1
|
Bonilla LF, Sandoval-Aldana A, Daza LD. Acrylamide: An approach to its knowledge and importance for roasted coffee. Food Chem 2025; 466:142247. [PMID: 39615358 DOI: 10.1016/j.foodchem.2024.142247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/16/2024] [Accepted: 11/23/2024] [Indexed: 12/14/2024]
Abstract
Acrylamide (AA) has been classified as a toxic, harmful, and carcinogenic substance since 2002, and therefore it is currently widely studied. When functional amino and carbonyl groups of asparagine and reducing sugars are condensed into Schiff bases, they are transformed into AA molecules at temperatures >120 °C. This mechanism is known as the Maillard reaction and is considered the main AA pathway. Simultaneously, desired browning and sensory properties are developed. However, changes in chemical composition of the matrix, properties, and secondary reactions trigger intermediary synthesis, destabilizing the medium and leading to new AA molecules. Coffee has become the most consumed beverage worldwide. Therefore, the World Health Organization established recommended benchmark levels of AA concentrations that could be detected in roasted coffee beans and by-products (<850 μg/kg). Trace levels of AA can differ between samples due to roasting and brewing conditions, and the analytical and extraction methods chosen for sample analysis.
Collapse
Affiliation(s)
- Lina Fernanda Bonilla
- Departamento de Producción y Sanidad Vegetal, Facultad Ingeniería Agronómica, Universidad del Tolima, 730006 Ibagué, Colombia.
| | - Angélica Sandoval-Aldana
- Departamento de Producción y Sanidad Vegetal, Facultad Ingeniería Agronómica, Universidad del Tolima, 730006 Ibagué, Colombia.
| | - Luis Daniel Daza
- Departamento de Producción y Sanidad Vegetal, Facultad Ingeniería Agronómica, Universidad del Tolima, 730006 Ibagué, Colombia; Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa km. 7.5, 07122 Palma de Mallorca, Spain..
| |
Collapse
|
2
|
Mengesha D, Retta N, Deribew HA, Urugo MM, Getachew P. Estimation of Dietary Acrylamide Exposure of Ethiopian Population Through Coffee Consumption. J Food Prot 2025; 88:100441. [PMID: 39725326 DOI: 10.1016/j.jfp.2024.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
This study estimated the acrylamide exposure of the Ethiopian population through traditional brewing of Coffee arabica. Acrylamide concentrations in traditionally processed Ethiopian C. arabica varieties from Jimma, Sidama, Yirgacheffe, Nekemte, and Hararge were measured. A qualitative survey in Addis Ababa was used to develop a traditional coffee brewing flowchart, which was then applied in a laboratory setting. Acrylamide concentrations in roasted coffee powders were found to be 944.01, 861.67, 739.63, 726.35, and 326.60 μg/kg for Hararge, Nekemte, Jimma, Yirgacheffe, and Sidama, respectively. First brew concentrations were 119.97, 112.10, 108.68, 94.07, and 6.67 μg/L, and second brew concentrations were 21.41, 16.45, 16.77, 3.92, and 6.31 μg/L for the respective varieties of Nekemte, Yirgachefe, Jimma, Hararge, and Sidama. Estimated daily intake (EDI) of acrylamide, based on coffee consumption data, were well below harmful levels (<200 μg/kg bw/day), with Target Hazard Quotient (THQ) values indicating minimal noncarcinogenic risk (<1). The study also found low concern for nonneoplastic effects (intake < 0.2 μg/kg bw/day) from Sidama and Nekemte coffees, although a relatively higher concern was observed for Nekemte in specific areas. The findings suggest that reducing acrylamide content in coffee through preventive actions and mitigation strategies is advisable to minimize potential health risks.
Collapse
Affiliation(s)
- Dhaba Mengesha
- Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia; Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa, Ethiopia
| | - Negussie Retta
- Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Henok Ashagrie Deribew
- Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Markos Makiso Urugo
- Department of Food Science and Postharvest Technology, College of Agricultural Sciences, Wachemo University-667, Ethiopia; Department of Post-Harvest Management, College of Agriculture and Veterinary Medicine, Jimma University-307, Ethiopia
| | - Paulos Getachew
- Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
| |
Collapse
|
3
|
Hu R, Xu F, Chen X, Kuang Q, Xiao X, Dong W. The Growing Altitude Influences the Flavor Precursors, Sensory Characteristics and Cupping Quality of the Pu'er Coffee Bean. Foods 2024; 13:3842. [PMID: 39682914 DOI: 10.3390/foods13233842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
The growing altitude is an important factor affecting the quality of coffee. We explored the flavor precursors, sensory characteristics, and cupping qualities of coffee growing at different altitudes and discussed their associated relationships. The altitude at which coffee is grown has different effects on its chemical composition. Fatty acid contents increased with increasing altitudes, whereas alkaloid and chlorogenic acids contents decreased with increasing elevation. There was no obvious trend in either organic acids or monosaccharides. Eleven of the 112 detected volatile components were significantly affected by the growing altitude. The contents of pyrazines and alcohols tended to decrease, whereas those of aldehydes tended to increase. A significantly altered composition reduces the nutty and roasted flavors of coffee, while increasing the sweet sugar and caramel aromas. The aroma and flavor tended to increase with increasing altitudes during cupping, whereas the other indicators did not change significantly. The results provide a theoretical reference for the sales and promotion of Pu'er coffee.
