1
|
Chen J, Ge W, Wang Y, Hu Z, Lv W, Ma C, Wang H. Controlled hydrolysis and EGCG conjugation enhance the ADH/ALDH activation activity of chia seed meal protein hydrolysates: Fabrication and structural characterization. Food Chem 2025; 476:143386. [PMID: 39977998 DOI: 10.1016/j.foodchem.2025.143386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
This study examines the effects of hydrolysis duration (20-100 min using flavourzyme) and EGCG conjugation on the structure and bioactivity of chia seed meal protein hydrolysates (CSPH) through multi-spectroscopic techniques and physicochemical property evaluation. Subsequently, the activation effects of EGCG-conjugated peptides on alcohol metabolism-related enzymes were further analyzed through the integration of peptidomics, bioinformatics, and computational chemistry. It was found that with the extension of hydrolysis time, the thermal stability of CSPH diminishes, its rigid structure becomes more flexible, and its crystallinity decreases (by up to 27.19 %). Meanwhile, the activation effects on alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activity were significantly enhanced (P < 0.05). CSPH hydrolyzed for 60 min demonstrated the highest binding affinity for EGCG, primarily driven by hydrophobic interactions and hydrogen bonds. The CSPH-EGCG conjugate exhibited enhanced physicochemical properties and significantly elevated activation of ADH and ALDH, with ADH activation rising from 22.66 % to 95.56 % and ALDH activation from 9.45 % to 30.93 %, compared to unmodified CSPH. Seven active peptides were identified from PE-60 by peptidomics and bioinformatics. Computer docking optimized selected three optimal peptides (IPW, FPIH, and IYP). Two-dimensional and three-dimensional interaction analyses showed that these peptides bind to EGCG, ADH, and ALDH via hydrogen bonds, hydrophobic interactions, and salt bridges. These findings highlight the potential of controlled hydrolysis with flavourzyme and EGCG incorporation to enhance CSPH's properties and bioactivities and offer insights into the practical applications of CSPH and its EGCG complexes in food processing and therapeutic systems.
Collapse
Affiliation(s)
- Jinghui Chen
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weiben Ge
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Wang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zan Hu
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenping Lv
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chaoyang Ma
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Hongxin Wang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Yang S, Lian Z, Zhu T, Guo X, Zhang Q, Wang H, Jiang L. Soybean protein isolate-oxidized fucoidan nanocomplexes: Structural and interaction characterization, quercetin delivery potential evaluation. Food Chem 2025; 469:142528. [PMID: 39708650 DOI: 10.1016/j.foodchem.2024.142528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/15/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
A novel nanocomplex was prepared using soybean protein isolate (SPI) and oxidized fucoidan (OFU) to explore the structural and interaction variations and evaluate its potential for quercetin delivery. The optimized SPI to OFU mass ratio of 10:1 (SFU3) resulted in a nanocomplex particle size of 198.1 nm and increased ζ-potential. The incorporation of OFU altered the structure of SPI with the decrease in α-helix and β-sheet, and the redshift and intensity drop in fluorescence spectra. X-ray photoelectron spectroscopy (XPS) confirmed the Schiff base reaction between the two, interacting through covalent imine bonds. Moreover, OFU improved the micromorphology, antioxidant capacity, and stability of Quercetin (Que) nanocomplexes, with SFU3 showing the highest encapsulation efficiency and loading amount (94.80 %, 16.96 μg/mg). The nanocomplexes achieved an effective controlled release of Que. in vitro simulated digestion. This study will provide important insights into the development of SPI-OFU as nutrient carriers.
Collapse
Affiliation(s)
- Sai Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ziteng Lian
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tingting Zhu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaolei Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qianqian Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Liu X, Wang S, Wang S. Impact of trypsin on interfacial conformational evolution of soy protein isolate/soy hull polysaccharide emulsion. Int J Biol Macromol 2025; 308:142507. [PMID: 40154673 DOI: 10.1016/j.ijbiomac.2025.142507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
The impact of trypsin on the demulsification mechanism of soy protein isolate (SPI)/soy hull polysaccharide (SHP) emulsion under trypsin treatment was investigated. We analyzed the conformational evolution of the emulsion interface induced during the bulk demulsification, focusing on the oil-water interface. During the enzymatic treatment for 0-120 min, various spectral analyses including spectrum analyses of Raman, FT-IR, intrinsic fluorescence, and ultraviolet spectral analyses demonstrated gradual hydrolysis and polymerization of protein molecules within SPI/SHP, SPI, and SHP on the oil-water interface by trypsin, particularly noticeable during 30-90 min. Notably, at 90 min, an increase in β-sheet content and a red shift of the IR spectrum from 3400 to 3380 cm-1 indicated the conjugate effect of small molecules due to large interfacial tension, accompanied by hydrophobic interaction and hydrogen bonding. These alterations in SPI/SHP, SPI, and SHP conformations at the oil-water interface led to droplet demulsification and oil phase release.
Collapse
Affiliation(s)
- Xiulin Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
| | - Shanshan Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
4
|
Xu Z, Zhang F, Cheng D, Ma Q, Wang W, Wang J, Sun J. Physical stability of oil-in-water multi-layered coenzyme Q10 nano-emulsions. Food Chem 2025; 464:141860. [PMID: 39504897 DOI: 10.1016/j.foodchem.2024.141860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
As a lipophilic antioxidant, coenzyme Q10 (CoQ10) has limited application owing to its low water solubility and instability. In the present study, potato protein (PP) and soybean soluble polysaccharide (SSPS) were used as carriers to prepare a multilayer SSPS-PP-CoQ10 nano-emulsion using the reversed-phase emulsification method; further, the water solubility, stability, and formation mechanism of the nano-emulsion were analyzed. The results showed that the particle size of SSPS-PP-CoQ10 nano-emulsions was 253-422 nm with good polydispersity. The encapsulation efficiency (EE) could reach up to 88.87 %. When the concentration of SSPS was 0.1 wt%, the decrease in interfacial tension and increase in viscoelasticity indicated that nano-emulsion improved CoQ10 physical stability. SSPS incorporation altered the microscopic environment of the hydrophobic residues, rendering them more hydrophilic and enhancing their water solubility. According to molecular docking results, hydrogen bonds promote binding among SSPS, PP, and CoQ10, and increase emulsion stability.
