1
|
Song Y, Long C, Wang Y, An Y, Lu Y. Advancements in multi-omics for nutraceutical enhancement and traits improvement in buckwheat. Crit Rev Biotechnol 2025; 45:530-555. [PMID: 39160127 DOI: 10.1080/07388551.2024.2373282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/10/2024] [Accepted: 05/31/2024] [Indexed: 08/21/2024]
Abstract
Buckwheat (Fagopyrum spp.) is a typical pseudocereal, valued for its extensive nutraceutical potential as well as its centuries-old cultivation. Tartary buckwheat and common buckwheat have been used globally and become well-known nutritious foods due to their high quantities of: proteins, flavonoids, and minerals. Moreover, its increasing demand makes it critical to improve nutraceutical, traits and yield. In this review, bioactive compounds accumulated in buckwheat were comprehensively evaluated according to their chemical structure, properties, and physiological function. Biosynthetic pathways of flavonoids, phenolic acids, and fagopyrin were methodically summarized, with the regulation of flavonoid biosynthesis. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these certain compounds are being synthesized in buckwheat still remains uncovered. The functional genes involved in the biosynthesis of flavonols, stress response, and plant development were identified based on multi-omics research. Furthermore, it delves into the applications of multi-omics in improving buckwheat's agronomic traits, including: yield, nutritional content, stress resilience, and bioactive compounds biosynthesis. While pangenomics combined with other omics to mine elite genes, the regulatory network and mechanism of specific agronomic traits and biosynthetic of bioactive components, and developing a more efficient genetic transformation system for genetic engineering require further investigation for the execution of breeding designs aimed at enhancing desirable traits in buckwheat. This critical review will provide a comprehensive understanding of multi-omics for nutraceutical enhancement and traits improvement in buckwheat.
Collapse
Affiliation(s)
- Yingjie Song
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, P.R. China
| | - Chunlin Long
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuxing An
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, P.R. China
| | - Yinglin Lu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, P.R. China
| |
Collapse
|
2
|
Feng C, Guo Q, Wu C, Wang J, Zhang X, Yan G, Zhou Y, Wang W, Xue Z, Zhang K, Duan X. Identification and characteristic analysis of PavUGT48 as a novel UDP-glycosyltransferase with dual functions on anthocyanin and amygdalin biosynthesis in sweet cherry. Int J Biol Macromol 2025; 309:143062. [PMID: 40220840 DOI: 10.1016/j.ijbiomac.2025.143062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/23/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
UDP-glycosyltransferase (UGT) is essential for fruit development, but its specific role in sweet cherry fruits has not been clearly defined. This study identified a new differentially expressed UGT gene, FUN_010048, by analyzing transcriptomic data from various colored regions of bicolored fruits. The 187 UGT family members were identified in the sweet cherry genome of 'Tieton'. Notably, FUN_010084 has been renamed PavUGT48. Expression analysis revealed that PavUGT48 increased during the development of the differently colored sweet cherry fruits. Co-expression network analysis and further experiments confirmed that PavUGT48 generates cyanidin-3-O-glucoside from cyanidin using UDP-glucose (UDP-Glc) as the sugar donor, enhancing fruit coloration. Additionally, PavUGT48 facilitates the formation of amygdalin from prunasin, but it does not react with naringenin, dihydrokaempferol, or kaempferol when UDP-Glc serves as the sugar donor. These findings enhance our understanding of UGT enzymes in sweet cherries and provide a basis for improving fruit quality and developing new varieties.
Collapse
Affiliation(s)
- Chen Feng
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; Cherry Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100093, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China; Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
| | - Qingqing Guo
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China
| | - Chuanbao Wu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; Cherry Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100093, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China; Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
| | - Jing Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; Cherry Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100093, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China; Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
| | - Xiaoming Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; Cherry Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100093, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China; Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
| | - Guohua Yan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; Cherry Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100093, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China; Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
| | - Yu Zhou
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; Cherry Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100093, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China; Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
| | - Wei Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; Cherry Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100093, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China; Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
| | - Zheyong Xue
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Kaichun Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; Cherry Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100093, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China; Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China.
| | - Xuwei Duan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; Cherry Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100093, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China; Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China.
