariy Co., Ltd.BeijingChina
- Heilongjiang Beiwei 47 Plant Protein Co., Ltd.HeilongjiangChina
| | - Shiwei Liu
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic DiseasesChina National Research Institute of Food and Fermentation Industries Co., Ltd.BeijingChina
| | - Meng Wang
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic DiseasesChina National Research Institute of Food and Fermentation Industries Co., Ltd.BeijingChina
| | - Youqiang Yu
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic DiseasesChina National Research Institute of Food and Fermentation Industries Co., Ltd.BeijingChina
| | - Guoyu Liu
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic DiseasesChina National Research Institute of Food and Fermentation Industries Co., Ltd.BeijingChina
| | - Qiuge Cao
- Heilongjiang Feihe Dariy Co., Ltd.BeijingChina
- Heilongjiang Beiwei 47 Plant Protein Co., Ltd.HeilongjiangChina
| | - Xi Wang
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic DiseasesChina National Research Institute of Food and Fermentation Industries Co., Ltd.BeijingChina
| | - Xishan Ma
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic DiseasesChina National Research Institute of Food and Fermentation Industries Co., Ltd.BeijingChina
| | - Peng Yuan
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic DiseasesChina National Research Institute of Food and Fermentation Industries Co., Ltd.BeijingChina
| | - Jia Liu
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic DiseasesChina National Research Institute of Food and Fermentation Industries Co., Ltd.BeijingChina
| | - Yongjiu Zhang
- Heilongjiang Feihe Dariy Co., Ltd.BeijingChina
- Heilongjiang Beiwei 47 Plant Protein Co., Ltd.HeilongjiangChina
| | - Shenglin Duan
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic DiseasesChina National Research Institute of Food and Fermentation Industries Co., Ltd.BeijingChina
| |
Collapse
|
6
|
Dhar H, Verma S, Dogra S, Katoch S, Vij R, Singh G, Sharma M. Functional attributes of bioactive peptides of bovine milk origin and application of in silico approaches for peptide prediction and functional annotations. Crit Rev Food Sci Nutr 2024; 64:9432-9454. [PMID: 37218679 DOI: 10.1080/10408398.2023.2212803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bovine milk peptides are the protein fragments with diverse bioactive properties having antioxidant, anticarcinogenic, other therapeutic and nutraceutical potentials. These peptides are formed in milk by enzymatic hydrolysis, gastrointestinal digestion and fermentation processes. They have significant health impact with high potency and low toxicity making them a suitable natural alternative for preventing and managing diseases. Antibiotic resistance has increased the quest for better peptide candidates with antimicrobial effects. This article presents a comprehensive review on well documented antimicrobial, immunological, opioid, and anti-hypertensive activities of bovine milk peptides. It also covers the usage of computational biology tools and databases for prediction and analysis of the food-derived bioactive peptides. In silico analysis of amino acid sequences of Bos taurus milk proteins have been predicted to generate peptides with dipeptidyl peptidase IV inhibitory and ACE inhibitory properties, making them favorable candidates for developing blood sugar lowering drugs and anti-hypertensives. In addition to the prediction of new bioactive peptides, application of bioinformatics tools to predict novel functions of already known peptides is also discussed. Overall, this review focuses on the reported as well as predicted biologically active peptide of casein and whey proteins of bovine milk that can be utilized to develop therapeutic agents.
Collapse
Affiliation(s)
- Hena Dhar
- Department of Microbiology, School of Biosciences, RIMT University, Mandi Gobindgarh, India
| | - Subhash Verma
- Department of Veterinary Microbiology, Dr. G.C. Negi College of Veterinary & Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Sarita Dogra
- PGIMR, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Shailja Katoch
- Department of Veterinary Microbiology, Sardar Vallabh Bhai Patel University of Agriculture and Technology, Meerut, India
| | - Rishika Vij
- Department of Veterinary Physiology & Biochemistry, Dr. G.C. Negi College of Veterinary & Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Geetanjali Singh
- Department of Veterinary Physiology & Biochemistry, Dr. G.C. Negi College of Veterinary & Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Mandeep Sharma
- Department of Veterinary Microbiology, Dr. G.C. Negi College of Veterinary & Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| |
Collapse
|
7
|
Saviard T, Menard O, Nebbia S, Ossemond J, Henry G, Chacon R, Le Feunteun S, Dupont D, Le Roux L. In vitro gastrointestinal digestion of cow's and sheep's dairy products: Impact of species and structure. Food Res Int 2024; 190:114604. [PMID: 38945616 DOI: 10.1016/j.foodres.2024.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024]
Abstract
Sheep's milk (SM) is known to differ from cow's milk (CM) in nutritional composition and physicochemical properties, which may lead to different digestion behaviours. This work aimed to investigate the impact of the species (cow vs sheep) and the structure (milk vs yogurt) on the digestion of dairy products. Using an in vitro static gastrointestinal digestion model, CM, SM, cow's milk yogurt (CY) and sheep's milk yogurt (SY) were compared on particle size evolution, microscopic observations, degree of lipolysis, degree of proteolysis, specific protein degradation and calcium bioaccessibility. Species and structure affected particle size evolution during the gastric phase resulting in smaller particles for yogurts compared to milks as well as for CM products compared to SM products. Species impacted lipid composition and lipolysis, with SM products presenting higher short/medium-chain fatty acids content and higher intestinal degree of lipolysis. Proteolysis was influenced by structure, with milks showing higher intestinal degree of proteolysis compared to yogurts. Caseins were digested faster in CM, ⍺-lactalbumin was digested faster in SM despite its higher concentration, and during gastric digestion β-lactoglobulin was more degraded in CM products compared to SM products and more in yogurts compared to milks. Lastly, SM products released more bioaccessible calcium than CM products. In conclusion, species (cow vs sheep) impacted more the digestion compared to the structure (milk vs yogurt). In fact, SM was different from CM mainly due to a denser protein network that might slow down the accessibility of the enzyme to its substrate which induce a delay of gastric disaggregation and thus lead to slower the digestion of the nutrients.