Collapse
Affiliation(s)
- Zhili Xu
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Baoding 071000, China
| | - Fan Zhang
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Baoding 071000, China
| | - Dewei Cheng
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Baoding 071000, China
| | - Qianyun Ma
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Baoding 071000, China; Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
| | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Baoding 071000, China; Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China.
| | - Jie Wang
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Baoding 071000, China; Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Baoding 071000, China; Hebei Potato Processing Technology Innovation Center, Zhangjiakou 076576, China; Sino-US and Sino-Japan Joint Center of Food Science and Technology, Baoding, Hebei, China; Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China.
| |
Collapse
|
5
|
Ji M, Han J, Li L, Cheng L, Gao Y, Gu Z, Hong Y. Effect of the degree of substitution on water solubility of OSA-debranched starch and its potential use as a 1-Octacosanol carrier. Int J Biol Macromol 2025; 289:138715. [PMID: 39672405 DOI: 10.1016/j.ijbiomac.2024.138715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/28/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
1-Octacosanol(1-Octa) has anti-fatigue, anti-Parkinson's disease, and lipid-regulating effects; however, its long hydrophobic carbon chain results in very poor water solubility, which in turn leads to malabsorption and low bioavailability. To improve the solubility of 1-Octa, it was embedded in octenyl succinic acid and debranched complex-modified starch (OSD) to obtain aqueous OSD-Octa complexes. The solubility of OSD has been found to increase significantly, from 23.40 g/100 g to 94.24 g/100 g, as the degree of substitution increased. Critical micelle concentration determinations and iodine-staining indices indicated that OSD can potentially serve as a carrier for delivering hydrophobic functional factors. The encapsulation efficiency of 79.15 ± 0.02 % and the loading capacity of 44.66 ± 0.49 μg/mg were found with OSD-Octa complexes. Fluorescent 1-Octa particles inside starch were captured clearly. The solubility of 1-Octa in water was 1.532 ± 0.023 mg/mL after encapsulation. These results demonstrate the potential of OSD as a 1-Octa carrier that significantly improves its water solubility.
Collapse
Affiliation(s)
- Meiru Ji
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Junqing Han
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Lingjin Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Li Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Yahui Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China.
| | - Yan Hong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Jiaxing Institute of Future Food, Jiaxing 314050, Zhejiang Province, People's Republic of China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China.
| |
Collapse
|
6
|
Batool Z, Sameen DE, Kamal MA, Shen B. Developing natural microcapsules by encapsulating peptides for preserving Zanthoxylum Bungeanum. Food Chem 2025; 463:141318. [PMID: 39298846 DOI: 10.1016/j.foodchem.2024.141318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/02/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Natural edible microcapsules, were developed to improve the shelf life of Zanthoxylum bungeanum. Antimicrobial peptides, extracted from seeds of Sichuan pepper corn by ultrasound and microwave assisted extraction were encapsulated with nisin using water-in-oil-in-water (W/O/W) microencapsulation technique. Prepared microcapsules exhibited maximum encapsulation efficiency (ω %) of 30.20 at 3:1 ratio of extracted protein (EP) to gum Arabic (GA). After characterization, microcapsules were applied to Sichuan peppers by coating them during 10-days storage. Meanwhile, antimicrobial activity, total phenolic content (TPC), total flavonoid content (TFC) and radical scavenging activity (%) of treated pepper samples were evaluated; demonstrating that S3 and S4 microcapsules provided maximum antimicrobial activity (89.75 and 81.33 %), TPC (543.56 ± 3.87 and 481.40 ± 6.54 GAE/g), TFC (266.02 ± 2.64 QE/g and 306.96 ± 3.87 QE/g) and DPPH radical scavenging activity (78.06 ± 2.87 and 76.52 ± 1.67 %), respectively. Hence, S3 and S4 micro-capsules can be successfully employed as edible coating packaging to improve quality and shelf life of pepper.
Collapse
Affiliation(s)
- Zahra Batool
- Center of High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Mohammad Amjad Kamal
- Center of High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, China; King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Enzymoics, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Bairong Shen
- Center of High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Chen J, Ge W, Wang P, Lv W, Wang H. PEG-based-ultrasound-microwave synergistic extraction of mucilage polysaccharides from chia seed: Structural characterization and bioactivity. Int J Biol Macromol 2024; 283:138057. [PMID: 39592034 DOI: 10.1016/j.ijbiomac.2024.138057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/02/2024] [Accepted: 11/23/2024] [Indexed: 11/28/2024]
Abstract
In this study, the effects of microwave, ultrasound, ultrasound-microwave synergy, and polyethylene glycol (PEG)-200 on the chia seed mucilage's (CSM) structural, thermal, and functional properties have been evaluated by modern spectroscopic techniques, crystal diffraction, and thermal analyses. The results showed that CSM, extracted by PEG-200 aqueous solution has the largest particles (1120-1231 μm), and the smallest size (44.06-317.19 μm) has been observed in microwave extraction. Furthermore, microwave exposure seems to impact the primary structure of CSM profoundly, evidenced by shifts and changes in spectroscopy under high-frequency microwave conditions. However, the incorporation of ultrasound significantly mitigates microwave's effect on the particle size, structural characteristics, coloration, and thermal stability of CSM. Interestingly, the exclusive use of PEG-200 in extraction results in a notably decreased absorption at 280 nm in the UV-vis spectrum, suggesting the near-complete exclusion of nucleic acids and proteins. CSM extracted by PEG-200 aqueous solution exhibits the highest enthalpy value (199.960 ± 2.920 J/g), glass transition temperature (200.449 ± 1.118 °C), the most abundant monosaccharide composition, and the highest molecular weight (3,456,558 Da), far exceeding the reported values in literature. In vitro bioactivity demonstrates that CSM extracted through the synergistic use of ultrasound and microwave exhibits the strongest DPPH and ABTS radical scavenging abilities, while CSM extracted with PEG-200 performs exceptionally well in iron ion chelating capacity. This study introduces a novel approach to CSM extraction by innovatively employing the green solvent PEG-200 and broadening the application of ultrasound-microwave synergistic technology in the extraction of plant polysaccharides.
Collapse
Affiliation(s)
- Jinghui Chen
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weiben Ge
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Pei Wang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenping Lv
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Hongxin Wang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Hu Y, Xu L, Sun H, Wu W, Wang Y, Lu L, Zeng T, Sheng L, Cai Z. Water-in-oil-in-water (W/O/W) emulsions with antioxidant and bacteriostatic capabilities: A preliminary exploration of food preservation films. Int J Biol Macromol 2024; 283:137657. [PMID: 39561832 DOI: 10.1016/j.ijbiomac.2024.137657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
The development of stable water-in-oil-in-water (W/O/W) emulsions for edible preservation coatings and films, utilizing their properties, deserves scientific attention. In this study, oregano essential oil and D‑sodium erythorbate were simultaneously loaded into W/O/W emulsions, and the homogenization conditions of the W/O/W emulsions were optimized. The structure and interactions of gum Arabic (GA) and whey protein isolate (WPI) as the outer phase were analyzed. Stable W1/O/W2 emulsions with excellent antimicrobial and antioxidant activities could be produced under the conditions of GA: WPI at 1:1 and W2: W1/O at 5:5. The diphenyl-1-picrylhydrazyl radical (DPPH) and 2,2'-azinobis-(3-ethylbenzenthiazoline-6-sulphonic acid) (ABTS) radical scavenging rates were 86.35 % and 89.35 %, and the inhibition zone diameters for S. aureus and E. coli were 14.03 ± 0.42 mm and 14.17 ± 0.70 mm, respectively. Finally, the W1/O/W2 emulsions were successfully applied to prepare chitosan-based films. This study has the potential to promote the application of W/O/W emulsions in food preservation, emphasizing the need for advancements for real-world adaptability.