| |
Collapse
|
3
|
Gao Y, Shi Y, Jahan T, Huda MN, Hao L, He Y, Quinet M, Chen H, Zhang K, Zhou M. Buckwheat UDP-Glycosyltransferase FtUGT71K6 and FtUGT71K7 Tandem Repeats Contribute to Drought Tolerance by Regulating Epicatechin Synthesis. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39887720 DOI: 10.1111/pce.15412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/11/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025]
Abstract
Glycosyltransferase genes are organised as tandem repeats in the buckwheat genome, yet the functional implications and evolutionary significance of duplicated genes remain largely unexplored. In this study, gene family analysis revealed that FtUGT71K6 and FtUGT71K7 are tandem repeats in the buckwheat genome. Moreover, GWAS results for epicatechin suggested that this tandem repeat function was associated with epicatechin content of Tartary buckwheat germplasm, highlighting variations in the promoter haplotypes of FtUGT71K7 influenced epicatechin levels. FtUGT71K6 and FtUGT71K7 were shown to catalyse UDP-glucose conjugation to cyanidin and epicatechin. Furthermore, overexpression of FtUGT71K6 and FtUGT71K7 increased total antioxidant capacity and altered metabolite content of the epicatechin biosynthesis pathway, contributing to improved drought tolerance, while overexpression of FtUGT71K6 significantly improved salt stress tolerance. However, overexpression of these two genes did not contribute to resistance against Rhizoctonia solani. Evolutionary selection pressure analysis suggested positive selection of a critical amino acid ASP-53 in FtUGT71K6 and FtUGT71K7 during the duplication event. Overall, our study indicated that FtUGT71K6 and FtUGT71K7 play crucial roles in drought stress tolerance via modulating epicatechin synthesis in buckwheat.
Collapse
Affiliation(s)
- Yuanfen Gao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, China
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Yaliang Shi
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Tanzim Jahan
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Md Nurul Huda
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Lin Hao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Yuqi He
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Hui Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Kaixuan Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Meiliang Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| |
Collapse
|
4
|
Wang P, Wei J, Hua X, Dong G, Dziedzic K, Wahab AT, Efferth T, Sun W, Ma P. Plant anthraquinones: Classification, distribution, biosynthesis, and regulation. J Cell Physiol 2024; 239:e31063. [PMID: 37393608 DOI: 10.1002/jcp.31063] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023]
Abstract
Anthraquinones are polycyclic compounds with an unsaturated diketone structure (quinoid moiety). As important secondary metabolites of plants, anthraquinones play an important role in the response of many biological processes and environmental factors. Anthraquinones are common in the human diet and have a variety of biological activities including anticancer, antibacterial, and antioxidant activities that reduce disease risk. The biological activity of anthraquinones depends on the substitution pattern of their hydroxyl groups on the anthraquinone ring structure. However, there is still a lack of systematic summary on the distribution, classification, and biosynthesis of plant anthraquinones. Therefore, this paper systematically reviews the research progress of the distribution, classification, biosynthesis, and regulation of plant anthraquinones. Additionally, we discuss future opportunities in anthraquinone research, including biotechnology, therapeutic products, and dietary anthraquinones.
Collapse
Affiliation(s)
- Peng Wang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jia Wei
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xin Hua
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | | | - Krzysztof Dziedzic
- Department of Food Technology of Plant Origin, Poznan' University of Life Sciences, Poznań, Poland
| | - Atia-Tul Wahab
- Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Han T, Miao G. Strategies, Achievements, and Potential Challenges of Plant and Microbial Chassis in the Biosynthesis of Plant Secondary Metabolites. Molecules 2024; 29:2106. [PMID: 38731602 PMCID: PMC11085123 DOI: 10.3390/molecules29092106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Diverse secondary metabolites in plants, with their rich biological activities, have long been important sources for human medicine, food additives, pesticides, etc. However, the large-scale cultivation of host plants consumes land resources and is susceptible to pest and disease problems. Additionally, the multi-step and demanding nature of chemical synthesis adds to production costs, limiting their widespread application. In vitro cultivation and the metabolic engineering of plants have significantly enhanced the synthesis of secondary metabolites with successful industrial production cases. As synthetic biology advances, more research is focusing on heterologous synthesis using microorganisms. This review provides a comprehensive comparison between these two chassis, evaluating their performance in the synthesis of various types of secondary metabolites from the perspectives of yield and strategies. It also discusses the challenges they face and offers insights into future efforts and directions.
Collapse
Affiliation(s)
- Taotao Han
- Department of Bioengineering, Huainan Normal University, Huainan 232038, China;
| | - Guopeng Miao
- Department of Bioengineering, Huainan Normal University, Huainan 232038, China;
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan 232038, China
| |
Collapse
|
6
|
Wang L, Zhao J, Mao Y, Liu L, Li C, Wu H, Zhao H, Wu Q. Tartary buckwheat rutin: Accumulation, metabolic pathways, regulation mechanisms, and biofortification strategies. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108503. [PMID: 38484679 DOI: 10.1016/j.plaphy.2024.108503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 04/02/2024]
Abstract
Rutin is a significant flavonoid with strong antioxidant property and various therapeutic effects. It plays a crucial role in disease prevention and human health maintenance, especially in anti-inflammatory, antidiabetic, hepatoprotective and cardiovascular effects. While many plants can synthesize and accumulate rutin, tartary buckwheat is the only food crop possessing high levels of rutin. At present, the rutin content (RC) is regarded as the key index for evaluating the nutritional quality of tartary buckwheat. Consequently, rutin has become the focus for tartary buckwheat breeders and has made considerable progress. Here, we summarize research on the rutin in tartary buckwheat in the past two decades, including its accumulation, biosynthesis and breakdown pathways, and regulatory mechanisms. Furthermore, we propose several strategies to increase the RC in tartary buckwheat seeds based on current knowledge. This review aims to provide valuable references for elevating the quality of tartary buckwheat in the future.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Jiali Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Yuanbin Mao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Linling Liu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Huala Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China.