Collapse
Affiliation(s)
| | - Olivia Menard
- STLO, INRAE, L'Institut Agro Rennes-Angers, Rennes, France.
| | - Stefano Nebbia
- STLO, INRAE, L'Institut Agro Rennes-Angers, Rennes, France.
| | | | - Gwénaële Henry
- STLO, INRAE, L'Institut Agro Rennes-Angers, Rennes, France.
| | | | | | - Didier Dupont
- STLO, INRAE, L'Institut Agro Rennes-Angers, Rennes, France.
| | | |
Collapse
|
8
|
Li S, Ye A, Cui J, Zhang Y, Ware L, Miller JC, Abbotts-Holmes H, Roy NC, Singh H, McNabb W. Dynamic Gastrointestinal Digestion of Bovine, Caprine and Ovine Milk Reconstituted from Commercial Whole Milk Powders. Foods 2024; 13:1403. [PMID: 38731774 PMCID: PMC11083032 DOI: 10.3390/foods13091403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The global dairy market has been increasingly diversified with more dairy product offerings of milk products from different animal species. Meanwhile, milk powders remain the main exported dairy product format due to their ease of transportation. In this work, we studied the structural changes, protein hydrolysis and nutrient delivery during dynamic gastric digestion and small intestinal digestion of cow, goat and sheep milk reconstituted from commercial whole milk powders. The results show that the reconstituted milks digest similarly to processed fresh milk. The digestion behaviors of the three reconstituted ruminant milks are broadly similar (gastric coagulation, kinetics of gastric emptying of protein and fat and the high digestibility in the small intestine) with some differences, which are likely contributed by the processing history of the milk powders. The delivery of individual amino acids to the small intestine differed between the early and late stages of gastric digestion, which were primarily affected by the abundance of amino acids in caseins and whey proteins but also by the difference between milk types associated with their gastric coagulation behaviors. This work showed that powdered milk is similar to fresh processed milk in digestion behavior, and the inherent differences between ruminant milks can be modified by processing treatments.
Collapse
Affiliation(s)
- Siqi Li
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand (H.S.)
| | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand (H.S.)
| | - Jian Cui
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand (H.S.)
| | - Yu Zhang
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand (H.S.)
| | - Lara Ware
- Department of Human Nutrition, University of Otago, Dunedin 9054, New Zealand; (L.W.)
| | - Jody C. Miller
- Department of Human Nutrition, University of Otago, Dunedin 9054, New Zealand; (L.W.)
| | - Holly Abbotts-Holmes
- Department of Human Nutrition, University of Otago, Dunedin 9054, New Zealand; (L.W.)
| | - Nicole C. Roy
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand (H.S.)
- Department of Human Nutrition, University of Otago, Dunedin 9054, New Zealand; (L.W.)
- High-Value Nutrition National Science Challenge, Liggins Institute, University of Auckland, Auckland 1023, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand (H.S.)
| | - Warren McNabb
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand (H.S.)
- High-Value Nutrition National Science Challenge, Liggins Institute, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
9
|
Jia W, Peng J, Zhang Y, Zhu J, Qiang X, Zhang R, Shi L. Exploring novel ANGICon-EIPs through ameliorated peptidomics techniques: Can deep learning strategies as a core breakthrough in peptide structure and function prediction? Food Res Int 2023; 174:113640. [PMID: 37986483 DOI: 10.1016/j.foodres.2023.113640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Dairy-derived angiotensin-I-converting enzyme inhibitory peptides (ANGICon-EIPs) have been regarded as a relatively safe supplementary diet-therapy strategy for individuals with hypertension, and short-chain peptides may have more relevant antihypertensive benefits due to their direct intestinal absorption. Our previous explorations have confirmed that endogenous goat milk short-chain peptides are also an essential source of ANGICon-EIPs. Nonetheless, there are limited explorations on endogenous ANGICon-EIPs owing to the limitations of the extraction and enrichment of endogenous peptides, currently. This review outlined ameliorated pre-treatment strategies, data acquisition methods, and tools for the prediction of peptide structure and function, aiming to provide creative ideas for discovering novel ANGICon-EIPs. Currently, deep learning-based peptide structure and function prediction algorithms have achieved significant advancements. The convolutional neural network (CNN) and peptide sequence-based multi-label deep learning approach for determining the multi-functionalities of bioactive peptides (MLBP) can predict multiple peptide functions with absolute true value and accuracy of 0.699 and 0.708, respectively. Utilizing peptide sequence input, torsion angles, and inter-residue distance to train neural networks, APPTEST predicted the average backbone root mean square deviation (RMSD) value of peptide (5-40 aa) structures as low as 1.96 Å. Overall, with the exploration of more neural network architectures, deep learning could be considered a critical research tool to reduce the cost and improve the efficiency of identifying novel endogenous ANGICon-EIPs.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Inspection and Testing Center of Fuping County (Shaanxi goat milk product quality supervision and Inspection Center), Weinan 711700, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Jian Peng
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yan Zhang
- Inspection and Testing Center of Fuping County (Shaanxi goat milk product quality supervision and Inspection Center), Weinan 711700, China
| | - Jiying Zhu
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xin Qiang
- Inspection and Testing Center of Fuping County (Shaanxi goat milk product quality supervision and Inspection Center), Weinan 711700, China
| | - Rong Zhang
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
10
|
Ning J, Yang M, Liu W, Luo X, Yue X. Proteomics and Peptidomics As a Tool to Compare the Proteins and Endogenous Peptides in Human, Cow, and Donkey Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16435-16451. [PMID: 37882656 DOI: 10.1021/acs.jafc.3c04534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Cow's milk is the most widely used ingredient in infant formulas. However, its specific protein composition can cause allergic reactions. Finding alternatives to replace cow's milk and fill the nutritional gap with human milk is essential for the health of infants. Proteomic and peptidomic techniques have supported the elucidation of milk's nutritional ingredients. Recently, omics approaches have attracted increasing interest in the investigation of milk because of their high throughput, precision, sensitivity, and reproducibility. This review offers a significant overview of recent developments in proteomics and peptidomics used to study the differences in human, cow, and donkey milk. All three types of milks were identified to have critical biological functions in human health, particularly in infants. Donkey milk proteins were closer in composition to human milk, were less likely to cause allergic reactions, and may be developed as novel raw materials for formula milk powders.
Collapse
Affiliation(s)
- Jianting Ning
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Wanting Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Xue Luo
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| |
Collapse
|
11
|
Sumi K, Tagawa R, Yamazaki K, Nakayama K, Ichimura T, Sanbongi C, Nakazato K. Nutritional Value of Yogurt as a Protein Source: Digestibility/Absorbability and Effects on Skeletal Muscle. Nutrients 2023; 15:4366. [PMID: 37892442 PMCID: PMC10609537 DOI: 10.3390/nu15204366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Yogurt is a traditional fermented food that is accepted worldwide for its high palatability and various health values. The milk protein contained in yogurt exhibits different physical and biological properties from those of non-fermented milk protein due to the fermentation and manufacturing processes. These differences are suggested to affect the time it takes to digest and absorb milk protein, which in turn will influence the blood levels of amino acids and/or hormones, such as insulin, and thereby, the rate of skeletal muscle protein synthesis via the activation of intracellular signaling, such as the mTORC1 pathway. In addition, based on the relationship between gut microbiota and skeletal muscle conditions, yogurt, including lactic acid bacteria and its metabolites, has been evaluated for its role as a protein source. However, the substantial value of yogurt as a protein source and the additional health benefits on skeletal muscle are not fully understood. The purpose of this review is to summarize the research to date on the digestion and absorption characteristics of yogurt protein, its effect on skeletal muscle, and the contribution of lactic acid bacterial fermentation to these effects.