Collapse
Affiliation(s)
- Yue Hu
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Ligen Xu
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Haoyang Sun
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Wu
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanli Wang
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Long Sheng
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoxia Cai
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
9
|
Sepeidnameh M, Fazlara A, Hosseini SMH, Pourmahdi Borujeni M. Encapsulation of grape seed oil in oil-in-water emulsion using multilayer technology: Investigation of physical stability, physicochemical and oxidative properties of emulsions under the influence of the number of layers. Curr Res Food Sci 2024; 8:100771. [PMID: 38831922 PMCID: PMC11145428 DOI: 10.1016/j.crfs.2024.100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/26/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Many studies have shown that grape seed oil (GSO) is one of the vegetable fats that are plentiful in essential fatty acids and can be used as a fat substitute or to modify fat in food products to reduce saturated fatty acids. However, due to its low solubility and high sensitivity to oxidation, it is necessary to develop delivery systems that can distribute GSO in food more effectively. Recently, the preparation of emulsions using the layer-by-layer (LBL) method has many advantages in delivering lipid-soluble functional compounds. This research was used to check the formation of GSO oil-loaded primary, secondary and tertiary multilayer emulsions stabilized by mixture of anionic gelatin, cationic chitosan, and anionic basil seed gum (BSG) as the aqueous phase at pH 5, prepared using a layer-by-layer electrostatic deposition technique. Multilayer emulsions prepared by GSO and a mixture of gelatin, chitosan, and BSG as the aqueous phase at pH 5. Finally, the effect of the number of layers on the physicochemical properties (particle size, viscosity, turbidity, refractive index, and physical stability) and oxidative stability (peroxide value, thiobarbituric acid value, and fatty acid profile) during the storage time (30 days) at two temperatures 25 °C & 4 °C was investigated. Also, the zeta potential and Fourier transform infrared spectroscopy (FTIR) of mono-layer and multi-layer emulsions were investigated. The results revealed that by increasing the number of layers of multi-layer emulsion of GSO, the stability has improved. Thus, the tertiary emulsion has been more effective than the other two emulsions in maintaining the physicochemical characteristics and stability over time (P < 0.001). Morphological characterization and FTIR spectroscopy results confirmed that gelatin, chitosan, and BSG were successfully loaded into the LBL emulsions. This study can improve the original percept of multilayer emulsions and promulgate their potential applications for the entire encapsulation of essential fatty acids to enrich and prevent peroxide attack.
Collapse
Affiliation(s)
- Marziyeh Sepeidnameh
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ali Fazlara
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Mahdi Pourmahdi Borujeni
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
10
|
Rasheed HA, Rehman A, Li C, Bai M, Karim A, Dai J, Cui H, Lin L. Fabrication of Citrus bergamia essential oil-loaded sodium caseinate/peach gum nanocomplexes: Physicochemical, spectral, and structural characterization. Int J Biol Macromol 2024; 260:129475. [PMID: 38262830 DOI: 10.1016/j.ijbiomac.2024.129475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
`The objective of current research was to encapsulate citrus bergamia essential oil (CBEO) in nanocomplexes composed of sodium caseinate (SC) and peach gum polysaccharide (PG) in various ratios (SC/PG-1:0, 0:1, 1:1, 1:3, and 3:1). The nanocomplexes formed by the combination of SC and PG in a ratio of 1:3 exhibited a zeta potential of -21.36 mV and a PDI of 0.25. The CBEO-loaded SC/PG (1:3) nanocomplexes revealed the maximum encapsulation efficiency (82.47 %) and loading capacity (1.85 %). FTIR also confirmed the secondary structure variations in response to different ratios of CBEO-loaded SC/PG nanocomplexes. In addition, the XRD and fluorescence spectroscopy analysis also revealed structural changes among CBEO nanocomplexes. The thermal capability of CBEO-loaded SC/PG (1:3) nanocomplexes via TGA showed the minimum weight loss among other complexes. SEM and CLSM analysis demonstrated the uniform distribution and spherical morphology of CBEO-loaded SC/PG (1:3) nanocomplexes. The antioxidant activity of free CBEO was significantly improved in CBEO-loaded nanocomplexes. Likewise, the inhibitory activity of CBEO-loaded nanocomplexes exhibited significantly higher antibacterial action against S. aureus and E. coli. The aforementioned perspective suggests that SC/PG nanocomplexes have potent potential to serve as highly effective nanocarriers with a broad spectrum of uses in the pharmaceutical and food sectors.