| |
Collapse
|
7
|
Gan Y, Yu B, Liu R, Shu B, Liang Y, Zhao Y, Qiu Z, Yan S, Cao B. Systematic analysis of the UDP-glucosyltransferase family: discovery of a member involved in rutin biosynthesis in Solanum melongena. FRONTIERS IN PLANT SCIENCE 2023; 14:1310080. [PMID: 38197083 PMCID: PMC10774229 DOI: 10.3389/fpls.2023.1310080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/21/2023] [Indexed: 01/11/2024]
Abstract
Eggplant (Solanum melongena) is an economically important crop and rich in various nutrients, among which rutin that has positive effects on human health is found in eggplant. Glycosylation mediated by UDP-glycosyltransferases (UGTs) is a key step in rutin biosynthesis. However, the UGT gene has not been reported in eggplant to date. Herein, 195 putative UGT genes were identified in eggplant by genome-wide analysis, and they were divided into 17 subgroups (Group A-P and Group R) according to the phylogenetic evolutionary tree. The members of Groups A, B, D, E and L were related to flavonol biosynthesis, and rutin was the typical flavonol. The expression profile showed that the transcriptional levels of SmUGT genes in Clusters 7-10 were closely related to those of rutin biosynthetic pathway genes. Notably, SmUGT89B2 was classified into Cluster 7 and Group B; its expression was consistent with rutin accumulation in different tissues and different leaf stages of eggplant. SmUGT89B2 was located in the nucleus and cell membrane. Virus-induced gene silencing (VIGS) and transient overexpression assays showed that SmUGT89B2 can promote rutin accumulation in eggplant. These findings provide new insights into the UGT genes in eggplant, indicating that SmUGT89B2 is likely to encode the final enzyme in rutin biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuangshuang Yan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Bihao Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Yin Q, Wu T, Gao R, Wu L, Shi Y, Wang X, Wang M, Xu Z, Zhao Y, Su X, Su Y, Han X, Yuan L, Xiang L, Chen S. Multi-omics reveal key enzymes involved in the formation of phenylpropanoid glucosides in Artemisia annua. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107795. [PMID: 37301186 DOI: 10.1016/j.plaphy.2023.107795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Although mainly known for producing artemisinin, Artemisia annua is enriched in phenylpropanoid glucosides (PGs) with significant bioactivities. However, the biosynthesis of A. annua PGs is insufficiently investigated. Different A. annua ecotypes from distinct growing environments accumulate varying amounts of metabolites, including artemisinin and PGs such as scopolin. UDP-glucose:phenylpropanoid glucosyltransferases (UGTs) transfers glucose from UDP-glucose in PG biosynthesis. Here, we found that the low-artemisinin ecotype GS produces a higher amount of scopolin, compared to the high-artemisinin ecotype HN. By combining transcriptome and proteome analyses, we selected 28 candidate AaUGTs from 177 annotated AaUGTs. Using AlphaFold structural prediction and molecular docking, we determined the binding affinities of 16 AaUGTs. Seven of the AaUGTs enzymatically glycosylated phenylpropanoids. AaUGT25 converted scopoletin to scopolin and esculetin to esculin. The lack of accumulation of esculin in the leaf and the high catalytic efficiency of AaUGT25 on esculetin suggest that esculetin is methylated to scopoletin, the precursor of scopolin. We also discovered that AaOMT1, a previously uncharacterized O-methyltransferase, converts esculetin to scopoletin, suggesting an alternative route for producing scopoletin, which contributes to the high-level accumulation of scopolin in A. annua leaves. AaUGT1 and AaUGT25 responded to induction of stress-related phytohormones, implying the involvement of PGs in stress responses.