Collapse
Affiliation(s)
- Rongsuo Hu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning 571533, China
- College of Food and Technology, Nanjing Agriculture University, Nanjing 210095, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| | - Fei Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| | - Xiao Chen
- College of Food and Technology, Nanjing Agriculture University, Nanjing 210095, China
| | - Qinrui Kuang
- College of Modern Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
| | - Xingyuan Xiao
- College of Tropical Crops, Yunnan Agriculture University, Pu'er 665000, China
| | - Wenjiang Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| |
Collapse
|
4
|
Zahir A, Khan IA, Nasim M, Azizi MN, Azi F. Food process contaminants: formation, occurrence, risk assessment and mitigation strategies - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1242-1274. [PMID: 39038046 DOI: 10.1080/19440049.2024.2381210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Thermal treatment of food can lead to the formation of potentially harmful chemicals, known as process contaminants. These are adventitious contaminants that are formed in food during processing and preparation. Various food processing techniques, such as heating, drying, grilling, and fermentation, can generate hazardous chemicals such as acrylamide (AA), advanced glycation end products (AGEs), heterocyclic aromatic amines (HAAs), furan, polycyclic aromatic hydrocarbons (PAHs), N-nitroso compounds (NOCs), monochloropropane diols (MCPD) and their esters (MCPDE) which can be detrimental to human health. Despite efforts to prevent the formation of these compounds during processing, eliminating them is often challenging due to their unknown formation mechanisms. It is critical to identify the potential harm to human health in processed food and understand the mechanisms by which harmful compounds form during processing, as prolonged exposure to these toxic compounds can lead to health problems. Various mitigation strategies, such as the use of diverse pre- and post-processing treatments, product reformulation, additives, variable process conditions, and novel integrated processing techniques, have been proposed to control these food hazards. In this review, we summarize the formation and occurrence, the potential for harm to human health produced by process contaminants in food, and potential mitigation strategies to minimize their impact.
Collapse
Affiliation(s)
- Ahmadullah Zahir
- Faculty of Veterinary Sciences, Department of Food Science and Technology, Afghanistan National Agricultural Sciences & Technology University, Kandahar, Afghanistan
| | - Iftikhar Ali Khan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Maazullah Nasim
- Faculty of Agriculture, Department of Horticulture, Kabul University, Kabul, Afghanistan
| | - Mohammad Naeem Azizi
- Faculty of Veterinary Sciences, Department of Pre-Clinic, Afghanistan National Agricultural Sciences & Technology University, Kandahar, Afghanistan
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
| |
Collapse
|
5
|
Shi Q, Xiao Y, Zhou Y, Tang W, Jiang F, Zhou X, Lu H. Comparison of Ultra-High-Pressure and Conventional Cold Brew Coffee at Different Roasting Degrees: Physicochemical Characteristics and Volatile and Non-Volatile Components. Foods 2024; 13:3119. [PMID: 39410154 PMCID: PMC11475540 DOI: 10.3390/foods13193119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The impact of the roasting degree on ultra-high-pressure cold brew (UHP) coffee remains unclear, although it has been found that UHP technology accelerates the extraction of cold brew (CB) coffee. Therefore, this study investigated the effects of three different degrees of roasting (light, medium, and dark) on the physicochemical characteristics, volatile and non-volatile components, and sensory evaluation of UHP coffee. Orthogonal partial least-squares-discriminant analysis (OPLS-DA) and principal component analysis (PCA) were used to assess the effects of different roasting degrees. The results showed that most physicochemical characteristics, including total dissolved solids (TDSs), extraction yield (EY), total titratable acidity (TTA), total sugars (TSs), and total phenolic content (TPC), of UHP coffee were similar to those of conventional CB coffee regardless of the degree of roasting. However, the majority of physicochemical characteristics, non-volatile components, including the antioxidant capacity (measured based on DPPH and ABTS) and melanoidin, caffeine, trigonelline, and CGA contents increased significantly with an increase in roasting degree. The sensory evaluation revealed that as the roasting degree rose, the nutty flavor, astringency, bitterness, body, and aftertaste intensities increased, while floral, fruity, and sourness attributes decreased. The HS-SPME-GC/MS analysis showed that most volatile components increased from light to dark roasting. Moreover, 15 representative differential compounds, including hazelnut pyrazine, linalool, butane-2,3-dione, and 3-methylbutanal, were identified by calculating the odor-active values (OAVs), indicating that these contributed significantly to the odor. The PCA showed that the distance between the three roasting degree samples in UHP coffee was smaller than that in CB coffee. Overall, the effect of roasting degrees on UHP coffee was less than that on CB coffee, which was consistent with the results of physicochemical characteristics, volatile components, and sensory evaluation.
Collapse
Affiliation(s)
- Qihan Shi
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (Q.S.); (W.T.); (X.Z.)
| | - Ying Xiao
- School of Food and Tourism, Shanghai Urban Construction Vocational College, Shanghai 201415, China
| | - Yiming Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (Q.S.); (W.T.); (X.Z.)
| | - Wenxiao Tang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (Q.S.); (W.T.); (X.Z.)
| | - Feng Jiang
- Coffee Professional Committee, Shanghai Technician Association, Shanghai 200050, China;
| | - Xiaoli Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (Q.S.); (W.T.); (X.Z.)