Collapse
Affiliation(s)
- Hafiz Abdul Rasheed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Mei Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Aiman Karim
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jinming Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
11
|
Ge Y, Zhou Y, Li S, Yan J, Chen H, Qin W, Zhang Q. Astaxanthin encapsulation in soybean protein isolate-sodium alginate complexes-stabilized nanoemulsions: antioxidant activities, environmental stability, and in vitro digestibility. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1539-1552. [PMID: 37807825 DOI: 10.1002/jsfa.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Nanoemulsions (NEs) have been considered an effective carrier to protect environmentally labile bioactive compounds from degradation during food processing. Among the numerous types of NEs, biopolymer-stabilized NEs have gained much attention to achieve this function because of the extensive sources, biocompatibility, and tunability. Therefore, the antioxidant activities, environmental stability, and in vitro digestibility of astaxanthin (AST)-loaded soybean protein isolate (SPI)-alginate (SA) complexes-stabilized NEs (AST-SPI-SA-NEs) were investigated in this study. RESULTS The AST-SPI-SA-NEs exhibited an encapsulation efficiency of 88.30 ± 1.67%, which is greater than that of the AST-loaded SPI-stabilized NEs (AST-SPI-NEs) (77.31 ± 0.83%). Both AST-SPI-SA-NEs and AST-SPI-NEs exhibited significantly stronger hydroxyl or diphenylpicryl-hydrazyl radical-scavenging activities than the free AST. The formation of SPI-SA complexes strengthened the thermal, light, and storage stability of AST-SPI-SA-NEs with no apparently increasing mean diameter (around 200 nm). AST-SPI-SA-NEs also exhibited a better freeze-thaw dispersibility behavior than AST-SPI-NEs. AST-SPI-SA-NEs were more stable than AST-SPI-NEs were under in vitro gastrointestinal digestion conditions and exhibited a greater bioaccessibility (47.92 ± 0.42%) than both AST-SPI-NEs (12.97 ± 1.33%) and free AST (7.87 ± 0.37%). Hydrogen bonding was confirmed to participate in the formation of AST-SPI-SA-NEs and AST-SPI-NEs based on the molecular docking results. CONCLUSIONS The construction of SPI-SA-NEs is conducive to the encapsulation, protection, and absorption of AST, providing a promising method for broadening the application of AST in processed foods or developing novel ingredients of functional foods. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuhong Ge
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yangying Zhou
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Shunfa Li
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Jing Yan
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Hong Chen
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Wen Qin
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qing Zhang
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
12
|
Xu PW, Yue XJ, Yuan XF, Zhao B. Hemp seed globulin-alginate nanoparticles for encapsulation of Cannabisin A with enhanced colloidal stability and antioxidant activity. Int J Biol Macromol 2024; 256:128380. [PMID: 38000582 DOI: 10.1016/j.ijbiomac.2023.128380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/20/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
This study develops hemp seed globulin (GLB)-alginate (ALG) nanoparticles (GANPs) for Cannabisin A (CA) stabilization under environmental stress and during pepsin digestion. The optimal GLB: ALG mass ratio of 1: 1.5 was determined for GANPs formation at pH 3.5, resulting in a high yield of 95.13 ± 0.91 %, a ζ-potential of -35.73 ± 1.04 mV, a hydrodynamic diameter of 470.67 ± 11.36 nm, and a PDI of 0.298 ± 0.016. GANPs were employed to encapsulate CA, achieving a high loading capacity of 13.48 ± 0.04 μg mg-1. FTIR analysis demonstrated that the formation of CA-GLB-ALG nanoparticles (CGANPs) involves electrostatic interactions, hydrogen bonding, and hydrophobic interactions. XRD and DSC analyses revealed that CA is amorphous within the CGANPs. CGANPs demonstrated remarkable dispersion stability as well as resistance to high ionic strength and high-temperature treatments, indicating their potential as efficient hydrophobic drug-delivery vehicles. When compared to free CA, CA coated within CGANPs displayed greater DPPH/ABTS scavenging activity. Furthermore, the ALG-shelled nanoparticles protected GLB from pepsin digestion and slowed the release of CA throughout the release process, extending their stay on the intestinal wall mucosa. These findings imply that CGANPs is an ideal delivery vehicle for CA as they may expand the application of CA in food items.
Collapse
Affiliation(s)
- Peng-Wei Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao-Jie Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao-Fan Yuan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Bing Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
13
|
Zhang Z, Li T, Zhang Y, Shao J, Ye C, Wang H, Zhu B, Zhang Y. Effect of polysaccharides on conformational changes and functional properties of protein-polyphenol binary complexes: A comparative study. Int J Biol Macromol 2023; 253:126890. [PMID: 37716302 DOI: 10.1016/j.ijbiomac.2023.126890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
This study aimed to investigate the effect of different polysaccharides on the binding behavior and functional properties of soybean protein isolate (SPI)-quercetin (Que) complex. The binding behavior was assessed using multi-spectral technique with the Stern-Volmer equation, which confirmed the presence of static fluorescence quenching in Que and SPI. The addition of sodium alginate (SA) resulted in a reduction of the binding affinity between SPI and Que, while dextran (DX) exhibited some promoting effect. A slight blue shift was observed in amide I and amide II bands, indicating the presence of hydrophobic and electrostatic interactions. Circular dichroism spectra revealed the ordered structures transformed into a more disordered state when polysaccharides were added, leading to an increase in random coils (SA: 18.5 %, DX: 15.4 %). Docking and dynamic simulations demonstrated that SA displayed greater stability within the hydrophobic compartments of SPI than DX, increased rigidity and stability of the SPI structure in SPI-Que-SA complexes. Electrostatic forces played a significant role between SPI and SA, while van der Waals forces were the main driving forces in SPI-DX complexes. Overall, the introduction of SA led to a looser and stable structure of SPI-Que complexes, resulting in an improvement of their emulsifying, foaming, and antioxidant properties.
Collapse
Affiliation(s)
- Zifan Zhang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Taoran Li
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yubo Zhang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Juanjuan Shao
- Department of Science and Technology, Hebei Agricultural University, Hebei 061100, China
| | - Chengxiang Ye
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongwu Wang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Beibei Zhu
- College of Chinese Medicine Pharmaceutical Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China..
| | - Yating Zhang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
14
|
Chawla P, Sridhar K, Bains A. Interactions of legume phenols-rice protein concentrate towards improving vegan food quality: Development of a protein-phenols enriched fruit smoothie. Food Res Int 2023; 171:113075. [PMID: 37330833 DOI: 10.1016/j.foodres.2023.113075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/09/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
Phenol-protein interaction is considered an effective tool to improve the functional properties of vegan proteins. The present work aimed to evaluate the covalent interaction between kidney bean polyphenols with rice protein concentrate and studied their characteristics for quality improvement in vegan-based foods. The impact of interaction on the techno-functional properties of protein was evaluated and the nutritional composition revealed that kidney bean was rich in carbohydrates. Furthermore, a noticeable antioxidant activity (58.11 ± 1.075 %) due to the presence of phenols (5.5 mg GAE/g) was observed for the kidney bean extract. Moreover, caffeic acid and p-Coumaric acid were confirmed using ultra-pressure liquid chromatography and the amount was 194.43 and 0.9272 mg/kg, respectively. A range of rice protein- phenols complexes (PPC0.025, PPC0.050, PPC0.075, PPC0.1, PPC0.2, PPC 0.5, PPC1) were examined and PPC0.2 and PPC0.5 showed significantly (p < 0.05) higher binding efficiency with proteins via covalent interaction. The conjugation reveals changes in physicochemical properties of rice protein, including, reduced size (178.4 nm) and imparted negative charges (-19.5 mV) of the native protein. The presence of amide Ⅰ, Ⅱ, Ⅲ, was confirmed in native protein and protein-phenol complex with vibration bands, particularly at 3784.92, 1631.07, and 1234 cm-1, respectively. The X-ray diffraction pattern depicted a slight decrease in crystallinity after the complexation and scanning electron microscopy revealed the alteration in morphology from less to improved smoothness and continuous surface characteristics for the complex. Thermo gravimetric analysis revealed high thermal stability of the complex with a maximum weight loss at a temperature range of 400-500 °C. Protein-phenol complex added fruit-based smoothie was developed and it was found to be acceptable in terms of various sensory attributes including color & appearance, textural consistency, and mouthfeel as compared to the control smoothie. Overall, this study provided novel insights to understand the phenol-protein interactions and the possible use of the phenol-rice protein complex in the development of vegan-based food products.
