1
|
Zhang D, Zhang S, Abubaker MA, Li Z, Liu Y. Mechanism of interaction between key active ingredients and myosin in tea-stewed beef: Improvement of myosin's structural and functional characteristics. Food Chem 2025; 484:144223. [PMID: 40252443 DOI: 10.1016/j.foodchem.2025.144223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 03/20/2025] [Accepted: 04/04/2025] [Indexed: 04/21/2025]
Abstract
This study analyzed the tea polyphenol components in four types of tea-stewed beef, identifying five key active compounds: epicatechin (EC), epicatechin gallate (ECG), epigallocatechin gallate (EGCG), gallocatechin gallate (GCG), and caffeine (CAF). Oxidative stability, structural changes, and antioxidant activity of complexes formed between these compounds and bovine myosin were assessed. Molecular docking and dynamic simulations were employed to investigate the interaction mechanisms. Results indicated that all five ingredients improved myosin's oxidative stability. Polyphenols modified myosin's surface hydrophobicity, proteolytic susceptibility, and secondary structure. Among the compounds, CAF exhibited the highest surface hydrophobicity (0.01658 mg) and the lowest proteolysis (22.94 %). EC enhanced myosin's secondary structure, and improved overall stability. Interactions of EC, ECG, EGCG, and GCG with myosin were driven by electrostatic, hydrogen bonding, and hydrophobic interactions, whereas CAF's interaction was primarily hydrophobic. This study provides a foundation for future research on polyphenol-protein interactions, complementing studies on tea's impact on meat quality.
Collapse
Affiliation(s)
- Duoduo Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Shiquan Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Mohamed Aamer Abubaker
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Zekun Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| |
Collapse
|
2
|
Zhang Y, Wang Y, Dong H, Li J, Sun J, Mao X. Interaction of L-proline with water and ice: Implications for Litopenaeus Vannamei Cryoprotection during temperature fluctuation. Food Chem 2025; 470:142629. [PMID: 39733614 DOI: 10.1016/j.foodchem.2024.142629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/27/2024] [Accepted: 12/21/2024] [Indexed: 12/31/2024]
Abstract
Temperature fluctuations can negatively affect the quality of frozen shrimp. Research on novel cryoprotectants to replace traditional agents (phosphate, etc.) has become a hotspot. Our results indicated that L-Proline could reduce thawing losses, delay texture deterioration and improve the functional properties of myofibrillar proteins of shrimp. Thawing loss in the proline group (3.2 %) was significantly lower than that in the control (5.4 %) after 3 freeze-thaw cycles (p < 0.05). Compared to Na4P2O7, proline had better permeability and greater ability to inhibit ice crystal growth and volume expansion. Through molecular simulations, we found that proline might inhibit ice crystal formation by forming glassy states with water. Hydrogen bonding between proline and water/ice played a major role, and only a small amount of proline was required to significantly reduce the ice crystal growth rate from 0.16 m/s to 0.06 m/s. Briefly, proline exhibited potential as a cryoprotectant for shrimp in temperature fluctuations.
Collapse
Affiliation(s)
- Yejun Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Yongzhen Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Hao Dong
- Shandong Meijia Group Co. Ltd., Rizhao 276800, PR China
| | - Jiao Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Centre, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| |
Collapse
|
3
|
Liu Y, Yang Z, Li Z, Shen J, Wang X, Li R, Tao Y, Xu X, Wang P. Systematic free energy insights into the enhanced dispersibility of myofibrillar protein in low-salt solutions through ultrasound-assisted enzymatic deamidation. ULTRASONICS SONOCHEMISTRY 2025; 112:107199. [PMID: 39675263 PMCID: PMC11713509 DOI: 10.1016/j.ultsonch.2024.107199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
This work aimed to investigate the effects of ultrasound assisted enzymatic deamidation by protein-glutaminase (PG) on the dispersion of myofibrillar protein (MP) in low-salt solutions. The solubility, structural characteristics, transmission electron microscopy, asymmetric-flow field-flow fractionation, steady shear rheological property and multiple light scattering of MP deamidated by PG (MP-PG) and MP pretreated with ultrasound followed by PG deamidation (MP-U-PG) were determined. Molecular docking and molecular dynamics (MD) simulations were used to estimate the interaction between PG and MP. Under ultrasound assistance, the MP deamidated for 16 h (MP-U-PG16) showed the highest solubility (80.1 %) in low-salt conditions, which is attributed to its highest absolute zeta potential and smallest particle size. Although secondary structure analysis showed that MP-PG and MP-U-PG had an increased α-helix ratio and a decreased β-sheet ratio, ultrasonic treatment had a significantly influence on the MD results. The results manifested that hydrogen bond was the primary forces driving the binding between PG and MP, and the hydrogen bond and hydrophobic interaction were the dominant forces responsible the binding between PG and MP pretreated with ultrasound. According to the energy landscapes theory, ultrasound could overcome the energy barriers through external force input and find the best pathway to achieve the final lowest energy state. Our research contributed to the improvement of the colloidal dispersibility of MPs under low-salt conditions and the regulation of protein interaction by ultrasound assistance.