| | - Hongxiu Lu
- Shanghai Vocational College of Agriculture and Forestry, Shanghai 201699, China;
| |
Collapse
|
6
|
Kung HC, Huang BW, Kiprotich Cheruiyot N, Lee KL, Chang-Chien GP. Insights into acrylamide and furanic compounds in coffee with a focus on roasting methods and additives. Food Res Int 2024; 192:114800. [PMID: 39147470 DOI: 10.1016/j.foodres.2024.114800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/17/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Roasting is necessary for bringing out the aroma and flavor of coffee beans, making coffee one of the most consumed beverages. However, this process also generates a series of toxic compounds, including acrylamide and furanic compounds (5-hydroxymethylfurfural, furan, 2-methylfuran, 3-methylfuran, 2,3-dimethylfuran, and 2,5-dimethylfuran). Furthermore, not much is known about the formation of these compounds in emerging coffee formulations containing alcohol and sugars. Therefore, this study investigated the effect of roasting time and degree on levels of acrylamide and furanic compounds in arabica coffee using fast and slow roasting methods. The fast and slow roasting methods took 5.62 min and 9.65 min, respectively, and reached a maximum of 210 °C to achieve a light roast. For the very dark roast, the coffee beans were roasted for 10.5 min and the maximum temperature reached 245 °C. Our findings showed that the levels of acrylamide (375 ± 2.52 μg kg-1) and 5-HMF (194 ± 11.7 mg kg-1) in the slow-roasted coffee were 35.0 % and 17.4 % lower than in fast-roasted coffee. Furthermore, light roast coffee had significantly lower concentrations of acrylamide and 5-HMF than very dark roast, with values of 93.7 ± 7.51 μg kg-1 and 21.3 ± 10.3 mg kg-1, respectively. However, the levels of furan and alkylfurans increased with increasing roasting time and degree. In this study, we also examined the concentrations of these pollutants in new coffee formulations consisting of alcohol-, sugar-, and honey-infused coffee beans. Formulations with honey and sugar resulted in higher concentrations of 5-HMF, but no clear trend was observed for acrylamide. On the other hand, formulations with honey had higher concentrations of furan and alkylfurans. These results indicate that optimizing roasting time and temperature might not achieve the simultaneous reduction of all the pollutants. Additionally, sugar- and honey-infused coffee beans are bound to have higher furanic compounds, posing a higher health risk.
Collapse
Affiliation(s)
- Hsin-Chieh Kung
- Institute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung City 833347, Taiwan
| | - Bo-Wun Huang
- Department of Mechanical and Institute of Mechatronic Engineering, Cheng Shiu University, Kaohsiung City 833347, Taiwan
| | - Nicholas Kiprotich Cheruiyot
- Institute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung City 833347, Taiwan; Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833347, Taiwan.
| | - Kuan-Lin Lee
- Civil, Architectural, and Environmental Engineering Department, University of Texas at Austin, TX 78712, United States
| | - Guo-Ping Chang-Chien
- Institute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung City 833347, Taiwan; Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833347, Taiwan.
| |
Collapse
|
7
|
Homayoonfal M, Molavizadeh D, Sadeghi S, Chaleshtori RS. The role of microRNAs in acrylamide toxicity. Front Nutr 2024; 11:1344159. [PMID: 38456012 PMCID: PMC10917983 DOI: 10.3389/fnut.2024.1344159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
The chemical compound known as Acrylamide (AA) is employed in different industries worldwide and is also found in thermal-processed food. AA has been acting as a reproductive toxicant, carcinogen, and neurotoxic in various animals, which may promote several toxic impacts in animal and human species. Up to now, various studies have focused on the harmful mechanisms and intervention actions of AA. However, the underlying mechanisms that AA and its toxic effects can exert have remained uncertain. MicroRNAs (miRNAs) are a class of short, non-coding RNAs that are able to act as epigenetic regulators. These molecules can regulate a wide range of cellular and molecular processes. In this regard, it has been shown that different chemical agents can dysregulate miRNAs. To determine the possible AA targets along with mechanisms of its toxicity, it is helpful to study the alteration in the profiles of miRNA regulation following AA intake. The current research aimed to evaluate the miRNAs' mediatory roles upon the AA's toxic potentials. This review study discussed the AA, which is made within the food matrix, the way it is consumed, and the potential impacts of AA on miRNAs and its association with different cancer types and degenerative diseases. The findings of this review paper indicated that AA might be capable of altering miRNA signatures in different tissues and exerting its carcinogen effects.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Danial Molavizadeh
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Sadeghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Sharafati Chaleshtori
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
8
|
Acquaticci L, Angeloni S, Cela N, Galgano F, Vittori S, Caprioli G, Condelli N. Impact of coffee species, post-harvesting treatments and roasting conditions on coffee quality and safety related compounds. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Li Z, Zhao C, Cao C. Production and Inhibition of Acrylamide during Coffee Processing: A Literature Review. Molecules 2023; 28:molecules28083476. [PMID: 37110710 PMCID: PMC10143638 DOI: 10.3390/molecules28083476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Coffee is the third-largest beverage with wide-scale production. It is consumed by a large number of people worldwide. However, acrylamide (AA) is produced during coffee processing, which seriously affects its quality and safety. Coffee beans are rich in asparagine and carbohydrates, which are precursors of the Maillard reaction and AA. AA produced during coffee processing increases the risk of damage to the nervous system, immune system, and genetic makeup of humans. Here, we briefly introduce the formation and harmful effects of AA during coffee processing, with a focus on the research progress of technologies to control or reduce AA generation at different processing stages. Our study aims to provide different strategies for inhibiting AA formation during coffee processing and investigate related inhibition mechanisms.