Collapse
Affiliation(s)
- Prince Chawla
- Department Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
15
|
Geng M, Feng X, Wu X, Tan X, Liu Z, Li L, Huang Y, Teng F, Li Y. Encapsulating vitamins C and E using food-grade soy protein isolate and pectin particles as carrier: Insights on the vitamin additive antioxidant effects. Food Chem 2023; 418:135955. [PMID: 36963139 DOI: 10.1016/j.foodchem.2023.135955] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/25/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023]
Abstract
Functional factors show additive effects in the same nutraceutical food. In this study, a core-shell structure based on soy protein isolate (SPI) and pectin was constructed as a delivery system for vitamins C and E under neutral (pH 7.0) and acidic environment (pH 4.0). The SPI-vitamin-pectin complex formed at pH 4.0 showed larger particle size, higher turbidity, lower fluorescence intensity, and higher vitamin E encapsulation efficiency than those formed at pH 7.0. Also, the addition of vitamin C significantly enhanced the vitamin E encapsulation efficiency in the particles. Furthermore, the antioxidant properties of DPPH, ABTS, and hydroxyl radicals were increased by the addition of vitamin C, maximum values of 77%, 82%, and 65%, suggesting that vitamins C and E have additive antioxidant effects. These findings proposed a simple, structured protein-polysaccharide-based food-grade delivery system, which could serve as the basis for the design of products having multiple functional factors.
Collapse
Affiliation(s)
- Mengjie Geng
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xumei Feng
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xixi Wu
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiangyun Tan
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zengnan Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lijia Li
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuyang Huang
- College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Fei Teng
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
16
|
Liu F, McClements DJ, Ma C, Liu X. Novel Colloidal Food Ingredients: Protein Complexes and Conjugates. Annu Rev Food Sci Technol 2023; 14:35-61. [PMID: 36972160 DOI: 10.1146/annurev-food-060721-023522] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Food proteins, polysaccharides, and polyphenols are natural ingredients with different functional attributes. For instance, many proteins are good emulsifiers and gelling agents, many polysaccharides are good thickening and stabilizing agents, and many polyphenols are good antioxidants and antimicrobials. These three kinds of ingredients can be combined into protein, polysaccharide, and/or polyphenol conjugates or complexes using covalent or noncovalent interactions to create novel multifunctional colloidal ingredients with new or improved properties. In this review, the formation, functionality, and potential applications of protein conjugates and complexes are discussed. In particular, the utilization of these colloidal ingredients to stabilize emulsions, control lipid digestion, encapsulate bioactive ingredients, modify textures, and form films is highlighted. Finally, future research needs in this area are briefly proposed. The rational design of protein complexes and conjugates may lead to the development of new functional ingredients that can be used to create more nutritious, sustainable, and healthy foods.
Collapse
Affiliation(s)
- Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China; ,
| | | | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China; ,
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China; ,
| |
Collapse
|
17
|
Jiang Z, Tian J, Bai X, McClements DJ, Ma C, Liu X, Liu F. Improving probiotic survival using water-in-oil-in-water (W 1/O/W 2) emulsions: Role of fish oil in inner phase and sodium alginate in outer phase. Food Chem 2023; 417:135889. [PMID: 36933430 DOI: 10.1016/j.foodchem.2023.135889] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/18/2023]
Abstract
Aqueous probiotic suspensions were dispersed in an oil phase consisting of fish oil and medium chain triglycerides to form W1/O emulsions. These emulsions were then homogenized with an aqueous solution containing soybean protein isolate and sodium alginate to form W1/O/W2 emulsions. Fish oil was used to promote the growth of the probiotics and increase their ability to adhere to the intestinal mucosa. Sodium alginate increased the viscosity, stability, and probiotic encapsulation efficiency of the double emulsions, which was mainly attributed to its interactions with adsorbed soy proteins. The encapsulation efficiency of the probiotics in the double emulsions was relatively high (>96%). In vitro simulated digestion experiments showed that the double emulsions significantly increased the number of viable probiotics remaining after passing through the entire gastrointestinal tract. This study suggests that encapsulation of probiotics in double emulsions may increase their viability under gastrointestinal conditions, thereby enhancing their efficacy in functional foods.
Collapse
Affiliation(s)
- Zhaowei Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Junqing Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xiangqi Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | | | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
18
|
Wang M, Muhammad T, Gao H, Liu J, Liang H. Targeted pH-responsive chitosan nanogels with Tanshinone IIA for enhancing the antibacterial/anti-biofilm efficacy. Int J Biol Macromol 2023; 237:124177. [PMID: 36972823 DOI: 10.1016/j.ijbiomac.2023.124177] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023]
Abstract
Persistent bacterial infection caused by biofilms is one of the most serious problems that threatened human health. The development of antibacterial agents remains a challenge to penetrate biofilm and effectively treat the underlying bacterial infection. In the current study, chitosan-based nanogels were developed for encapsulating the Tanshinone IIA (TA) to enhance the antibacterial and anti-biofilm efficacy against Streptococcus mutans (S. mutans). The as-prepared nanogels (TA@CS) displayed excellent encapsulation efficiency (91.41 ± 0.11 %), uniform particle sizes (393.97 ± 13.92 nm), and enhanced positive potential (42.27 ± 1.25 mV). After being coated with CS, the stability of TA under light and other harsh environments was greatly improved. In addition, TA@CS displayed pH responsiveness, allowing it to selectively release more TA in acidic conditions. Furthermore, the positively charged TA@CS were equipped to target negatively charged biofilm surfaces and efficiently penetrate through biofilm barriers, making it promising for remarkable anti-biofilm activity. More importantly, when TA was encapsulated into CS nanogels, the antibacterial activity of TA was enhanced at least 4-fold. Meanwhile, TA@CS inhibited 72 % of biofilm formation at 500 μg/mL. The results demonstrated that the nanogels constituted CS and TA had antibacterial/anti-biofilm properties with synergistic enhanced effects, which will benefit pharmaceutical, food, and other fields.
Collapse
Affiliation(s)
- Mingxia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Tariq Muhammad
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Huiling Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jianzhang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; Qinhuangdao Bohai Biological Research Institute of Beijing University of Chemical Technology, Qinhuangdao 066000, China.