Collapse
Affiliation(s)
- Qinggang Yin
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Tianze Wu
- School of Chemistry Chemical Engineering and Life Sciences, Wuhan University of Technology, No. 122, Lo Lion Road, Wuhan, Hubei, 430070, China
| | - Ranran Gao
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lan Wu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuhua Shi
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xingwen Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Mengyue Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhichao Xu
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin, 150006, China
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaojia Su
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453000, China
| | - Yanyan Su
- Amway(China) Botanical R&D Center, Wuxi, 214115, China
| | - Xiaoyan Han
- China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA; Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546-0236, USA
| | - Li Xiang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shilin Chen
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
9
|
Mi Y, Li Y, Qian G, Vanhaelewyn L, Meng X, Liu T, Yang W, Shi Y, Ma P, Tul-Wahab A, Viczián A, Chen S, Sun W, Zhang D. A transcriptional complex of FtMYB102 and FtbHLH4 coordinately regulates the accumulation of rutin in Fagopyrum tataricum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:696-707. [PMID: 36565614 DOI: 10.1016/j.plaphy.2022.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Tartary buckwheat is rich in flavonoids, which not only play an important role in the plant-environment interaction, but are also beneficial to human health. Rutin is a therapeutic flavonol which is massively accumulated in Tartary buckwheat. It has been demonstrated that transcription factors control rutin biosynthesis. However, the transcriptional regulatory network of rutin is not fully clear. In this study, through transcriptome and target metabolomics, we validated the role of FtMYB102 and FtbHLH4 TFs at the different developmental stages of Tartary buckwheat. The elevated accumulation of rutin in the sprout appears to be closely associated with the expression of FtMYB102 and FtbHLH4. Yeast two-hybrid, transient luciferase activity and co-immunoprecipitation demonstrated that FtMYB102 and FtbHLH4 can interact and form a transcriptional complex. Moreover, yeast one-hybrid showed that both FtMYB102 and FtbHLH4 directly bind to the promoter of chalcone isomerase (CHI), and they can coordinately induce CHI expression as shown by transient luciferase activity assay. Finally, we transferred FtMYB102 and FtbHLH4 into the hairy roots of Tartary buckwheat and found that they both can promote the accumulation of rutin. Our results indicate that FtMYB102 and FtbHLH4 can form a transcriptional complex by inducing CHI expression to coordinately promote the accumulation of rutin.
Collapse
Affiliation(s)
- Yaolei Mi
- College of Agriculture, South China Agricultural University, Guangzhou Laboratory for Lingnan Modern Agriculture Science and Technology, Guangzhou, 510642, China; Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Industrial Crop Research Insitute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300, China
| | - Guangtao Qian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lucas Vanhaelewyn
- Department of Agricultural Economics, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium; Deroose Plants NV., Weststraat 129 A, 9940, Sleidinge, Belgium
| | - Xiangxiao Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tingxia Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei Yang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuhua Shi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Pengda Ma
- Northwest A&F University, Yangling, 712100, China
| | - Atia Tul-Wahab
- Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - András Viczián
- Laboratory of Photo- and Chronobiology, Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, H-6726, Hungary
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Dong Zhang
- College of Agriculture, South China Agricultural University, Guangzhou Laboratory for Lingnan Modern Agriculture Science and Technology, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Zhao H, He Y, Zhang K, Li S, Chen Y, He M, He F, Gao B, Yang D, Fan Y, Zhu X, Yan M, Giglioli‐Guivarc'h N, Hano C, Fernie AR, Georgiev MI, Janovská D, Meglič V, Zhou M. Rewiring of the seed metabolome during Tartary buckwheat domestication. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:150-164. [PMID: 36148785 PMCID: PMC9829391 DOI: 10.1111/pbi.13932] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 08/30/2022] [Accepted: 09/19/2022] [Indexed: 05/22/2023]
Abstract
Crop domestication usually leads to the narrowing genetic diversity. However, human selection mainly focuses on visible traits, such as yield and plant morphology, with most metabolic changes being invisible to the naked eye. Buckwheat accumulates abundant bioactive substances, making it a dual-purpose crop with excellent nutritional and medical value. Therefore, examining the wiring of these invisible metabolites during domestication is of major importance. The comprehensive profiling of 200 Tartary buckwheat accessions exhibits 540 metabolites modified as a consequence of human selection. Metabolic genome-wide association study illustrates 384 mGWAS signals for 336 metabolites are under selection. Further analysis showed that an R2R3-MYB transcription factor FtMYB43 positively regulates the synthesis of procyanidin. Glycoside hydrolase gene FtSAGH1 is characterized as responsible for the release of active salicylic acid, the precursor of aspirin and indispensably in plant defence. UDP-glucosyltransferase gene FtUGT74L2 is characterized as involved in the glycosylation of emodin, a major medicinal component specific in Polygonaceae. The lower expression of FtSAGH1 and FtUGT74L2 were associated with the reduction of salicylic acid and soluble EmG owing to domestication. This first large-scale metabolome profiling in Tartary buckwheat will facilitate genetic improvement of medicinal properties and disease resistance in Tartary buckwheat.