Collapse
Affiliation(s)
- Zelin Li
- Department of Food Science and Engineering, College of Life Sciences, Southwest Forestry University, Kunming 650224, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunyan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Changwei Cao
- Department of Food Science and Engineering, College of Life Sciences, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
10
|
Wu SL, Ju JQ, Ji YM, Zhang HL, Zou YJ, Sun SC. Exposure to acrylamide induces zygotic genome activation defects of mouse embryos. Food Chem Toxicol 2023; 175:113753. [PMID: 36997053 DOI: 10.1016/j.fct.2023.113753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Acrylamide (ACR) is an important chemical raw material for wastewater treatment, paper industry and textile industry, which is widely exposed from occupational, environmental and dietary situation. ACR has neurotoxicity, genotoxicity, potential carcinogenicity and reproductive toxicity. Recent study indicates that ACR affected oocyte maturation quality. In the present study, we reported the effects of ACR exposure on zygotic genome activation (ZGA) in embryos and its related mechanism. Our results showed that ACR treatment caused 2-cell arrest in mouse embryos, indicating the failure of ZGA, which was confirmed by decreased global transcription levels and aberrant expression of ZGA-related and maternal factors. We found that histone modifications such as H3K9me3, H3K27me3 and H3K27ac levels were altered, and this might be due to the occurrence of DNA damage, showing with positive γ-H2A.X signal. Moreover, mitochondrial dysfunction and high levels of ROS were detected in ACR treated embryos, indicating that ACR induced oxidative stress, and this might further cause abnormal distribution of endoplasmic reticulum, Golgi apparatus and lysosomes. In conclusion, our results indicated that ACR exposure disrupted ZGA by inducing mitochondria-based oxidative stress, which further caused DNA damage, aberrant histone modifications and organelles in mouse embryos.
Collapse
Affiliation(s)
- Si-Le Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi-Ming Ji
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
11
|
Mestanza M, Mori-Culqui PL, Chavez SG. Changes of polyphenols and antioxidants of arabica coffee varieties during roasting. Front Nutr 2023; 10:1078701. [PMID: 36776605 PMCID: PMC9909263 DOI: 10.3389/fnut.2023.1078701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Coffee is the most consumed beverage in the world after water. Multiple benefits are attributed to it in human health due to the presence of antioxidant compounds, whose content depends, among other factors, on the processing conditions of the coffee bean. The objective of this study was to determine the kinetics of polyphenols and antioxidants during the roasting of three varieties of arabica coffee. For this, we worked with varieties of coffee, Catimor, Caturra, and Bourbon, from the province of La Convencion, Cuzco, Peru. The samples were roasted in an automatic induction roaster, and 12 samples were taken during roasting (at 0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, and 21 min of roasting) in triplicate. For green coffee beans, titratable acidity, total soluble solids, moisture and apparent density were determined. The change in polyphenol content was determined using the Folin-Ciocalteu method, and antioxidant activity was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis- (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS+) free radical capture technique during roasting. Polyphenol and antioxidant contents increased until minute 5 of roasting and then decreased until minute 20, and in some cases, there were slight increases in the last minute. The model that best described the changes in these bioactive compounds was the cubic model (R 2 0.634 and 0.921), and the best fits were found for the Bourbon variety, whose green grain had more homogeneous characteristics. The changes in the relative abundances of nine phenolic compounds were determined using high-performance liquid chromatography (HPLC). In conclusion, roasting modifies phenolic compounds and antioxidants differently in the coffee varieties studied. The content of some phenols increases, and in other cases, it decreases as the roasting time increases. The roasting process negatively affects the bioactive compounds and increases the fracturability of Arabica coffee beans, elements that should be taken into account at the moment of developing roasting models in the industry.
Collapse
|
12
|
Volatile compounds in espresso resulting from a refined selection of particle size of coffee powder. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Nolasco A, Squillante J, Esposito F, Velotto S, Romano R, Aponte M, Giarra A, Toscanesi M, Montella E, Cirillo T. Coffee Silverskin: Chemical and Biological Risk Assessment and Health Profile for Its Potential Use in Functional Foods. Foods 2022; 11:2834. [PMID: 36140962 PMCID: PMC9498437 DOI: 10.3390/foods11182834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
The coffee supply chain is characterized by a complex network with many critical and unsustainable points producing a huge amount of waste products. Among these, coffee silverskin (CS), the only by-product of the coffee roasting phase, has an interesting chemical profile that suggests potential use as a food ingredient. However, few data on its safety are available. For this reason, the purpose of the study was to assess the occurrence of chemical and biological contaminants in CS, and the resulting risk due to its potential consumption. Essential, toxic, and rare earth elements, polycyclic aromatic hydrocarbons (PAHs), process contaminants, ochratoxin A (OTA), and pesticides residues were analyzed in three classes of samples (Coffea arabica CS, Coffea robusta CS, and their blend). Furthermore, total mesophilic bacteria count (TMBC) at 30 °C, Enterobacteriaceae, yeasts, and molds was evaluated. The risk assessment was based upon the hazard index (HI) and lifetime cancer risk (LTCR). In all varieties and blends, rare earth elements, pesticides, process contaminants, OTA, and PAHs were not detected except for chrysene, phenanthrene, and fluoranthene, which were reported at low concentrations only in the arabica CS sample. Among essential and toxic elements, As was usually the most representative in all samples. Microorganisms reported a low load, although arabica and robusta CS showed lower contamination than mixed CS. Instead, the risk assessment based on the potential consumption of CS as a food ingredient did not show either non-carcinogenic or carcinogenic risk. Overall, this study provides adequate evidence to support the safety of this by-product for its potential use in functional foods.