| |
Collapse
|
19
|
Complexation of β-conglycinin or glycinin with sodium alginate blocks: Complexation mechanism and structural and functional properties. Food Chem 2023; 403:134425. [DOI: 10.1016/j.foodchem.2022.134425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/14/2022] [Accepted: 09/25/2022] [Indexed: 11/22/2022]
|
20
|
Recent advances in emerging pectin-derived nanocarriers for controlled delivery of bioactive compounds. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
21
|
Zou Z, Ismail BB, Zhang X, Yang Z, Liu D, Guo M. Improving barrier and antibacterial properties of chitosan composite films by incorporating lignin nanoparticles and acylated soy protein isolate nanogel. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Afkhami R, Varidi MJ, Varidi M, Hadizadeh F. Improvement of heat-induced nanofibrils formation of soy protein isolate through NaCl and microwave. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Preparation of Gum Arabic-Maltose-Pea Protein Isolate Complexes for 1-Octacosanol Microcapsule: Improved Storage Stability, Sustained Release in the Gastrointestinal Tract, and Its Effect on the Lipid Metabolism of High-Fat-Diet-Induced Obesity Mice. Foods 2022; 12:foods12010112. [PMID: 36613328 PMCID: PMC9818909 DOI: 10.3390/foods12010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/19/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
1-Octacosanol (Octa) is a natural compound with several beneficial properties. However, its poor water solubility and metabolism in the digestive tract reduce its efficacy. The Octa-GA-Malt-PPI microcapsule was prepared as follows: gum Arabic (GA):maltose (Malt):pea protein isolate (PPI) = 2:1:2; core:shell = 1:7.5; emulsification temperature 70 °C; pH 9.0. An in vitro simulated gastrointestinal tract was used to analyze the digestion behavior. C57BL/6 mice were selected to establish an obesity model induced by a high-fat diet (HFD) to evaluate the effect of Octa monomer and the microcapsule. The diffusivity in water and storage stability of Octa improved after encapsulation. The microcapsule was ascribed to electrostatic interactions, hydrogen bonding, and hydrophobic interactions. The sustained release of Octa from the microcapsule was observed in a simulated gastrointestinal tract. Compared with Octa monomer, the microcapsule was more effective in alleviating the symptoms of weight gain, hypertension, and hyperlipidemia induced by HFD in mice. In conclusion, the construction of microcapsule structure can improve the dispersibility and stability of Octa in water, achieve sustained release of Octa in the gastrointestinal tract, and improve its efficiency in alleviating the effects of HFD on the body.
Collapse
|
24
|
Li Y, Wang S, Zhang G, Liu X, Liu H, He Y, Zhu D. Morphological and structural changes in thermally-induced soybean protein isolate xerogels modulated by soybean polysaccharide concentration. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Preparation, structure and stability of protein-pterostilbene nanocomplexes coated by soybean polysaccharide and maltodextrin. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Luo S, Chen J, Zeng Y, Dai J, Li S, Yan J, Liu Y. Effect of water-in-oil-in-water (W/O/W) double emulsions to encapsulate nisin on the quality and storage stability of fresh noodles. Food Chem X 2022; 15:100378. [PMID: 36211791 PMCID: PMC9532707 DOI: 10.1016/j.fochx.2022.100378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
Ultrasonic and microwave treatment improved the extraction rate of rock bean protein. Rock bean protein has a high content of 7S and 11S globulin components. The prepared W/O/W microcapsules can keep the noodles fresh.
Rock-bean protein (RP) was extracted from wild rock beans by ultrasonic treatment and microwave extraction. The RP has a high content of 7S and 11S globulin components and good heat stability. Subsequently, water-oil-water double emulsions were prepared using a water core containing nisin, momordica charantia extract (MCE), and Lactobacillus plantarum as functional additives, corn oil as the intermediate wall, and RP/gum arabic (GA) as the outer wall material. For a ratio of corn oil to water of 5:1, the maximum encapsulation efficiency was 28.22%, and RP/GA had good dispersion characteristics, where the smallest average particle size was achieved for a 1:1 ratio. Finally, the microcapsules were used to study the effect of its addition to noodles. The addition of 2 wt% of the microcapsules to low-gluten flour resulted in a dough with suitable rheology, and can extend the shelf life of the fresh noodles prepared using this dough.
Collapse
|
27
|
Miao ST, Lu QS, Zhou YJ, Chang YN, Xu T, Zhu MY. Oral administration of octacosanol modulates the gut bacteria and protects the intestinal barrier in ulcerative colitis mice. J Food Biochem 2022; 46:e14284. [PMID: 35746852 DOI: 10.1111/jfbc.14284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/03/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
Abstract
Octacosanol (Oct), a kind of long-chain fatty alcohol extracted from rice bran was applied to study its effects on alleviating ulcerative colitis (UC). Oct was orally administered at 10 mg/kg (Oct-L) and 30 mg/kg (Oct-H) to dextran sulfate sodium (DSS)-induced mice. Here, we reported that oral administration of 30 mg/kg Oct can significantly prevent the weight loss, colon shortening, and decrease the disease activity index (DAI) score. Oct-H supplementation modified the intestinal flora by lowering the Firmicutes/Bacteroidetes (F/B) ratio, increasing the abundance of Prevotellaceae, S24-7, Turicibacter, and meanwhile decreasing Enterococcus and Stenotrophomonas. Based on the PICRUSt2 analysis, Oct-H may exert effects by anti-inflammation and xenobiotics degradation. Furthermore, short-chain fatty acids (SCFAs) levels were raised and the integrity of the gut barrier was protected. In conclusion, Oct-H can relieve clinical symptoms, modulate the gut bacteria and protect the intestinal barrier in UC mice, suggesting the potential of Oct as a food supplementation in alleviating UC. PRACTICAL APPLICATIONS: Ulcerative colitis (UC) is a hard-to-cure disease, with increasing morbidity in recent years. Therefore, finding out a food supplement to alleviate UC is very meaningful. In this work, we showed that octacosanol significantly alleviated ulcerative colitis in mice. We revealed, for the first time, octacosanol's effects on protecting the integrity of the gut barrier, modulating the intestinal flora and its metabolism (SCFAs). Therefore, octacosanol was expected to prevent colitis in an all-round way. Our research might also lay the theoretical foundation for the further development of related functional foods.
Collapse
Affiliation(s)
- Shu-Ting Miao
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Qian-Shan Lu
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Ying-Jun Zhou
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Ya-Ning Chang
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Tao Xu
- Huzhou Shengtao Biotech LLC, Zhejiang, China
| | - Meng-Yu Zhu
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
28
|
Zhou Y, Cao F, Luo F, Lin Q. Octacosanol and health benefits: Biological functions and mechanisms of action. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Falsafi SR, Rostamabadi H, Samborska K, Mirarab S, Rashidinejhad A, Jafari SM. Protein-polysaccharide interactions for the fabrication of bioactive-loaded nanocarriers: Chemical conjugates and physical complexes. Pharmacol Res 2022; 178:106164. [PMID: 35272044 DOI: 10.1016/j.phrs.2022.106164] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 01/22/2023]
Abstract
As unique biopolymeric architectures, covalently and electrostatically protein-polysaccharide (PRO-POL) systems can be utilized for bioactive delivery by virtue of their featured structures and unique physicochemical attributes. PRO-POL systems (i. e, microscopic /nano-dimensional multipolymer particles, molecularly conjugated vehicles, hydrogels/nanogels/oleogels/emulgels, biofunctional films, multilayer emulsion-based delivery systems, particles for Pickering emulsions, and multilayer coated liposomal nanocarriers) possess a number of outstanding attributes, like biocompatibility, biodegradability, and bioavailability with low toxicity that qualify them as powerful agents for the delivery of different bioactive ingredients. To take benefits from these systems, an in-depth understanding of the chemical conjugates and physical complexes of the PRO-POL systems is crucial. In this review, we offer a comprehensive study concerning the unique properties of covalently/electrostatically PRO-POL systems and introduce emerging platforms to fabricate relevant nanocarriers for encapsulation of bioactive components along with a subsequent sustained/controlled release.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hadis Rostamabadi
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| | - Katarzyna Samborska
- Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, Warsaw, Poland
| | - Saeed Mirarab
- Sari Agricultural Sciences and Natural Resources University, Khazar Abad Road, P.O. Box 578, Sari, Iran
| | - Ali Rashidinejhad
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.