Collapse
Affiliation(s)
- Koichiro Sumi
- Nutrition and Food Function Research Department, Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Nanakuni, Hachioji 192-0919, Japan
| | - Ryoichi Tagawa
- Nutrition and Food Function Research Department, Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Nanakuni, Hachioji 192-0919, Japan
| | - Kae Yamazaki
- Nutrition and Food Function Research Department, Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Nanakuni, Hachioji 192-0919, Japan
| | - Kyosuke Nakayama
- Nutrition and Food Function Research Department, Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Nanakuni, Hachioji 192-0919, Japan
| | - Takefumi Ichimura
- Next Generation Monozukuri Research Department, Food Science & Technology Research Laboratories, R&D Division, Meiji Co., Ltd., Nanakuni, Hachioji 192-0919, Japan
| | - Chiaki Sanbongi
- Nutrition and Food Function Research Department, Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Nanakuni, Hachioji 192-0919, Japan
| | - Koichi Nakazato
- Department of Exercise Physiology, Nippon Sports Science University, 7-1-1 Fukasawa, Setagaya-ku, Tokyo 158-8508, Japan;
| |
Collapse
|
12
|
Szopa K, Szajnar K, Pawlos M, Znamirowska-Piotrowska A. Probiotic Fermented Goat's and Sheep's Milk: Effect of Type and Dose of Collagen on Survival of Four Strains of Probiotic Bacteria during Simulated In Vitro Digestion Conditions. Nutrients 2023; 15:3241. [PMID: 37513662 PMCID: PMC10384213 DOI: 10.3390/nu15143241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/28/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Microbial tolerance of digestive stresses depends not only on the bacterial strain but also on the structure and physicochemical properties of the supply chain and the foods that contain it. In the present study, we aimed to evaluate the effects of the type of milk (ovine, caprine) and the type and dose of collagen on the viability of four probiotic strains, Lacticaseibacillus paracasei L-26, Lacticaseibacillus casei 431, Lactobacillus acidophilus LA-5, and Lacticaseibacillus rhamnosus Lr-32, during in vitro gastrointestinal digestion. The highest survival rate under simulated in vitro digestion conditions compared to the number of cells before digestion was found in two strains, L. casei and L. paracasei, where survival rates were greater than 50% in each batch. The survival rate of the L. rhamnosus strain ranged from 41.05% to 64.23%. In caprine milk fermented by L. acidophilus, a higher survival rate was found in milk with 1.5% hydrolysate than the control, by about 6%. Survival of the L. rhamnosus strain was favorably affected by the 3% addition of bovine collagen in caprine milk, which increased survival by about 14% compared to the control sample. Adding 3% of hydrolysate to sheep's and goat's milk enhanced the survival of the L. rhamnosus strain by 3% and 19%, respectively. This study reports that fermented caprine and ovine milk may be suitable matrices for the probiotic supply of commercial dairy starter cultures and promote gut homeostasis.
Collapse
Affiliation(s)
- Kamil Szopa
- Department of Dairy Technology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 2D, 35601 Rzeszow, Poland
| | - Katarzyna Szajnar
- Department of Dairy Technology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 2D, 35601 Rzeszow, Poland
| | - Małgorzata Pawlos
- Department of Dairy Technology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 2D, 35601 Rzeszow, Poland
| | - Agata Znamirowska-Piotrowska
- Department of Dairy Technology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 2D, 35601 Rzeszow, Poland
| |
Collapse
|
13
|
Ma Y, Li J, Huang Y, Liu X, Dou N, Zhang X, Hou J, Ma J. Physicochemical stability and in vitro digestibility of goat milk affected by freeze-thaw cycles. Food Chem 2023; 404:134646. [DOI: 10.1016/j.foodchem.2022.134646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
14
|
Sun Y, Wang R, Li Q, Ma Y. Influence of storage time on protein composition and simulated digestion of UHT milk and centrifugation presterilized UHT milk in vitro. J Dairy Sci 2023; 106:3109-3122. [PMID: 37002142 DOI: 10.3168/jds.2022-22602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/06/2022] [Indexed: 03/31/2023]
Abstract
The centrifugation presterilizing UHT (C-UHT) sterilization method removes 90% of the microorganism and somatic cells from raw milk using high-speed centrifugation following UHT treatment. This study aimed to study the changes in protein composition and plasmin in the UHT and C-UHT milk. The digestive characteristics, composition, and peptide spectrum of milk protein sterilized with the 2 technologies were studied using a dynamic digestive system of a simulated human stomach. The Pierce bicinchoninic acid assay, laser scanning confocal microscope, liquid chromatography-tandem mass spectrometry, and AA analysis were used to study the digestive fluid at different time points of gastric digestion in vitro. The results demonstrated that C-UHT milk had considerably higher protein degradation than UHT milk. Different processes resulted during the cleavage of milk proteins at different sites during digestion, resulting in different derived peptides. The results showed there was no significant effect of UHT and C-UHT on the peptide spectrum of milk proteins, but C-UHT could release relatively more bioactive peptides and free AA.
Collapse
Affiliation(s)
- Yue Sun
- Department of Food Nutrition and Health, School of Medicine and Nutrition, Harbin Institute of Technology, Harbin, China, 150001
| | - Rongchun Wang
- Department of Food Nutrition and Health, School of Medicine and Nutrition, Harbin Institute of Technology, Harbin, China, 150001; Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China, 450001.
| | - Qiming Li
- New Hope Dairy Co. Ltd., Chengdu, Sichuan, China, 610063; Dairy Nutrition and Function, Key Laboratory of Sichuan Province, Chengdu, China, 610000
| | - Ying Ma
- Department of Food Nutrition and Health, School of Medicine and Nutrition, Harbin Institute of Technology, Harbin, China, 150001; Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China, 450001
| |
Collapse
|
15
|
Zhang R, Jia W. Brown goat yogurt: Metabolomics, peptidomics, and sensory changes during production. J Dairy Sci 2023; 106:1712-1733. [PMID: 36586795 DOI: 10.3168/jds.2022-22654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/02/2022] [Indexed: 12/30/2022]
Abstract
Brown goat milk products have gained popularity for their unique taste and flavor. The emergence of chain-reversal phenomenon makes the design and development of goat milk products gradually tend to a consumer-oriented model. However, the precise mechanism of how browning and fermentation process causes characteristics is not clear. In an effort to understand how the treatments potentially lead to certain metabolite profile changes in goat milk, comprehensive, quantitative metabolomics and peptidomics analysis of goat milk samples after browning and fermentation were undertaken. An intelligent hybrid z-score standardization-principal components algorithm-multimodal denoizing autoencoder was used for feature fusion and hidden layer fusion in high-dimensional variable space. The fermentation process significantly improved the flavor of brown goat yogurt through the tricarboxylic acid-urea-glycolysis composite pathway. Bitter peptides HPFLEWAR, PPGLPDKY, and PPPPPKK have strong interactions with both putative dipeptidyl peptidase IV and angiotensin-converting enzyme, proving that brown goat yogurt can be considered as effective provider of potential putative dipeptidyl peptidase IV and angiotensin-converting enzyme inhibitors. The level of health-promoting bioactive components and sensory contributed to consumer selection. The proposed multimodal data integrative analysis platform was applicable to explain the effect of the dynamic changes of metabolites and peptides on consumer preferences.