Collapse
Affiliation(s)
- Agata Nolasco
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, Portici, 100-80055 Naples, Italy
| | - Jonathan Squillante
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, Portici, 100-80055 Naples, Italy
| | - Francesco Esposito
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini, 5-80131 Naples, Italy
| | - Salvatore Velotto
- Department of Promotion of Human Sciences and the Quality of Life, University of Study of Roma “San Raffaele”, Via di Val Cannuta, 247-00166 Roma, Italy
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, Portici, 100-80055 Naples, Italy
| | - Maria Aponte
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, Portici, 100-80055 Naples, Italy
| | - Antonella Giarra
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 21-80126 Naples, Italy
| | - Maria Toscanesi
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 21-80126 Naples, Italy
| | - Emma Montella
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini, 5-80131 Naples, Italy
| | - Teresa Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, Portici, 100-80055 Naples, Italy
| |
Collapse
|
14
|
Yoon S, Jeong H, Jo SM, Hong SJ, Kim YJ, Kim JK, Shin EC. Chemosensoric approach for microwave- or oven-roasted Coffea arabica L. (cv. Yellow Bourbon) using electronic sensors. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
15
|
Kim J, Nedwidek-Moore M, Kim K. Safest Roasting Times of Coffee To Reduce Carcinogenicity. J Food Prot 2022; 85:918-923. [PMID: 35226750 DOI: 10.4315/jfp-21-427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/18/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Roasting coffee results in not only the creation of carcinogens such as acrylamide, furan, and polycyclic aromatic hydrocarbons but also the elimination of carcinogens in raw coffee beans, such as endotoxins, preservatives, or pesticides, by burning off. However, it has not been determined whether the concentrations of these carcinogens are sufficient to make either light or dark roast coffee more carcinogenic in a living organism. An Ames test was conducted on light, medium, and dark roast coffee from three origins. We found that lighter roast coffee shows higher mutagenicity, which is reduced to the control level in dark roast coffee varieties, indicating that the roasting process is not increasing mutagenic potential but is beneficial to eliminating the existing carcinogens in raw coffee beans. This result suggests that dark roast coffee is safer and promotes further studies of the various carcinogens in raw coffee that have been burned off. HIGHLIGHTS
Collapse
Affiliation(s)
| | | | - Kitai Kim
- Department of Biochemistry, University of California, Los Angeles, Los Angeles, California 90095.,Virginia University of Integrative Medicine, Fairfax, Virginia 22031, USA
| |
Collapse
|
16
|
Li D, Xian F, Ou J, Jiang K, Zheng J, Ou S, Liu F, Rao Q, Huang C. Formation and Identification of Six Amino Acid - Acrylamide Adducts and Their Cytotoxicity Toward Gastrointestinal Cell Lines. Front Nutr 2022; 9:902040. [PMID: 35669074 PMCID: PMC9167057 DOI: 10.3389/fnut.2022.902040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Acrylamide (AA) is a food contaminant, and amino acids are suggested to mitigate its toxicity by forming adducts. The emergence of acrylamide adducts may cause underestimation of acrylamide exposure level as well as trigger new safety problems. Based on the acrylamide elimination capability of four amino acids, this study chemically synthesized six amino acid-acrylamide adducts. Their structures were analyzed, followed by content determination in 10 commercially baking foods. The Michael adduct formed by one molecule of γ-aminobutyric acid (GABA) and acrylamide was most abundant in foods among six adducts. Furthermore, it markedly decreased the cytotoxicity of acrylamide in Caco-2 cells and GES-1 cells. This finding suggests that amino acids can be used to reduce acrylamide level in processed foods and mitigate its hazardous effects after intake.
Collapse
Affiliation(s)
- Dan Li
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Fangfang Xian
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Juanying Ou
- Institute of Food Safety & Nutrition, Jinan University, Guangzhou, China
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou, China
| | - Kaiyu Jiang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou, China
| | - Fu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou, China
| | - Qinchun Rao
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, United States
| | - Caihuan Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou, China
- *Correspondence: Caihuan Huang
| |
Collapse
|
17
|
Pietropaoli F, Pantalone S, Cichelli A, d'Alessandro N. Acrylamide in widely consumed foods - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:853-887. [PMID: 35286246 DOI: 10.1080/19440049.2022.2046292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acrylamide (AA) is considered genotoxic, neurotoxic and a 'probable human carcinogen'. It is included in group 2 A of the International Agency for Research on Cancer (IARC). The formation of AA occurs when starch-based foods are subjected to temperatures higher than 120 °C in an atmosphere with very low water content. The aim of this review is to shed light on the toxicological aspects of AA, showing its regulatory evolution, and describing the most interesting mitigation techniques for each food category involved, with a focus on compliance with EU legislation in the various classes of consumer products of industrial origin in Europe.