| |
Collapse
|
30
|
Li J, Chen Z. Fabrication of heat-treated soybean protein isolate-EGCG complex nanoparticle as a functional carrier for curcumin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Luo S, Chen J, He J, Li H, Jia Q, Hossen MA, Dai J, Qin W, Liu Y. Preparation of corn starch/rock bean protein edible film loaded with d-limonene particles and their application in glutinous rice cake preservation. Int J Biol Macromol 2022; 206:313-324. [PMID: 35227706 DOI: 10.1016/j.ijbiomac.2022.02.139] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/23/2022] [Accepted: 02/23/2022] [Indexed: 01/12/2023]
Abstract
Glycerol hydrogenated rosin (GEHR) and d-limonene were prepared for micro-particles by electrostatic spray method. When the GEHR/d-limonene ratio is 5.5:4.5 and the electrostatic spray extrusion speed is 1 mL/h, the best particle size (177.24 ± 17.09 μm) and embedding rate of d-limonene (41.74 ± 9.88%) are achieved. Then, rock bean protein (RP) was extracted from wild rock beans and combined with GEHR/d-limonene particles and corn starch (CS) to prepare a new type of edible film. The prepared film was characterized using Fourier transform infrared spectroscopy in terms of structural changes and physical, optical, mechanical, and thermal properties. The results show that the edible film with a ratio of 1:1 exhibited more optimized thermal (179.2 °C) and mechanical properties (TS 0.88 MPa, EAB 54.36%). Studies on freshly prepared glutinous rice cake as an object for preservation using edible film show that the films can prolong shelf life by ~2-4 d. Through this experiment, it can serve as a reference for the development of a new type of edible film.
Collapse
Affiliation(s)
- Songming Luo
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Jundong Chen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Jing He
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Haisong Li
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Qi Jia
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Md Alomgir Hossen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Yaan 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| |
Collapse
|
32
|
Jia Y, Lu Y, Wang Y, Zhang M, He C, Chen H. Spheroidization of ultrasonic degraded corn silk polysaccharide to enhance bioactivity by the anti-solvent precipitation method. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:53-61. [PMID: 34031881 DOI: 10.1002/jsfa.11329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/25/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Corn silk is a very important by-product of corn production with medicinal value. Corn silk polysaccharide (CSP) is the main active ingredient. In the present study, ultrasound and spheroidization by anti-solvent were applied to improve the biological activity of CSP. RESULTS The results showed that ultrasonic degradation improved the α-glucosidase inhibitory activity of CSP by changing its physicochemical characteristics. As the anti-solvent ratio increased, the particle size of the nanoparticles (NPs) from the spheroidization of ultrasonic-degraded corn silk polysaccharide (UCSP) gradually increased, and NP-1 exhibited the highest inhibitory effect of α-glucosidase. Isothermal titration calorimetry (ITC) results indicated that the enhanced activity might be due to more α-glucosidase binding sites with NP-1 compared with no spheroidization. Western blotting results showed that NP-1 could improve the 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG) uptake in the L6 cells by regulating the phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway and the translocation of glucose transporter 4 (GLUT4). NP-1 also exhibited excellent stability in different environments. CONCLUSION The study revealed that ultrasonic treatment and spheroidization processing showed potential applications for improving the biological activity of polysaccharides. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanan Jia
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| | - Yangpeng Lu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| | - Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin, P.R. China
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, P.R. China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, P.R. China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
33
|
Qian S, Yu Y, Ma J, Diao E, Ye S, Gao J, Liu Y, Hu W. Evaluation of a novel phosphorylated corn straw xylan for enhancement of thermal stability, crystallinity and functional activity. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shiquan Qian
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| | - Yuting Yu
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| | - Jing Ma
- School of Life Sciences Anhui Agricultural University Hefei 230036 China
| | - Enjie Diao
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| | - Shijia Ye
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| | - Jiamin Gao
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| | - Ying Liu
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| | - Weicheng Hu
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| |
Collapse
|
34
|
Zhou Y, Yue W, Luo Y, Luo Q, Liu S, Chen H, Qin W, Zhang Q. Preparation and stability characterization of soybean protein isolate/sodium alginate complexes-based nanoemulsions using high-pressure homogenization. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Li D, Wu G, Zhang H, Qi X. Preparation of crocin nanocomplex in order to increase its physical stability. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Li X, Feng R, Zhou P, Wang L, Luo Z, An S. Construction and characterization of Juglans regia L. polyphenols nanoparticles based on bovine serum albumin and Hohenbuehelia serotina polysaccharides, and their gastrointestinal digestion and colonic fermentation in vitro. Food Funct 2021; 12:10397-10410. [PMID: 34554172 DOI: 10.1039/d1fo01993g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, we report the construction and characterization of nanoparticles based on bovine serum albumin and Hohenbuehelia serotina polysaccharides for the delivery of polyphenols isolated from the shells of Juglans regia L. (BSA-JRP-HSP NPs). We also systematically investigated their gastrointestinal digestion and colonic fermentation characteristics in vitro. BSA-JRP-HSP NPs, with amorphous properties and regular spherical morphological features, have a high encapsulation efficiency of 88.47 ± 0.04%, average particle size of 285.7 ± 3.1 nm, and zeta potential of -12.20 ± 0.61 mV, and they exhibit excellent photothermal stabilities and strong mucin adhesion capacity. Through measurements of gastrointestinal digestion and colonic fermentation in vitro, the results suggest that BSA-JRP-HSP NPs presented well-sustained release characteristics for preventing the biodegradation of JRP during gastrointestinal digestion. After gastrointestinal digestion, BSA-JRP-HSP NPs could modulate the composition and structure of gut microbiota, promoting the growth of beneficial bacterial (e.g. Prevotella, Dialister, Akkermansia, etc.) and inhibiting the growth of pathogenic bacteria (e.g. Bacteroides, Phascolarctobacterium, Lachnospiracea incertae sedis, etc.). The production of short-chain fatty acids (SCFAs) including acetic acid, propionic acid, and butyric acid was remarkably enhanced by treatment with BSA-JRP-HSP NPs. This study has proved that BSA-JRP-HSP NPs can serve as a novel candidate for improving the bioavailability of JRP.