Collapse
Affiliation(s)
- R Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - W Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| |
Collapse
|
16
|
Huang M, Yang F, Wu Y, Meng X, Shi L, Chen H, Li X. Identification of peptides sequence and conformation contributed to potential allergenicity of main allergens in yogurts. Front Nutr 2023; 9:1038466. [PMID: 36687717 PMCID: PMC9849743 DOI: 10.3389/fnut.2022.1038466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/21/2022] [Indexed: 01/07/2023] Open
Abstract
Yogurts provide a good source of nutrition and may induce tolerance in people with cow's milk allergy (CMA). This study aimed to investigate the IgE-binding capacity of main allergens in the different yogurts which provide a reference for people with a high risk of CMA, and analyze the epitopes of major allergen peptides in yogurt. We assessed the degradation and the allergenic properties of major allergens in six commercial yogurts and fresh milk. The degradation of major allergens was analyzed by SDS-PAGE and RP-HPLC. Western blot and ELISA experiments detected allergenic characteristics by using specific sera. The results showed that β-lactoglobulin (Bos d 5) and α-lactalbumin (Bos d 4) were obviously degraded in yogurts but caseins were still present in abundance, which indicated that the proteases in yogurts were specific to whey proteins. IgE and IgG binding ability of major allergens were obviously reduced in yogurts, especially GuMi yogurt. In addition, 17 peptides of major allergens in GuMi yogurt were identified by LC-MS/MS and most of them were located in the interior of the spatial structure of proteins. Among them, 8 peptides had specific biological functions for health benefits, such as antibacterial, antioxidant, and ACE-inhibitory. We also found that 6 and 14 IgE epitopes of Bos d 5 and caseins were destroyed in GuMi yogurt, which could lead to the reduction of IgE-binding capacity. Meanwhile, peptides [Bos d 5 (AA15-40), Bos d 9 (AA120-151, AA125-151)] also preserved T cell epitopes, which might also induce the development of oral tolerance. Therefore, this study suggested that the sequence and conformation of peptides in yogurts contributed to hypoallergenicity.
Collapse
Affiliation(s)
- Meijia Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China,School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Fan Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China,School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China,Sino-German Joint Research Institute (Jiangxi-OAI), Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China,Sino-German Joint Research Institute (Jiangxi-OAI), Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Linbo Shi
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China,Sino-German Joint Research Institute (Jiangxi-OAI), Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China,School of Food Science and Technology, Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China,*Correspondence: Xin Li,
| |
Collapse
|
17
|
Teng F, Samuelsson LM, Milan AM, Subbaraj A, Agnew M, Shrestha A, Cameron-Smith D, Day L. Postprandial lipemic response in dairy-avoiding females following an equal volume of sheep milk relative to cow milk: A randomized controlled trial. Front Nutr 2023; 9:1029813. [PMID: 36687710 PMCID: PMC9846784 DOI: 10.3389/fnut.2022.1029813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/14/2022] [Indexed: 01/06/2023] Open
Abstract
Background Sheep milk (SM) is an alternate dairy source, which despite many similarities, has both compositional and structural differences in lipids compared to cow milk (CM). Studies are yet to examine the apparent digestibility of SM lipids, relative to CM, and the potential impact on the plasma lipidome. Objective To determine the response of the circulatory lipidome to equal volume servings of SM and CM, in females who avoid dairy products. Method In a double-blinded, randomized, cross-over trial, self-described dairy avoiding females (n = 30; 24.4 ± 1.1 years) drank SM or CM (650 mL; 33.4 vs. 21.3 g total lipid content; reconstituted from spray dried milk powders) following an overnight fast. Blood samples were collected at fasting and at regular intervals over 4 h after milk consumption. The plasma lipidome was analyzed by LC-MS and fatty acids were quantified by GC-FID. Results The overall postprandial triglyceride (TG) response was similar between SM and CM. TG concentrations were comparable at fasting for both groups, however they were higher after CM consumption at 30 min (interaction milk × time p = 0.003), well before any postprandial lipemic response. This was despite greater quantities provided by SM. However, there were notable differences in the postprandial fatty acid response, with SM leading to an increase in short- and medium-chain fatty acids (MCFAs) (C6:0, C8:0, and C10:0) and several long-chain fatty acids (LCFAs) (C18:1 t11, c9, t11-CLA, and C20:0; interaction time × milk p < 0.05). This corresponded to a greater postprandial response for medium chain triglycerides (MCTs) C10:0, including TG(10:0/14:0/18:1), TG(16:0/10:0/12:0), and TG(16:0/10:0/14:0) (interaction time × milk p < 0.05). Conclusions Despite a higher fat content, SM ingestion resulted in a greater circulating abundance of MCTs, without increasing total postprandial triglyceride response, when compared to CM. The greater abundance and postprandial appearance of MCTs may provide advantageous metabolic responses in children and adults. Unique identifier and registry U1111-1209-7768; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=375324.
Collapse
Affiliation(s)
- Fei Teng
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
| | | | - Amber Marie Milan
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand,The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Arvind Subbaraj
- AgResearch Ltd., Lincoln Research Center, Lincoln, New Zealand
| | - Michael Agnew
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
| | - Aahana Shrestha
- The Liggins Institute, The University of Auckland, Auckland, New Zealand,Riddet Institute, Palmerston North, New Zealand
| | - David Cameron-Smith
- The Liggins Institute, The University of Auckland, Auckland, New Zealand,AgResearch Ltd., Lincoln Research Center, Lincoln, New Zealand,College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Li Day
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand,*Correspondence: Li Day
| |
Collapse
|
18
|
Picariello G, Siano F, Di Stasio L, Mamone G, Addeo F, Ferranti P. Structural properties of food proteins underlying stability or susceptibility to human gastrointestinal digestion. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Advances in analytical techniques coupled to in vitro bioassays in the search for new peptides with functional activity in effect-directed analysis. Food Chem 2022; 397:133784. [DOI: 10.1016/j.foodchem.2022.133784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/17/2022] [Accepted: 07/23/2022] [Indexed: 11/20/2022]
|
20
|
Czyżak-Runowska G, Wójtowski JA, Łęska B, Bielińska-Nowak S, Pytlewski J, Antkowiak I, Stanisławski D. Lactose Content and Selected Quality Parameters of Sheep Milk Fermented Beverages during Storage. Animals (Basel) 2022; 12:ani12223105. [PMID: 36428333 PMCID: PMC9686720 DOI: 10.3390/ani12223105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
The aim of the research was to evaluate lactose content and rheological, physical, chemical, and organoleptic parameters during the storage of fermented beverages made from sheep's milk. The research was carried out on natural, probiotic, and Greek-type yogurts, as well as kefir. The products were made using the thermostat method from the milk of 42 East Frisian sheep in the middle lactation period, in duplicate. Lactose contents, active and titratable acidity, color by the L*a*b*C*h* system, and rheological parameters (hardness, consistency, consistency, and viscosity) were tested, and organoleptic assessments were carried out on the first, seventh, fourteenth, and twenty-first days of storing the drinks at 4 °C. Of all drinks, the highest reduction in lactose after 21 days of storage was found to occur in kefir (52% reduction) and, among the yogurts, in the Greek yogurt (41% reduction). The product with the lowest lactose content, regardless of the storage period, was kefir. This indicates that kefir is more suitable than yogurt for people with partial lactose intolerance. Effects of both inoculation type and beverage storage time were shown to exist for all parameters. It was also found that kefirs suffered deterioration in most rheological parameters and, in general organoleptic evaluation in the final period of storage. Based on our analysis, the optimal storage time for natural yogurts and sheep's milk kefirs at 4 °C was 21 and 14 days, respectively.