Collapse
Affiliation(s)
- Francesca Pietropaoli
- Department of Innovative Technology in Medicine and Dentistry, University "G. d'Annunzio", Chieti, Italy
| | - Sara Pantalone
- Department of Engineering and Geology, University "G. d'Annunzio", Chieti, Italy
| | - Angelo Cichelli
- Department of Innovative Technology in Medicine and Dentistry, University "G. d'Annunzio", Chieti, Italy
| | - Nicola d'Alessandro
- Department of Engineering and Geology, University "G. d'Annunzio", Chieti, Italy
| |
Collapse
|
18
|
Wang J, Cai Z, Zhang N, Hu Z, Zhang J, Ying Y, Zhao Y, Feng L, Zhang J, Wu P. A novel single step solid-phase extraction combined with bromine derivatization method for rapid determination of acrylamide in coffee and its products by stable isotope dilution ultra-performance liquid chromatography tandem triple quadrupole electrospray ionization mass spectrometry. Food Chem 2022; 388:132977. [PMID: 35453012 DOI: 10.1016/j.foodchem.2022.132977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/18/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022]
Abstract
This work aimed to establish a novel determination method for acrylamide in coffee and its products by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Acrylamide in samples were prepared by a single-step solid-phase extraction clean-up using mixed mode sorbents. The bromine derivatization efficiency of acrylamide and its internal standard were improved at an acidic condition. After derivation, the retention capability of acrylamide and its resistance to interference were significantly improved. The limit of detection (LOD) and the limit of quantification (LOQ) were 1.2 and 4 μg/kg for roasted and instant coffees, while they were 0.24 and 0.8 μg/kg for ready-to-drink coffees. The average recoveries for acrylamide ranged from 99.3 to 102.2% in coffee and its products. All the results showed that the developed method was simple, quick, specific and suitable for screening and determination of acrylamide in batch samples of coffee and its products.
Collapse
Affiliation(s)
- Junlin Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Zengxuan Cai
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Nianhua Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Zhengyan Hu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Jing Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Ying Ying
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Yongxin Zhao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Liang Feng
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Jingshun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
| | - Pinggu Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
| |
Collapse
|
19
|
Wang X, Wang Y, Hu G, Hong D, Guo T, Li J, Li Z, Qiu M. Review on factors affecting coffee volatiles: from seed to cup. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1341-1352. [PMID: 34778973 DOI: 10.1002/jsfa.11647] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/20/2021] [Accepted: 11/15/2021] [Indexed: 05/05/2023]
Abstract
The objective of this review is to evaluate the influence of six factors on coffee volatiles. At present, the poor aroma from robusta or low-quality arabica coffee can be significantly improved by advanced technology, and this subject will continue to be further studied. On the other hand, inoculating various starter cultures in green coffee beans has become a popular research direction for promoting coffee aroma and flavor. Several surveys have indicated that shade and altitude can affect the content of coffee aroma precursors and volatile organic compounds (VOCs), which remain to be fully elucidated. The emergence of the new roasting process has greatly enriched the aroma composition of coffee. Cold-brew coffee is one of the most popular trends in coffee extraction currently, and its influence on coffee aroma is worthy of in-depth and detailed study. Omics technology will be one of the most important means to analyze coffee aroma components and their quality formation mechanism. A better understanding of the effect of each parameter on VOCs would assist coffee researchers and producers in the optimal selection of post-harvest parameters that favor the continuous production of flavorful and top-class coffee beans and beverages. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- College of Agriculture, Guangxi University, Nanning, PR China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Yanbing Wang
- College of Agriculture, Guangxi University, Nanning, PR China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Guilin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Defu Hong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Tieying Guo
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Jinhong Li
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Zhongrong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| |
Collapse
|
20
|
Esposito F, Nolasco A, Caracciolo F, Velotto S, Montuori P, Romano R, Stasi T, Cirillo T. Acrylamide in Baby Foods: A Probabilistic Exposure Assessment. Foods 2021; 10:2900. [PMID: 34945452 PMCID: PMC8701054 DOI: 10.3390/foods10122900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 01/24/2023] Open
Abstract
Acrylamide (also known as 2-propenamide) (AA) is a toxicant that develops in food during high-temperature cooking, and its occurrence is common in biscuits and baked snacks. AA is known for its in vivo neurotoxic and carcinogenic effects, and it is considered a potential carcinogen for humans. Infants may be exposed to AA as early as during weaning through baked food such as biscuits. This study set out to ascertain the concentration of AA in food products intended for infants to assess the dietary exposure to this food contaminant. AA levels were determined through GC/MS and bromination, and dietary exposure was evaluated by a probabilistic method based on Monte Carlo simulation. The results showed that the probability of a carcinogenic exposure is 94%, 92%, and 87%, respectively, for 6-, 12-, and 18-months infants, suggesting the need to delay the introduction of baked products in the diet of weaned infants. It should be noted, however, that these conclusions were drawn considering the biscuits as the primary source of exposure.
Collapse
Affiliation(s)
- Francesco Esposito
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini, 5, 80131 Naples, Italy;
| | - Agata Nolasco
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, 80055 Naples, Italy; (A.N.); (F.C.); (R.R.); (T.C.)
| | - Francesco Caracciolo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, 80055 Naples, Italy; (A.N.); (F.C.); (R.R.); (T.C.)
| | - Salvatore Velotto
- Department of Promotion of Human Sciences and the Quality of Life, University of Study of Roma San Raffaele, Via di Val Cannuta, 247, 00166 Roma, Italy;
| | - Paolo Montuori
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini, 5, 80131 Naples, Italy;
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, 80055 Naples, Italy; (A.N.); (F.C.); (R.R.); (T.C.)
| | - Tommaso Stasi
- Department of Science and Technology, Newton Consulting Srl, 80146 Naples, Italy;
| | - Teresa Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, 80055 Naples, Italy; (A.N.); (F.C.); (R.R.); (T.C.)