Collapse
Affiliation(s)
- Hui Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yuqi He
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Shijuan Li
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
- College of Plant PathologyGansu Agricultural UniversityLanzhouChina
| | - Yong Chen
- Wuhan Metware Biotechnology Co., Ltd.WuhanChina
| | - Ming He
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Feng He
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Bin Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Di Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yu Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Xuemei Zhu
- College of Environmental SciencesSichuan Agricultural UniversityChengduChina
| | - Mingli Yan
- Crop Research Institute, Hunan Academy of Agricultural SciencesChangshaChina
| | | | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC EA1207), INRA USC1328, Plant Lignans TeamUniversité d'OrléansOrléans Cédex 2France
| | - Alisdair R. Fernie
- Department of Molecular PhysiologyMax‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - Milen I. Georgiev
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
- Laboratory of MetabolomicsInstitute of Microbiology, Bulgarian Academy of SciencesPlovdivBulgaria
| | - Dagmar Janovská
- Department of Gene BankCrop Research Institute (CRI)Praha 6Czech Republic
| | | | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
11
|
Kreft I, Germ M, Golob A, Vombergar B, Vollmannová A, Kreft S, Luthar Z. Phytochemistry, Bioactivities of Metabolites, and Traditional Uses of Fagopyrum tataricum. Molecules 2022; 27:7101. [PMID: 36296694 PMCID: PMC9611693 DOI: 10.3390/molecules27207101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 09/02/2023] Open
Abstract
In Tartary buckwheat (Fagopyrum tataricum), the edible parts are mainly grain and sprouts. Tartary buckwheat contains protecting substances, which make it possible for plants to survive on high altitudes and under strong natural ultraviolet radiation. The diversity and high content of phenolic substances are important for Tartary buckwheat to grow and reproduce under unfriendly environmental effects, diseases, and grazing. These substances are mainly flavonoids (rutin, quercetin, quercitrin, vitexin, catechin, epicatechin and epicatechin gallate), phenolic acids, fagopyrins, and emodin. Synthesis of protecting substances depends on genetic layout and on the environmental conditions, mainly UV radiation and temperature. Flavonoids and their glycosides are among Tartary buckwheat plants bioactive metabolites. Flavonoids are compounds of special interest due to their antioxidant properties and potential in preventing tiredness, diabetes mellitus, oxidative stress, and neurodegenerative disorders such as Parkinson's disease. During the processing and production of food items, Tartary buckwheat metabolites are subjected to molecular transformations. The main Tartary buckwheat traditional food products are bread, groats, and sprouts.
Collapse
Affiliation(s)
- Ivan Kreft
- Nutrition Institute, Tržaška 40, SI-1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Blanka Vombergar
- The Education Centre Piramida Maribor, SI-2000 Maribor, Slovenia
| | - Alena Vollmannová
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Samo Kreft
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Wu T, Xiang L, Gao R, Wu L, Deng G, Wang W, Zhang Y, Wang B, Shen L, Chen S, Liu X, Yin Q. Integrated multi-omics analysis and microbial recombinant protein system reveal hydroxylation and glycosylation involving nevadensin biosynthesis in Lysionotus pauciflorus. Microb Cell Fact 2022; 21:195. [PMID: 36123741 PMCID: PMC9484059 DOI: 10.1186/s12934-022-01921-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background Karst-adapted plant, Lysionotus pauciflours accumulates special secondary metabolites with a wide range of pharmacological effects for surviving in drought and high salty areas, while researchers focused more on their environmental adaptations and evolutions. Nevadensin (5,7-dihydroxy-6,8,4'-trimethoxyflavone), the main active component in L. pauciflours, has unique bioactivity of such as anti-inflammatory, anti-tubercular, and anti-tumor or cancer. Complex decoration of nevadensin, such as hydroxylation and glycosylation of the flavone skeleton determines its diversity and biological activities. The lack of omics data limits the exploration of accumulation mode and biosynthetic pathway. Herein, we integrated transcriptomics, metabolomics, and microbial recombinant protein system to reveal hydroxylation and glycosylation involving nevadensin biosynthesis in L. pauciflours. Results Up to 275 flavonoids were found to exist in L. pauciflorus by UPLC-MS/MS based on widely targeted metabolome analysis. The special flavone nevadensin (5,7-dihydroxy-6,8,4'-trimethoxyflavone) is enriched in different tissues, as are its related glycosides. The flavonoid biosynthesis pathway was drawn based on differential transcripts analysis, including 9 PAL, 5 C4H, 8 4CL, 6 CHS, 3 CHI, 1 FNSII, and over 20 OMTs. Total 310 LpCYP450s were classified into 9 clans, 36 families, and 35 subfamilies, with 56% being A-type CYP450s by phylogenetic evolutionary analysis. According to the phylogenetic tree with AtUGTs, 187 LpUGTs clustered into 14 evolutionary groups (A-N), with 74% being E, A, D, G, and K groups. Two LpCYP82D members and LpUGT95 were functionally identified in Saccharomyces cerevisiae and Escherichia coli, respectively. CYP82D-8 and CYP82D-1 specially hydroxylate the 6- or 8-position of A ring in vivo and in vitro, dislike the function of F6H or F8H discovered in basil which functioned depending on A-ring substituted methoxy. These results refreshed the starting mode that apigenin can be firstly hydroxylated on A ring in nevadensin biosynthesis. Furthermore, LpUGT95 clustered into the 7-OGT family was verified to catalyze 7-O glucosylation of nevadensin accompanied with weak nevadensin 5-O glucosylation function, firstly revealed glycosylation modification of flavones with completely substituted A-ring. Conclusions Metabolomic and full-length transcriptomic association analysis unveiled the accumulation mode and biosynthetic pathway of the secondary metabolites in the karst-adapted plant L. pauciflorus. Moreover, functional identification of two LpCYP82D members and one LpUGT in microbe reconstructed the pathway of nevadensin biosynthesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01921-2.