Collapse
Affiliation(s)
- Grażyna Czyżak-Runowska
- Department of Animal Breeding and Product Quality Assessment, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Science, ul. Słoneczna 1, Złotniki, 62–002 Suchy Las, Poland
| | - Jacek Antoni Wójtowski
- Department of Animal Breeding and Product Quality Assessment, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Science, ul. Słoneczna 1, Złotniki, 62–002 Suchy Las, Poland
- Correspondence:
| | - Bogusława Łęska
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, ul. Umultowska 89b, 61–614 Poznań, Poland
| | - Sylwia Bielińska-Nowak
- Department of Animal Breeding and Product Quality Assessment, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Science, ul. Słoneczna 1, Złotniki, 62–002 Suchy Las, Poland
| | - Jarosław Pytlewski
- Department of Animal Breeding and Product Quality Assessment, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Science, ul. Słoneczna 1, Złotniki, 62–002 Suchy Las, Poland
| | - Ireneusz Antkowiak
- Department of Animal Breeding and Product Quality Assessment, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Science, ul. Słoneczna 1, Złotniki, 62–002 Suchy Las, Poland
| | - Daniel Stanisławski
- Computer Lab, Poznań University of Life Sciences, ul. Wołyńska 33, 60–637 Poznań, Poland
| |
Collapse
|
21
|
Wang Y, Fu Y, Azarpazhooh E, Li W, Liu Q, Rui X. Assessment of In Vitro Digestive Behavior of Lactic-Acid-Bacteria Fermented Soy Proteins: A Study Comparing Colloidal Solutions and Curds. Molecules 2022; 27:7652. [PMID: 36364477 PMCID: PMC9654442 DOI: 10.3390/molecules27217652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
This study investigated the effect of lactic-acid-bacteria fermentation on the microstructure and gastrointestinal digestibility of soy proteins using a digestomics approach. Fermented soy protein isolates (FSPIs) under varied fermentation-terminal pH demonstrated a colloidal solution (FSPI-7.0/6.0) or yogurt-like curd (FSPI-5.0/4.0) state. Cryo-electron microscopy figures demonstrated the loosely stacked layer of FSPI-7.0/6.0 samples, whereas a denser gel network was observed for FSPI-5.0/4.0 samples. Molecular interactions shifted from dominant ionic bonds to hydrophobic forces and disulfide bonds. The gastric/intestinal digestion demonstrated that the curd samples afforded a significantly low particle size and high-soluble protein and peptide contents in the medium and late digestive phases. A peptidomics study showed that the FSPI-6.0 digestate at early intestinal digestion had a high peptidome abundance, whereas FSPI curd digestates (FSPI-5.0/4.0) elicited a postponed but more extensive promotion during medium and late digestion. Glycinin G2/G4 and β-conglycinin α/α' subunits were the major subunits promoted by FSPI-curds. The spatial structures of glycinin G2 and β-conglycinin α subunits demonstrated variations located in seven regions. Glycinin G2 region 6 (A349-K356) and β-conglycinin α subunit region 7 (E556-E575), which were located at the interior of the 3D structure, were the key regions contributing to discrepancies at the late stage.
Collapse
Affiliation(s)
- Yaqiong Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yumeng Fu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Elham Azarpazhooh
- Department of Agricultural Engineering Institute, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad 1696700, Iran
| | - Wei Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Liu
- Department of Information Engineering, Nanjing Institute of Mechatronic Technology, Nanjing 211306, China
| | - Xin Rui
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
22
|
Peptidomics as a tool to analyze endogenous peptides in milk and milk-related peptides. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
23
|
Jia W, Du A, Fan Z, Shi L. Novel insight into the transformation of peptides and potential benefits in brown fermented goat milk by mesoporous magnetic dispersive solid phase extraction-based peptidomics. Food Chem 2022; 389:133110. [PMID: 35504074 DOI: 10.1016/j.foodchem.2022.133110] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
Brown fermented goat milk as an excellent source of bioactive peptides has only been partially elucidated. Meticulously synthesized MOF@MG as magnetic sorbent for enriching endogenous peptides owned higher reproducibility and uniform distribution of peptides PI compared with ultrafiltration. Combined with UHPLC-Q-Orbitrap, fermentation for 12 h in brown goat milk with the highest overall acceptable degree through sensory evaluation was utilized to explore the transformation of peptides and health benefits, with trypsin or plasmin hydrolyzing proteins and aminopeptidase or carboxypeptidase hydrolyzing peptides to small peptides or amino acids. A total of 1317 peptides were identified by database matching (1259) and de novo sequencing (58), among 18 peptides could originate from gene-independent enzymatic formation and top 25 characteristic peptides were quantified with concentration ranging from 0.12 to 6.40 mg L-1. Bioinformatic analysis results indicated that brown fermented goat milk possesses higher health benefits because of more than 50 peptides with potential bioactivity.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - An Du
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
24
|
How to adjust α-lactalbumin and β-casein ratio in milk protein formula to give a similar digestion pattern to human milk? J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Liu L, Jiang S, Xie W, Xu J, Zhao Y, Zeng M. Fortification of yogurt with oyster hydrolysate and evaluation of its in vitro digestive characteristics and anti-inflammatory activity. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
26
|
Cardioprotective Peptides from Milk Processing and Dairy Products: From Bioactivity to Final Products including Commercialization and Legislation. Foods 2022; 11:foods11091270. [PMID: 35563993 PMCID: PMC9101964 DOI: 10.3390/foods11091270] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Recent research has revealed the potential of peptides derived from dairy products preventing cardiovascular disorders, one of the main causes of death worldwide. This review provides an overview of the main cardioprotective effects (assayed in vitro, in vivo, and ex vivo) of bioactive peptides derived from different dairy processing methods (fermentation and enzymatic hydrolysis) and dairy products (yogurt, cheese, and kefir), as well as the beneficial or detrimental effects of the process of gastrointestinal digestion following oral consumption on the biological activities of dairy-derived peptides. The main literature available on the structure–function relationship of dairy bioactive peptides, such as molecular docking and quantitative structure–activity relationships, and their allergenicity and toxicity will also be covered together with the main legislative frameworks governing the commercialization of these compounds. The current products and companies currently commercializing their products as a source of bioactive peptides will also be summarized, emphasizing the main challenges and opportunities for the industrial exploitation of dairy bioactive peptides in the market of functional food and nutraceuticals.