| |
Collapse
|
21
|
Advances in Analysis of Contaminants in Foodstuffs on the Basis of Orbitrap Mass Spectrometry: a Review. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Wu H, Weinstein S, Moore LE, Albanes D, Wilson RT. Coffee intake and trace element blood concentrations in association with renal cell cancer among smokers. Cancer Causes Control 2021; 33:91-99. [PMID: 34652593 DOI: 10.1007/s10552-021-01505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE To determine whether higher coffee intake may reduce the risk of renal cell cancer (RCC) associated with lead (Pb) and other heavy metals with known renal toxicity. METHODS We conducted a nested case-control study of male smokers (136 RCC cases and 304 controls) within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Cases diagnosed with RCC at 5 or more years following cohort enrollment were matched to controls on age (± 7 years) and whole blood draw date (± 30 days). Conditional logistic regression (using two-sided tests) was used to test for main effects and additive models of effect modification. RESULTS After a mean follow-up of 16.3 years, coffee consumption was not significantly associated with renal cell cancer risk, when adjusting for blood concentrations of Cd, Hg, and Pb and RCC risk factors (age, smoking, BMI, and systolic blood pressure) (p-trend, 0.134). The association with above median blood Pb and RCC (HR = 1.69, 95% CI 1.06, 2.85) appeared to be modified by coffee consumption, such that RCC risk among individuals with both increased coffee intake and higher blood lead concentration were more than threefold higher RCC risk (HR = 3.40, 95% CI 1.62, 7.13; p-trend, 0.003). CONCLUSION Contrary to our initial hypothesis, this study suggests that heavy coffee consumption may increase the previously identified association between higher circulating lead (Pb) concentrations and increased RCC risk. Improved assessment of exposure, including potential trace element contaminants in coffee, is needed.
Collapse
Affiliation(s)
- Hongke Wu
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Stephanie Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lee E Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Robin Taylor Wilson
- Department of Epidemiology and Biostatisitics, Temple University College of Public Health, Philadelphia, PA, USA.
| |
Collapse
|
23
|
An overview of the combination of emerging technologies with conventional methods to reduce acrylamide in different food products: Perspectives and future challenges. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108144] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Nan X, Nan S, Zeng X, Kang L, Liu X, Dai Y. Inhibition Kinetics and Mechanism of Glutathione and Quercetin on Acrylamide in the Low-Moisture Maillard Systems. J Food Prot 2021; 84:984-990. [PMID: 33232484 DOI: 10.4315/jfp-20-411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/24/2020] [Indexed: 01/15/2023]
Abstract
ABSTRACT The inhibition kinetics of glutathione (GSH) and quercetin on acrylamide (AA) formation in the low-moisture Maillard systems were investigated at 180°C. The inhibition rates in an equal-molar asparagine-glucose (Asn-Glc) system were higher than those in an asparagine-fructose (Asn-Fru) system, and the maximum inhibition rates for AA were 57.75% with 10-2 mol L-1 GSH and 51.38% with 10-1 mol L-1 quercetin. The Logistic-Index dynamic model and two consecutive simplified first-order kinetic models were well fitted to the changes of AA in the Asn-Glc system. The kinetics results suggested that the predominant inhibition effect of GSH on AA could be attributed to the competitive reaction between GSH and Asn for the consumption of Glc. The kinetic results and high-pressure liquid chromatography-tandem mass spectrometry analysis of the inhibitory effect of quercetin on AA indicated that quercetin might mitigate AA through the binding reaction of quercetin decomposition products and Maillard intermediate products. These experimental results provide theoretical data that may be useful to control the formation of AA during food thermal processing. HIGHLIGHTS
Collapse
Affiliation(s)
- Xiping Nan
- Jilin Academy of Agricultural Sciences, Changchun 130000, People's Republic of China
| | - Shuli Nan
- Changchun Medical College, Changchun 130031, People's Republic of China
| | - Xianpeng Zeng
- Jilin Academy of Agricultural Sciences, Changchun 130000, People's Republic of China
| | - Lining Kang
- Jilin Academy of Agricultural Sciences, Changchun 130000, People's Republic of China
| | - Xiangying Liu
- Jilin Academy of Agricultural Sciences, Changchun 130000, People's Republic of China
| | - Yonggang Dai
- Jilin Academy of Agricultural Sciences, Changchun 130000, People's Republic of China.,Changchun Medical College, Changchun 130031, People's Republic of China
| |
Collapse
|
25
|
Perera DN, Hewavitharana GG, Navaratne SB. Comprehensive Study on the Acrylamide Content of High Thermally Processed Foods. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6258508. [PMID: 33681355 PMCID: PMC7925045 DOI: 10.1155/2021/6258508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 11/17/2022]
Abstract
Acrylamide (AA) formation in starch-based processed foods at elevated temperatures is a serious health issue as it is a toxic and carcinogenic substance. However, the formation of more AA entangles with modern-day fast food industries, and a considerable amount of this ingredient is being consumed by fast food eaters inadvertently throughout the world. This article reviews the factors responsible for AA formation pathways, investigation techniques of AA, toxicity, and health-related issues followed by mitigation methods that have been studied in the past few decades comprehensively. Predominantly, AA and hydroxymethylfurfural (HMF) are produced via the Maillard reaction and can be highlighted as the major heat-induced toxins formulated in bread and bakery products. Epidemiological studies have shown that there is a strong relationship between AA accumulation in the body and the increased risk of cancers. The scientific community is still in a dearth of technology in producing AA-free starch-protein-fat-based thermally processed food products. Therefore, this paper may facilitate the food scientists to their endeavor in developing mitigation techniques pertaining to the formation of AA and HMF in baked foods in the future.