Collapse
Affiliation(s)
- Tianze Wu
- School of Chemistry Chemical Engineering and Life Sciences, Wuhan University of Technology, No. 122, Lo Lion Road, Wuhan, 430070, Hubei, China
| | - Li Xiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.,Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ranran Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.,Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lan Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.,Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Gang Deng
- School of Chemistry Chemical Engineering and Life Sciences, Wuhan University of Technology, No. 122, Lo Lion Road, Wuhan, 430070, Hubei, China
| | - Wenting Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.,Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yongping Zhang
- College of Pharmaceutical Sciences, National Engineering Technology Research Center for Miao Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Bo Wang
- College of Pharmaceutical Sciences, National Engineering Technology Research Center for Miao Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Liang Shen
- Beijing Museum of Natural History, Beijing Academy of Science and Technology, Beijing, 100050, China
| | - Shilin Chen
- School of Chemistry Chemical Engineering and Life Sciences, Wuhan University of Technology, No. 122, Lo Lion Road, Wuhan, 430070, Hubei, China. .,Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xia Liu
- School of Chemistry Chemical Engineering and Life Sciences, Wuhan University of Technology, No. 122, Lo Lion Road, Wuhan, 430070, Hubei, China.
| | - Qinggang Yin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China. .,Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
13
|
Hairy Root Cultures as a Source of Polyphenolic Antioxidants: Flavonoids, Stilbenoids and Hydrolyzable Tannins. PLANTS 2022; 11:plants11151950. [PMID: 35956428 PMCID: PMC9370385 DOI: 10.3390/plants11151950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
Abstract
Due to their chemical properties and biological activity, antioxidants of plant origin have gained interest as valuable components of the human diet, potential food preservatives and additives, ingredients of cosmetics and factors implicated in tolerance mechanisms against environmental stress. Plant polyphenols are the most prominent and extensively studied, albeit not only group of, secondary plant (specialized) metabolites manifesting antioxidative activity. Because of their potential economic importance, the productive and renewable sources of the compounds are desirable. Over thirty years of research on hairy root cultures, as both producers of secondary plant metabolites and experimental systems to investigate plant biosynthetic pathways, brought about several spectacular achievements. The present review focuses on the Rhizobium rhizogenes-transformed roots that either may be efficient sources of plant-derived antioxidants or were used to elucidate some regulatory mechanisms responsible for the enhanced accumulation of antioxidants in plant tissues.
Collapse
|
14
|
Xu H, Jiang Z, Lin Z, Yu Q, Song R, Wang B. FtUGT79A15 is responsible for rutinosylation in flavonoid diglycoside biosynthesis in Fagopyrum tataricum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 181:33-41. [PMID: 35428016 DOI: 10.1016/j.plaphy.2022.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/13/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Tartary buckwheat shows health benefits with its high antioxidant activity and abundant flavonoid content. However, glycosylated flavonoid accumulation patterns and their molecular basis remain unidentified in Tartary buckwheat. Here, our metabolomics analysis revealed that F3'H branching was the major flavonoid metabolic flux in Tartary buckwheat. Interestingly, metabolome results also showed that the most abundant flavonoids were mainly in the glycosylated form, including flavonoid glycosides and flavonoid diglycosides in Tartary buckwheat. However, the flavonoid glycosides glycosyltransferase (GGT) gene catalyzing the second glycosylation step of flavonoid diglycoside has not been discovered yet in Tartary buckwheat. Thus, we explored GGT genes in the transcriptome-metabolome correlation network and confirmed that FtUGT79A15 showed the rhamnosyltransferase activity to catalyze quercetin 3-O-glucoside to rutin invitro and inplanta. Overall, FtUGT79A15 was identified to involve in the flavonoid diglycoside biosynthesis pathway in Tartary buckwheat.