Collapse
|
27
|
Extracellular Polysaccharide Extraction from Streptococcus thermophilus in Fermented Milk. Microbiol Spectr 2022; 10:e0228021. [PMID: 35343770 PMCID: PMC9045140 DOI: 10.1128/spectrum.02280-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactic acid bacteria such as Streptococcus thermophilus are known to produce extracellular polysaccharide (EPS) in fermented foods that enhance the creaminess and mouthfeel of the product, such as yogurt. Strains producing larger amounts of EPS are highly sought-after, and therefore, robust and accurate quantification methodologies are important. This study found that two commonly used methodologies significantly underestimated the amount of EPS produced as measured using a milk matrix. To this end, a proteolytic step was implemented prior to EPS extraction (Method C). An initial proteolytic step using xanthan gum-spiked milk significantly increased recovery yield to 64%, compared to 27.8% for Method A and 34.3% for Method B. Method C showed no improvement when assessed using a chemically defined medium. Method C was further validated using three strains of S. thermophilus with varying EPS-production capabilities (STLOW, STMID, STHIGH). Overall, Method C demonstrated significant improvements in the EPS extraction yield for all three S. thermophilus strains in fermented milk. On average, Method C improved isolation yield by ∼3- to 6-fold compared with Method A and by ∼2- to 3-fold compared with method B. There were no significant differences between samples when they were grown in a chemically defined medium, highlighting the importance of a proteolytic step specifically for fermented milk samples. In commercial applications, accurate quantification of EPS-production is an important aspect when finding new strains. IMPORTANCE Extracellular polysaccharide (EPS) production by milk-fermenting microorganisms is a highly sought-after trait in improving the perceived thickness, creaminess, and mouthfeel of yogurt. Streptococcus thermophilus are commonly isolated and their EPS production is quantified in the search for higher-producing strains. In this study, we demonstrated that two commonly used methods for isolating EPS from milk samples significantly underestimated the true amount of EPS present. We demonstrated that the addition of a proteolytic step prior to EPS extraction isolated over 2-fold more EPS than identical samples processed using the traditional protocols. We further validated this method in fermented milk samples from three strains of S. thermophilus that included a low-, mid-, and high-EPS producing strain. Again, we showed significant improvements in EPS isolation using a proteolytic step. In the search for new S. thermophilus strains with enhanced EPS production, accurate quantification in an optimal medium is essential.
Collapse
|
28
|
Santos NC, Almeida RLJ, de Medeiros MDFD, Hoskin RT, da Silva Pedrini MR. Foaming characteristics and impact of ethanol pretreatment in drying behavior and physical characteristics for avocado pulp powder obtained by foam mat drying. J Food Sci 2022; 87:1780-1795. [PMID: 35315074 DOI: 10.1111/1750-3841.16123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/18/2022] [Accepted: 02/27/2022] [Indexed: 12/21/2022]
Abstract
The objective of this study was to optimize the production of powdered avocado using foam mat drying. In order to achieve this, the effect of Emustab® (4, 6, and 8% w/w), goat's milk (10, 15, and 20% w/w), and whipping time (15, 20, and 25 min) on the foam physical properties of avocado pulp were evaluated. In addition, the influence of ethanol pretreatment on the drying kinetics, thermodynamic properties, and physicochemical characteristics of the powders was also assessed. An experimental design 23 with three central points was used in this study and optimized foam conditions were dried at 50, 60, and 70°C, with a fixed air speed of 1.5 m/s. Empirical and diffusive models (boundary conditions of the third type) were adjusted to the experimental data to describe the drying kinetics and to determine the process activation energy and thermodynamic properties. The final products were characterized regarding their physical properties. Optimized foam mat drying conditions were achieved when avocado pulp was whipped for 15 min and 8% of Emustab® and 20% of powdered goat milk were used as foaming agents. The use of an ethanol pretreatment and higher drying temperature (70°C) resulted in higher drying rate (1.6 × 102 /min) and shorter processing time (270 min). The ethanol pretreatment reduced the activation energy and Biot number and led to more uniform moisture distribution. The physical properties, such as water content, water activity, bulk, and tapped densities decreased with an increase in drying temperature and pretreatment with ethanol, whereas water absorption capacity increased. PRACTICAL APPLICATION: In this work, new information about the drying kinetics and mass transfer of the foam mat avocado pulp using ethanol as pretreatment is obtained. The results will contribute to the optimization production avocado foaming and powder. Ethanol pretreatment can represent an alternative to minimize the negative impacts on drying process and can be surely suggested as an industrial application.
Collapse
Affiliation(s)
- Newton Carlos Santos
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal-RN, Brazil
| | | | | | - Roberta Targino Hoskin
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal-RN, Brazil.,Plants for Human Health Institute, Food Bioprocessing & Nutrition Sciences, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| | | |
Collapse
|
29
|
Lee SY, Lee DY, Kang JH, Jeong JW, Kim JH, Kim HW, Oh DH, Kim JM, Rhim SJ, Kim GD, Kim HS, Jang YD, Park Y, Hur SJ. Alternative experimental approaches to reduce animal use in biomedical studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Nielsen SD, Jakobsen LMA, Geiker NRW, Bertram HC. Chemically acidified, live and heat-inactivated fermented dairy yoghurt show distinct bioactive peptides, free amino acids and small compounds profiles. Food Chem 2021; 376:131919. [PMID: 34968909 DOI: 10.1016/j.foodchem.2021.131919] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/10/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023]
Abstract
Previous studies found variations in the health-promoting effects of consuming different dairy products. This study aims at investigating the chemical composition of microbial fermented yogurt, chemically acidified yogurt and whole milk to understand the differences in the effects these products exert on human health. For this purpose, peptides and small compounds present in the products were examined using a combination of liquid chromatography mass spectrometry and nuclear magnetic resonance spectroscopic techniques. Results revealed that each product had its own characteristic peptide, free amino acid and small compound profile, and database search for bioactivity disclosed that fermented yogurt manufactured using a starter culture is associated with a higher bioactivity potential than chemically acidified yogurt or whole milk. Additional cold storage (14 days) further enhances the bioactivity potential of fermented yogurt while heat-inactivation, ensuring long shelf-life, modulates the proteins available for proteolysis and thereby the peptide profile generated.