Collapse
Affiliation(s)
- Dilini N. Perera
- Department of Food Science and Technology, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Geeth G. Hewavitharana
- Department of Food Science and Technology, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - S. B. Navaratne
- Department of Food Science and Technology, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| |
Collapse
|
26
|
Gallo M, Ferrara L, Calogero A, Montesano D, Naviglio D. Relationships between food and diseases: What to know to ensure food safety. Food Res Int 2020; 137:109414. [DOI: 10.1016/j.foodres.2020.109414] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/21/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
|
27
|
Ismail T, Donati-Zeppa S, Akhtar S, Turrini E, Layla A, Sestili P, Fimognari C. Coffee in cancer chemoprevention: an updated review. Expert Opin Drug Metab Toxicol 2020; 17:69-85. [PMID: 33074040 DOI: 10.1080/17425255.2021.1839412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Chemoprevention of cancer refers to the use of natural or synthetic compounds to abolish or perturb a variety of steps in tumor initiation, promotion, and progression. This can be realized through different mechanisms, including activation of free radical scavenging enzymes, control of chronic inflammation, and downregulation of specific signaling pathways. AREAS COVERED The goal of this article is to critically review recent evidence on association between coffee and prevention of different types of cancer, with particular emphasis on the molecular mechanisms and the bioactive compounds involved in its anticancer activity. EXPERT OPINION Coffee is a mixture of different compounds able to decrease the risk of many types of cancer. However, its potential anticancer activity is not completely understood. Hundreds of biologically active components such as caffeine, chlorogenic acid, diterpenes are contained in coffee. Further research is needed to fully elucidate the molecular mechanisms underlying the anticancer effects of coffee and fully understand the role of different confounding factors playing a role in its reported anticancer activity.
Collapse
Affiliation(s)
- Tariq Ismail
- Institute of Food Science & Nutrition, Bahauddin Zakariya University , Multan, Pakistan
| | - Sabrina Donati-Zeppa
- Department of Biomolecular Sciences (DISB), Università Degli Studi Di Urbino Carlo Bo , Urbino, Italy
| | - Saeed Akhtar
- Institute of Food Science & Nutrition, Bahauddin Zakariya University , Multan, Pakistan
| | - Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum - Università Di Bologna , Rimini, Italy
| | - Anam Layla
- National Institute of Food Science & Technology, University of Agriculture Faisalabad , Faisalabad, Pakistan
| | - Piero Sestili
- Department of Biomolecular Sciences (DISB), Università Degli Studi Di Urbino Carlo Bo , Urbino, Italy
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum - Università Di Bologna , Rimini, Italy
| |
Collapse
|
28
|
Esposito F, Velotto S, Rea T, Stasi T, Cirillo T. Occurrence of Acrylamide in Italian Baked Products and Dietary Exposure Assessment. Molecules 2020; 25:molecules25184156. [PMID: 32932804 PMCID: PMC7571032 DOI: 10.3390/molecules25184156] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
Acrylamide (AA) is a neo-formed toxic compound that develops in foods during cooking at temperatures above 120 °C. AA shows in vivo neurotoxic and carcinogenic effects, and it is potentially carcinogenic for humans. Its occurrence is common in baked food, such as bread and similar products. This study set out to analyze bread and sweets from the Italian market to evaluate the effects of the benchmark thresholds set by EU Regulation 2017/2158 and to ascertain the exposure of the Italian population to AA, across three age groups, through the consumption of baked products, according to the margin of exposure (MOE) approach. Two hundred samples were tested, and the content of AA ranged from 31 to 454 µg/kg for bread and products thereof and from 204 to 400 µg/kg for the sweets category. The exposure data did not show any neurotoxic health concern, whereas the MOE related to the carcinogenic endpoint is well below the minimum safety value of 10,000.
Collapse
Affiliation(s)
- Francesco Esposito
- Department of Public Health, University of Naples “Federico II”, via Sergio Pansini, 5–80131 Naples, Italy; (F.E.); (T.R.)
| | - Salvatore Velotto
- Department of Promotion of Human Sciences and the Quality of Life, University of Study of Roma “San Raffaele”, via di Val Cannuta, 247–00166 Roma, Italy;
| | - Teresa Rea
- Department of Public Health, University of Naples “Federico II”, via Sergio Pansini, 5–80131 Naples, Italy; (F.E.); (T.R.)
| | - Tommaso Stasi
- Department of Science and Technology, Newton Consulting Srl, 80146 Napoli NA, Italy;
| | - Teresa Cirillo
- Department of Agricultural Sciences, University of Naples “Federico II”, via Università, 100–80055 Portici, Naples, Italy
- Correspondence: ; Tel.: +39-081-2539-450
| |
Collapse
|
29
|
Pan M, Liu K, Yang J, Hong L, Xie X, Wang S. Review of Research into the Determination of Acrylamide in Foods. Foods 2020; 9:E524. [PMID: 32331265 PMCID: PMC7230758 DOI: 10.3390/foods9040524] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
Acrylamide (AA) is produced by high-temperature processing of high carbohydrate foods, such as frying and baking, and has been proved to be carcinogenic. Because of its potential carcinogenicity, it is very important to detect the content of AA in foods. In this paper, the conventional instrumental analysis methods of AA in food and the new rapid immunoassay and sensor detection are reviewed, and the advantages and disadvantages of various analysis technologies are compared, in order to provide new ideas for the development of more efficient and practical analysis methods and detection equipment.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|