Collapse
Affiliation(s)
- Huiting Xu
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhiqiang Jiang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Zimei Lin
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Qinqin Yu
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Ruifeng Song
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Bo Wang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
15
|
Immobilized glucosyltransferase and sucrose synthase on Fe3O4@Uio-66 in cascade catalysis for the one-pot conversion of rebaudioside D from rebaudioside A. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Yin Q, Wei Y, Han X, Chen J, Gao H, Sun W. Unraveling the Glucosylation of Astringency Compounds of Horse Chestnut via Integrative Sensory Evaluation, Flavonoid Metabolism, Differential Transcriptome, and Phylogenetic Analysis. FRONTIERS IN PLANT SCIENCE 2022; 12:830343. [PMID: 35185970 PMCID: PMC8850972 DOI: 10.3389/fpls.2021.830343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/27/2021] [Indexed: 06/12/2023]
Abstract
The seeds of Chinese horse chestnut are used as a source of starch and escin, whereas the potential use of whole plant has been ignored. The astringency and bitterness of tea produced from the leaves and flowers were found to be significantly better than those of green tea, suggesting that the enriched flavonoids maybe sensory determinates. During 47 flavonoids identified in leaves and flowers, seven flavonol glycosides in the top 10 including astragalin and isoquercitrin were significantly higher content in flowers than in leaves. The crude proteins of flowers could catalyze flavonol glucosides' formation, in which three glycosyltransferases contributed to the flavonol glucosylation were screened out by multi-dimensional integration of transcriptome, evolutionary analyses, recombinant enzymatic analysis and molecular docking. The deep exploration for flavonol profile and glycosylation provides theoretical and experimental basis for utilization of flowers and leaves of Aesculus chinensis as additives and dietary supplements.
Collapse
Affiliation(s)
- Qinggang Yin
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiding Wei
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyan Han
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jingwang Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Gao
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Sun
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Yin Q, Zhang J, Wang S, Cheng J, Gao H, Guo C, Ma L, Sun L, Han X, Chen S, Liu A. N-glucosyltransferase GbNGT1 from ginkgo complements the auxin metabolic pathway. HORTICULTURE RESEARCH 2021; 8:229. [PMID: 34719674 PMCID: PMC8558338 DOI: 10.1038/s41438-021-00658-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/25/2021] [Accepted: 07/14/2021] [Indexed: 05/30/2023]
Abstract
As auxins are among the most important phytohormones, the regulation of auxin homeostasis is complex. Generally, auxin conjugates, especially IAA glucosides, are predominant at high auxin levels. Previous research on terminal glucosylation focused mainly on the O-position, while IAA-N-glucoside and IAA-Asp-N-glucoside have been neglected since their discovery in 2001. In our study, IAA-Asp-N-glucoside was found to be specifically abundant (as high as 4.13 mg/g) in the seeds of 58 ginkgo cultivars. Furthermore, a novel N-glucosyltransferase, termed GbNGT1, was identified via differential transcriptome analysis and in vitro enzymatic testing. It was found that GbNGT1 could catalyze IAA-Asp and IAA to form their corresponding N-glucosides. The enzyme was demonstrated to possess a specific catalytic capacity toward the N-position of the IAA-amino acid or IAA from 52 substrates. Docking and site-directed mutagenesis of this enzyme confirmed that the E15G mutant could almost completely abolish its N-glucosylation ability toward IAA-Asp and IAA in vitro and in vivo. The IAA modification of GbNGT1 and GbGH3.5 was verified by transient expression assay in Nicotiana benthamiana. The effect of GbNGT1 on IAA distribution promotes root growth in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Qinggang Yin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuhui Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jintang Cheng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Han Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cong Guo
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lianbao Ma
- Institute of Ginkgo, Pizhou, Jiangsu, 221300, China
| | - Limin Sun
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Xiaoyan Han
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - An Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
18
|
Yin Q, Han X, Chen J, Han Z, Shen L, Sun W, Chen S. Identification of Specific Glycosyltransferases Involved in Flavonol Glucoside Biosynthesis in Ginseng Using Integrative Metabolite Profiles, DIA Proteomics, and Phylogenetic Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1714-1726. [PMID: 33512142 DOI: 10.1021/acs.jafc.0c06989] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ginseng contains a variety of flavonol glycosides that possess diverse biological activities; however, scant information of flavonoid glycosylation was reported in ginseng. We found that panasenoside and kaempferol 3-O-glucoside were commonly accumulated along with cultivation years in leaves. In order to explore the procedure of flavonol glycosylation in ginseng, 50 UDP-glycosyltransferases (UGTs) were screened out using differentiated data-independent acquisition (DIA) proteomics and phylogenetic analysis. UGT92A10 and UGT94Q4 were found contributing to the formation of kaempferol 3-O-glucoside. UGT73A18, UGT74T4, and UGT75W1 could catalyze galactosylation of kaempferol 3-O-glucoside. Ser278, Trp335, Gln338, and Val339 were found forming hydrogen bonds with UDP-galactose in UGT75W1 by docking. MeJA induced transcripts of UGT73A18 and UGT74T4 by over fourfold, consistent with the decrease of kaempferol 3-O-glucoside, which indicated that these genes may be related to resisting adversity stress in ginseng. These results highlight the significance of integrative metabolite profiles, proteomics, and phylogenetic analysis for exploring flavonol glycosylation in ginseng.