Collapse
Affiliation(s)
- Søren D Nielsen
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark.
| | - Louise M A Jakobsen
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - Nina R W Geiker
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | | |
Collapse
|
31
|
Ke X, Hu X, Li L, Yang X, Chen S, Wu Y, Xue C. A novel zinc-binding peptide identified from tilapia (Oreochromis niloticus) skin collagen and transport pathway across Caco-2 monolayers. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Xue H, Han J, He B, Yi M, Liu X, Song H, Li J. Bioactive peptide release and the absorption tracking of casein in the gastrointestinal digestion of rats. Food Funct 2021; 12:5157-5170. [PMID: 33977978 DOI: 10.1039/d1fo00356a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bovine casein is considered as an important source of many bioactive peptides (BAPs), which can also be produced via in vitro simulated gastrointestinal hydrolysis. To perform their physiological functions, some active peptides need to pass through the intestinal epithelial barrier and keep their structural integrity after oral administration. Owing to the complexity of in vivo digestion and absorption, there have been few studies in this area. In this study, casein was labeled with FITC to trace its digestion and absorption in Sprague Dawley (SD) rats. Gastric juice, intestinal fluid, blood, and intestinal tissue samples were collected at different time-points for preservation and analysis after intragastric administration. The results showed that CN-FITC exhibited good labeling stability in the gastrointestinal digestive juice both in vivo and in vitro, suggesting its potential to be used for the detection and tracking of casein hydrolysate. After the intra-gastric administration of FITC, the diffusion rates of fluorescent substances in serum were much higher than in the CN-FITC group. The maximum peptide content in the CN-FITC group during intestinal digestion was achieved 2 h after administration, and electrophoretic analysis of the hydrolysate composition suggested that the molecular weights of the peptides were mainly concentrated in the range of 3.4-10 kDa. The hydrolyzed peptides from CN-FITC could be absorbed into the blood just 1 h after administration. Frozen sections of rat duodenal tissue were observed under a confocal laser scanning microscope, and they showed that the CN-FITC digested products were absorbed from villi to mucosa in the rat intestines, and the casein-hydrolyzed polypeptides were accumulated significantly in tissue samples 2 h after administration. The peptides were mainly absorbed in the duodenum on the basis of absorption experiments using an everted gut sac. After intestinal digestion for 2 h, peptides with weights less than 5 kDa were enriched and identified using LC-MS-MS, and they were found to be mainly derived from β-casein, containing potential angiotensin-I-converting enzyme inhibitory, antioxidant, dipeptidyl peptidase IV inhibitory, and morphine-like peptides. The peptides from casein hydrolysate were tracked entering the blood through the intestinal epithelial barrier in the form of complete fragments, and they might exert potential physiological activity in vivo.
Collapse
Affiliation(s)
- Haiyan Xue
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
| | - Jingjing Han
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
| | - Baoyuan He
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R.China.
| | - Meixia Yi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
| | - Xiaofeng Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
| | - Hongxin Song
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
| | - Jingying Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
| |
Collapse
|
33
|
|
34
|
Hao X, Yang W, Zhu Q, Zhang G, Zhang X, Liu L, Li X, Hussain M, Ni C, Jiang X. Proteolysis and ACE-inhibitory peptide profile of Cheddar cheese: Effect of digestion treatment and different probiotics. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
35
|
Silva do Nascimento E, Anaya K, de Oliveira JMC, de Lacerda JTJG, Miller ME, Dias M, Mendes MA, de Azevedo Lima Pallone J, Weis Arns C, Juliano MA, Santi Gadelha T, Bertoldo Pacheco MT, de Almeida Gadelha CA. Identification of bioactive peptides released from in vitro gastrointestinal digestion of yam proteins (Dioscorea cayennensis). Food Res Int 2021; 143:110286. [PMID: 33992386 DOI: 10.1016/j.foodres.2021.110286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022]
Abstract
Bioactive peptides have been broadly studied for their contribution to human health. This study aimed to identify bioactive peptides generated by in vitro gastrointestinal digestion of yam proteins. Yam protein concentrate (YPC) was submitted to simulated digestion. Gastric phase hydrolysate (GPH) and total gastrointestinal phase hydrolysate (GIPH) had their peptides identified by nanoLC-ESI-MS/MS. Peptide sequences were subjected to a database-driven (BIOPEP) bioactivity search. In vitro tests included: Antioxidant activity, DNA damage protection, ACE-inhibitory activity and antibacterial activity against the bacteria Escherichia coli, Salmonella sp. and Lysteria monocytogenes. Simulated digestion generated small peptides (mostly MW < 3500 Da), several of them with potential bioactive sequences predicted in silico. In both GPH and GIPH biological activities were detected, although GIPH displayed stronger DNA damage protection and antibacterial activity against Escherichia coli. The digestion of yam proteins releases promising biologically active peptides which can contribute to the prevention of bacterial infection and chronic degenerative diseases, with beneficial effects to human health.
Collapse
Affiliation(s)
- Edilza Silva do Nascimento
- Department of Food Engineering, Post-Graduate Program in Food Science and Technology, Technology Center, Federal University of Paraiba, João Pessoa, PB, Brazil; Department of Molecular Biology, Laboratory of Structural Proteomics, Federal University of Paraíba, João Pessoa, PB, Brazil.
| | - Katya Anaya
- Faculty of Health Sciences of Trari, Federal University of Rio Grande do Norte, Santa Cruz, RN, Brazil.
| | - Julia Mariano Caju de Oliveira
- Department of Molecular Biology, Laboratory of Structural Proteomics, Federal University of Paraíba, João Pessoa, PB, Brazil.
| | | | - Michael Edward Miller
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas, Campinas, SP, Brazil.
| | - Meriellen Dias
- Department of Chemical Engineering, University of São Paulo, São Paulo, SP, Brazil.
| | - Maria Anita Mendes
- Department of Chemical Engineering, University of São Paulo, São Paulo, SP, Brazil.
| | | | - Clarice Weis Arns
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas, Campinas, SP, Brazil.
| | | | - Tatiane Santi Gadelha
- Department of Molecular Biology, Laboratory of Genetic Biochemistry and Radiology, Federal University of Paraíba, João Pessoa, PB, Brazil.
| | | | - Carlos Alberto de Almeida Gadelha
- Department of Food Engineering, Post-Graduate Program in Food Science and Technology, Technology Center, Federal University of Paraiba, João Pessoa, PB, Brazil; Department of Molecular Biology, Laboratory of Structural Proteomics, Federal University of Paraíba, João Pessoa, PB, Brazil.