Collapse
Affiliation(s)
- Xiaoyu Li
- Skate Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.,Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China. .,Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Ru Feng
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China. .,Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Peng Zhou
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China. .,Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Lu Wang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China. .,Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zhen Luo
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China. .,Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Siying An
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China. .,Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| |
Collapse
|
37
|
Wang S, Qu D, Zhao G, Yang L, Zhu L, Song H, Liu H. Characterization of the structure and properties of the isolating interfacial layer of oil-water emulsions stabilized by soy hull polysaccharide: Effect of pH changes. Food Chem 2021; 370:131029. [PMID: 34500292 DOI: 10.1016/j.foodchem.2021.131029] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 01/08/2023]
Abstract
The effect of pH on the microstructure and properties of the soy hull polysaccharide interfacial layer was determined. The particle size at pH 2.0 was the largest (36.7 μm), whereas the absolute ζ-potential was the smallest. The protein content was the lowest at pH 2.0 and 9.0 and peaked around pH 4.0-5.0 (77.7%). The ordered secondary protein structure content under low pH conditions was greater than that under high pH conditions and the stability of the interfacial layer was higher at high pH, whereas the emulsion viscosity decreased by two orders of magnitude between pH 2.0 and 9.0. It appears that low pH reduced the thermal stability and increased the apparent viscosity of the emulsion by increasing the structural order of the protein in the interfacial layer. These findings lay the foundation for future work to reveal the key components and characteristic structures of soy hull polysaccharide that affect interfacial stability.
Collapse
Affiliation(s)
- Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Liaoning Province Grain and Cereal Food Bio-efficient Transformation Engineering Research Center, Bohai University, Jinzhou 121013, China
| | - Danni Qu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Guilan Zhao
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Liaoning Province Grain and Cereal Food Bio-efficient Transformation Engineering Research Center, Bohai University, Jinzhou 121013, China
| | - Lijie Zhu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Liaoning Province Grain and Cereal Food Bio-efficient Transformation Engineering Research Center, Bohai University, Jinzhou 121013, China
| | - Hong Song
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Liaoning Province Grain and Cereal Food Bio-efficient Transformation Engineering Research Center, Bohai University, Jinzhou 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Liaoning Province Grain and Cereal Food Bio-efficient Transformation Engineering Research Center, Bohai University, Jinzhou 121013, China.
| |
Collapse
|
38
|
Feng S, Yan J, Wang D, Jiang L, Sun P, Xiang N, Shao P. Preparation and characterization of soybean protein isolate/pectin-based phytosterol nanodispersions and their stability in simulated digestion. Food Res Int 2021; 143:110237. [PMID: 33992350 DOI: 10.1016/j.foodres.2021.110237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 11/18/2022]
Abstract
In this study, stigmasterol was nanoencapsulated in soy protein isolate -pectin-based nanodispersions. Based on the particle size and zeta-potential, the optimal pectin/SPI ratio of stigmasterol nanodispersion was determined to be 1:10. At this ratio, nanodispersions was manufactured with an average particle size of 477 ± 33 nm, an encapsulation efficiency of 89.37%, and a loading amount of 17.87%. The physical properties and morphology of the nanodispersion were investigated. Fourier transform infrared spectroscopy and differential scanning calorimetry analysis revealed that stigmasterol was loaded in nanodispersions successfully. The pectin, which was used to stable nanodispersion, could restrict the release of stigmasterol in the simulated gastric fluid. This experiment indicated that the presence of pectin can improve the stability of the nanodispersion and can be used to achieve controlled release of bioactive compounds.
Collapse
Affiliation(s)
- Simin Feng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China.
| | - Jiadan Yan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People's Republic of China
| | - Dan Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People's Republic of China
| | - Ligang Jiang
- Proya Cosmetics Co., LTD, Hangzhou 310007, Zhejiang, People's Republic of China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People's Republic of China
| | - Ning Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People's Republic of China
| | - Ping Shao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China.
| |
Collapse
|
39
|
Fan L, Lu Y, Ouyang XK, Ling J. Development and characterization of soybean protein isolate and fucoidan nanoparticles for curcumin encapsulation. Int J Biol Macromol 2021; 169:194-205. [PMID: 33340634 DOI: 10.1016/j.ijbiomac.2020.12.086] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/27/2020] [Accepted: 12/11/2020] [Indexed: 02/01/2023]
Abstract
Curcumin (Cur) is a natural polyphenol with beneficial biological and pharmacological activities; however, it has limited applications owing to its low solubility and light sensitivity. The protein-polysaccharide complex can effectively embed lipid-soluble drugs to increase their stability and dispensability in aqueous solutions. Soybean protein isolate (Spi) and fucoidan (Fuc) were used as a polymer matrix, and core-shell nanoparticles were prepared to encapsulate Cur via electrostatic interaction under acidic and neutral conditions. The structure of the Spi-Fuc nanoparticles was studied via Fourier-transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy. Concurrently, we evaluated the efficacy of the nanoparticles based on stability, drug loading rate, and simulated release. Our results showed that the Spi-Fuc nanoparticles (size, approximately 236.56 nm) had a spherical, core-shell structure and that they could effectively load Cur with an embedding efficiency of >95%; moreover, the system had long-term dispersion stability. Thus, we provide a simple method for Cur delivery, which can also be potentially used for delivering lipid-soluble active ingredients.
Collapse
Affiliation(s)
- Lihong Fan
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Yuqing Lu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
40
|
Shi T, Liu H, Song T, Xiong Z, Yuan L, McClements DJ, Jin W, Sun Q, Gao R. Use of l-arginine-assisted ultrasonic treatment to change the molecular and interfacial characteristics of fish myosin and enhance the physical stability of the emulsion. Food Chem 2020; 342:128314. [PMID: 33051101 DOI: 10.1016/j.foodchem.2020.128314] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
Abstract
The effects of l-arginine (Arg)-assisted ultrasonic treatment on the molecular and interfacial characteristics of myosin and emulsifying properties of the emulsion were evaluated to ascertain the underlying mechanism in improving the emulsion stability. Ultrasonication induced the exposure of residues of native myosin, which was increased by the addition of Arg (40 mM). Furthermore, in terms of emulsions containing Arg, the higher the ultrasonication intensity was, the greater the increase in adsorbed protein (from 15.43 ± 0.28% to 50.49 ± 1.65%) and π value, and the decrease in droplet sizes (from 4098 nm to 2324 nm) (P < 0.05). Moreover, the increase in the ordered structures of interfacial myosin induced by Arg and ultrasonication favoured the formation of a protein gelation network. In summary, Arg-assisted ultrasonic treatment improved the stability of the emulsion by inducing the exposure of native myosin and facilitating the formation of ordered structures of interfacial myosin.
Collapse
Affiliation(s)
- Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Hui Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Teng Song
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Zhiyu Xiong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| | - Wengang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Sha'anxi University of Technology, Hanzhong 723001, China
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China; Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Sha'anxi University of Technology, Hanzhong 723001, China.
| |
Collapse
|