Collapse
Affiliation(s)
- Qinggang Yin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoyan Han
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jingwang Chen
- Key Laboratory of Agro-products Processing, Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zongxian Han
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liang Shen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Beijing Museum of Natural History, Beijing Academy of Science and Technology, Beijing 100050, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
19
|
Luthar Z, Germ M, Likar M, Golob A, Vogel-Mikuš K, Pongrac P, Kušar A, Pravst I, Kreft I. Breeding Buckwheat for Increased Levels of Rutin, Quercetin and Other Bioactive Compounds with Potential Antiviral Effects. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1638. [PMID: 33255469 PMCID: PMC7760024 DOI: 10.3390/plants9121638] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/31/2022]
Abstract
Common buckwheat (Fagopyrum esculentum Moench) and Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) are sources of many bioactive compounds, such as rutin, quercetin, emodin, fagopyrin and other (poly)phenolics. In damaged or milled grain under wet conditions, most of the rutin in common and Tartary buckwheat is degraded to quercetin by rutin-degrading enzymes (e.g., rutinosidase). From Tartary buckwheat varieties with low rutinosidase activity it is possible to prepare foods with high levels of rutin, with the preserved initial levels in the grain. The quercetin from rutin degradation in Tartary buckwheat grain is responsible in part for inhibition of α-glucosidase in the intestine, which helps to maintain normal glucose levels in the blood. Rutin and emodin have the potential for antiviral effects. Grain embryos are rich in rutin, so breeding buckwheat with the aim of producing larger embryos may be a promising strategy to increase the levels of rutin in common and Tartary buckwheat grain, and hence to improve its nutritional value.
Collapse
Affiliation(s)
- Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (Z.L.); (M.G.); (M.L.); (A.G.); (K.V.-M.); (P.P.)
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (Z.L.); (M.G.); (M.L.); (A.G.); (K.V.-M.); (P.P.)
| | - Matevž Likar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (Z.L.); (M.G.); (M.L.); (A.G.); (K.V.-M.); (P.P.)
| | - Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (Z.L.); (M.G.); (M.L.); (A.G.); (K.V.-M.); (P.P.)
| | - Katarina Vogel-Mikuš
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (Z.L.); (M.G.); (M.L.); (A.G.); (K.V.-M.); (P.P.)
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Paula Pongrac
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (Z.L.); (M.G.); (M.L.); (A.G.); (K.V.-M.); (P.P.)
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Anita Kušar
- Nutrition Institute, Tržaška 40, SI-1000 Ljubljana, Slovenia; (A.K.); (I.P.)
| | - Igor Pravst
- Nutrition Institute, Tržaška 40, SI-1000 Ljubljana, Slovenia; (A.K.); (I.P.)
| | - Ivan Kreft
- Nutrition Institute, Tržaška 40, SI-1000 Ljubljana, Slovenia; (A.K.); (I.P.)
| |
Collapse
|
20
|
Enhanced Heterologous Production of Glycosyltransferase UGT76G1 by Co-Expression of Endogenous prpD and malK in Escherichia coli and Its Transglycosylation Application in Production of Rebaudioside. Int J Mol Sci 2020; 21:ijms21165752. [PMID: 32796599 PMCID: PMC7460871 DOI: 10.3390/ijms21165752] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Steviol glycosides (SGs) with zero calories and high-intensity sweetness are the best substitutes of sugar for the human diet. Uridine diphosphate dependent glycosyltransferase (UGT) UGT76G1, as a key enzyme for the biosynthesis of SGs with a low heterologous expression level, hinders its application. In this study, a suitable fusion partner, Smt3, was found to enhance the soluble expression of UGT76G1 by 60%. Additionally, a novel strategy to improve the expression of Smt3-UGT76G1 was performed, which co-expressed endogenous genes prpD and malK in Escherichia coli. Notably, this is the first report of constructing an efficient E. coli expression system by regulating prpD and malK expression, which remarkably improved the expression of Smt3-UGT76G1 by 200% as a consequence. Using the high-expression strain E. coli BL21 (DE3) M/P-3-S32U produced 1.97 g/L of Smt3-UGT76G1 with a yield rate of 61.6 mg/L/h by fed-batch fermentation in a 10 L fermenter. The final yield of rebadioside A (Reb A) and rebadioside M (Reb M) reached 4.8 g/L and 1.8 g/L, respectively, when catalyzed by Smt3-UGT76G1 in the practical UDP-glucose regeneration transformation system in vitro. This study not only carried out low-cost biotransformation of SGs but also provided a novel strategy for improving expression of heterologous proteins in E. coli.
Collapse
|