| |
Collapse
|
36
|
Shrestha A, Samuelsson LM, Sharma P, Day L, Cameron-Smith D, Milan AM. Comparing Response of Sheep and Cow Milk on Acute Digestive Comfort and Lactose Malabsorption: A Randomized Controlled Trial in Female Dairy Avoiders. Front Nutr 2021; 8:603816. [PMID: 33659266 PMCID: PMC7917135 DOI: 10.3389/fnut.2021.603816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Sheep milk (SM) is a possible alternate dairy source for those who experience digestive symptoms with cow milk (CM). While both the milks contain lactose, one of the causes for self-reported intolerance to CM, the composition of SM and CM also differs across proteins and fats, which have been shown to impact digestive processes. Objective: To compare the acute digestive comfort and lactose malabsorption of SM to CM in female dairy avoiders. Method: In a double-blinded, randomized cross over trial, 30 dairy-avoiding females (aged 20-30 years) drank 650 mL of SM or CM (each reconstituted from spray dried powder) following an overnight fast, on two separate occasions at least 1 week apart. Blood samples were collected for glucose and insulin assessment, and single nucleotide polymorphisms of the lactase (LCT) gene (C/T13910 and G/A22018). Breath H2 and visual analog scale (VAS) digestive symptom scores were recorded at fasting and regular intervals over 4 h after ingestion. Results: Eighty percentage of study participants were lactase non-persistent (LNP; CC13910 and GG22018 genotype). Digestive symptoms, including abdominal cramps, distension, rumbling, bloating, belching, diarrhea, flatulence, vomiting, and nausea, were similar in response to SM and CM ingestion (milk × time, P > 0.05). Breath H2 was greater after CM than SM (72 ± 10 vs. 43 ± 6 ppm at 240 min, P < 0.001), which may be due to greater lactose content in CM (33 vs. 25 g). Accordingly, when corrected for the lactose content breath H2 did not differ between the two milks. The response remained similar when analyzed in the LNP subset alone (n = 20). Conclusions: Despite a higher energy and nutrient content, SM did not increase adverse digestive symptoms after ingestion, relative to CM, although there was a reduced breath H2 response, which could be attributed to the lower lactose content in SM. The tolerability of SM should be explored in populations without lactose intolerance for whom underlying trigger for intolerance is unknown.
Collapse
Affiliation(s)
- Aahana Shrestha
- The Liggins Institute, The University of Auckland, Auckland, New Zealand.,Riddet Institute, Palmerston North, New Zealand
| | | | - Pankaja Sharma
- The Liggins Institute, The University of Auckland, Auckland, New Zealand.,Riddet Institute, Palmerston North, New Zealand
| | - Li Day
- AgResearch Ltd., Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - David Cameron-Smith
- The Liggins Institute, The University of Auckland, Auckland, New Zealand.,Riddet Institute, Palmerston North, New Zealand.,Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Amber M Milan
- The Liggins Institute, The University of Auckland, Auckland, New Zealand.,AgResearch Ltd., Te Ohu Rangahau Kai, Palmerston North, New Zealand
| |
Collapse
|
37
|
Guha S, Sharma H, Deshwal GK, Rao PS. A comprehensive review on bioactive peptides derived from milk and milk products of minor dairy species. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-020-00045-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
Milk from different species has been exploited for the isolation of various functional ingredients for decades. Irrespective of the source, milk is considered as a complete food, as it provides essential nutrients required by the human body. Proteins and their fractions are valuable sources of bioactive peptides that might exert a health beneficial role in the human body such as immune-modulation, antioxidant activity, ACE-inhibitory activity, anti-neoplastic, anti-microbial, etc. In milk, bioactive peptides may either be present in their natural form or released from their parental proteins due to enzymatic action. The increasing interest in bioactive peptides among researchers has lately augmented the exploration of minor dairy species such as sheep, goat, camel, mithun, mare, and donkey. Alternative to cow, milk from minor dairy species have also been proven to be healthier from infancy to older age owing to their higher digestibility and other nutritive components. Therefore, realizing the significance of milk from such species and incentivized interest towards the derivatization of bioactive peptides, the present review highlights the significant research achievements on bioactive peptides from milk and milk products of minor dairy species.
Graphical abstract
Collapse
|
38
|
Milan AM, Samuelsson LM, Shrestha A, Sharma P, Day L, Cameron-Smith D. Circulating Branched Chain Amino Acid Concentrations Are Higher in Dairy-Avoiding Females Following an Equal Volume of Sheep Milk Relative to Cow Milk: A Randomized Controlled Trial. Front Nutr 2020; 7:553674. [PMID: 33240914 PMCID: PMC7678490 DOI: 10.3389/fnut.2020.553674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/07/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Intolerances to bovine dairy are a motivating factor in consumers seeking alternate-or replacement-dairy beverages and foods. Sheep milk (SM) is an alternate dairy source, with greater protein, although similar amino acid composition compared to cow milk (CM). Studies are yet to address the appearance of circulating amino acids following consumption of SM, relative to CM, in humans. Objective: To clinically determine the appearance of branched chain amino acids, and other amino acids, in circulation in response to equal servings of SM and CM, in females who avoid dairy products. Design: In a double-blinded, randomized, cross-over trial, 30 self-described dairy avoiding females (20-40 years) drank 650 mL of SM or CM that were reconstituted from the spray dried powders (30 and 25 g in 180 mL water, respectively) on separate occasions, following an overnight fast. After reconstitution, the energy and protein provided by SM was higher than for CM (2,140 vs. 1,649 kJ; 29.9 vs. 19.4 g protein); content of branched chain amino acids (BCAAs) were 10.5 and 6.5 mg·mL-1, respectively. Blood samples were collected at fasting and at regular intervals over 5 h after milk consumption. Plasma amino acids were measured by HPLC. Results: 80% of subjects self-identified as lactose intolerant, and the majority (47%) "avoided drinking milk" "most of the time". SM resulted in greater plasma appearance of BCAAs at 60 min (641.1 ± 16.3 vs. 563.5 ± 14.4 μmol·L-1; p < 0.001) compared with CM. SM similarly resulted in elevated postprandial concentrations of the amino acids lysine, methionine, and proline, particularly at 240 min (time × milk interactions p = 0.011, 0.017, and p = 0.002, respectively). Postprandial increases in plasma alanine concentrations were sustained to 120 min after CM (time × milk interaction p = 0.001) but not after SM, despite greater quantities provided by SM. Conclusions: SM is a rich source of protein, and relative to CM, provides a greater quantity of BCAAs, with a corresponding elevation of the postprandial circulating BCAA response. SM is therefore a possible dairy alternative of benefit to those who need to increase total protein intake or for individuals with heightened protein requirements. Unique Identifier and Registry: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=375324, identifier U1111-1209-7768.
Collapse
Affiliation(s)
- Amber M. Milan
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
- AgResearch Ltd, Grasslands Research Center, Palmerston North, New Zealand
| | | | - Aahana Shrestha
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
- Riddet Institute, Palmerston North, New Zealand
| | - Pankaja Sharma
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
- Riddet Institute, Palmerston North, New Zealand
| | - Li Day
- AgResearch Ltd, Grasslands Research Center, Palmerston North, New Zealand
| | - David Cameron-Smith
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
- AgResearch Ltd, Grasslands Research Center, Palmerston North, New Zealand
- Riddet Institute, Palmerston North, New Zealand
| |
Collapse
|