Collapse
Affiliation(s)
- Yating Liu
- State key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zongyun Yang
- State key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Li
- State key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Shen
- State key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xia Wang
- State key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ru Li
- State key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ye Tao
- State key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- State key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- State key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing; Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Moon CR, Ju YW, Pyo SH, Park SW, Lee S, Benashvili M, Son YJ. Physicochemical properties of surimi made from edible insects using washing and pH shift methods. Curr Res Food Sci 2024; 10:100952. [PMID: 39760012 PMCID: PMC11698935 DOI: 10.1016/j.crfs.2024.100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025] Open
Abstract
Edible insects, characterized by their eco-friendly nature and high nutrient value, are promising protein sources. Therefore, we aimed to assess the suitability of insects as source ingredients for surimi, a widely-used, intermediate food material. Mealworm (Tenebrio molitor L.) and two-spotted cricket (Gryllus bimaculatus L.) surimi were prepared, and their physicochemical and rheological properties were examined. Myofibrillar protein-rich fractions were obtained using the washing and pH shift methods. For the pH shift method, the myofibrillar proteins were extracted at acid (pH 2) or alkaline (pH 11) conditions, and surimi gel was prepared by heating myofibrillar protein-rich fractions. The pH shift method resulted in a higher surimi yield from edible insects than the washing method, whereas the washing method resulted in a higher surimi yield from tilapia (Oreochromis niloticus) and chicken breast (Gallus gallus domesticus). After acid treatment, lipid oxidation increased in all samples; however, edible insect surimi exhibited lower oxidation levels than tilapia and chicken breast surimi. Insect proteins, except for acid-treated mealworm proteins, successfully formed gel structures upon heating, resulting in softer gels than those obtained from tilapia and chicken breast. Consequently, the pH shift method resulted in elevated insect surimi yield, and the alkaline treatment was more appropriate for producing fine-quality edible insect surimi. Our study demonstrates the usefulness of edible insects as surimi ingredients, particularly for soft-gel food production. These findings emphasize the innovative application of edible insects in the food industry, suggesting the possibility of expanding their use as alternative protein food ingredients.
Collapse
Affiliation(s)
- Chae-Ryun Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Young-Woong Ju
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Su-Hyeon Pyo
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - So-Won Park
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Seul Lee
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Mzia Benashvili
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Yang-Ju Son
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| |
Collapse
|
5
|
Hu L, Liu S, Zhang R, Song S, Xiao Z, Shao JH. Myosin supramolecular self-assembly: The crucial precursor that manipulates the covalent aggregation, emulsification and rheological properties of myosin. Food Res Int 2024; 198:115320. [PMID: 39643363 DOI: 10.1016/j.foodres.2024.115320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024]
Abstract
The transformation of molecular conformation and self-assembly properties of myosin during the heating process at different ionic strengths (0.2 M, 0.4 M and 0.6 M NaCl) and its effect on rheological behavior and emulsification properties were investigated. Under incubation temperatures between 40 °C and 50 °C, myosin underwent a supramolecular self-assembly stage dominated by noncovalent forces (hydrogen bonding, ionic bonding and hydrophobic interactions). Higher ionic strength facilitated molecular rearrangement through enhanced swelling of myosin heads and head-to-head assemblies, which contributed to enhanced ordering and homogeneity of myosin covalent aggregates (above 60 °C) and manifested itself macroscopically as enhanced gel viscoelasticity and emulsion stability. In contrast, at lower ionic strength, the tail-to-tail assemblies of myosin led to the preferential formation of covalent cross-links in the tails, which resulted in the inability of molecular rearrangement and the formation of disordered aggregates and finally led to the deterioration of the gel and the destabilization of the emulsion. In conclusion, the supramolecular self-assembly behavior of myosin, as an intermediate process in myosin's sol-gel transition, is crucial for the orderliness of myosin assemblies, gel network strengthening, and emulsion stability. The obtained insight provides a reference for the precise implementation of quality improvement strategies for meat products.
Collapse
Affiliation(s)
- Li Hu
- College of Food Science, Shenyang Agricultural University, Shenyang 110000, China
| | - Sinong Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110000, China
| | - Ruibang Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110000, China
| | - Shuyi Song
- College of Food Science, Shenyang Agricultural University, Shenyang 110000, China
| | - Zhichao Xiao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang 110000, China.
| |
Collapse
|
6
|
Zhang P, Liu L, Huang Q, Li S, Geng F, Song H, An F, Li X, Wu Y. Mechanism study on the improvement of egg white emulsifying characteristic by ultrasound synergized citral: Physicochemical properties, molecular flexibility, protein structure. ULTRASONICS SONOCHEMISTRY 2024; 111:107104. [PMID: 39413471 PMCID: PMC11530919 DOI: 10.1016/j.ultsonch.2024.107104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/06/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
As a natural emulsifier, egg white protein (EWP) has great interfacial characteristics and high security, and has broad development prospects. This study explored the impact of ultrasound synergized citral (CI) treatment on the microstructure, molecular flexibility and emulsifying property of EWP, and predicted the interaction between CI and ovalbumin (the main protein in EWP) through molecular docking. The decrease in free amino content and the growth in molecular weight of EWP suggested that CI and proteins were successfully grafted. The results of physicochemical properties revealed that UCEWP (ultrasound synergized citral-treated EWP) had smaller particle size and larger ζ-potential absolute value, which meant that the stability of UCEWP system was enhanced. From the perspective of interfacial characteristics, UCEWP had lower interfacial tension, which remarkably improved its emulsifying property. The emulsifying activity index (EAI) and emulsifying stability index (ESI) of UCEWP were 1.99 times and 3.19 times higher than that of natural EWP (NEWP). Analysis of Fourier transform infrared spectroscopy (FT-IR) and fluorescence spectroscopy illustrated that the secondary and tertiary structures of UCEWP were more disordered and stretched than those of EWPs. Protein microstructure demonstrated that UCEWP presented loose small particle distribution, and correlation analysis reflected that the improvement of molecular flexibility was positively correlated with the enhancement of emulsifying property. These results elucidated that ultrasound synergized CI treatment is an effective mean to improve the molecular flexibility and emulsifying property of EWP, which provides a valuable reference for further application of EWP.
Collapse
Affiliation(s)
- Pei Zhang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lan Liu
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China.
| | - Qun Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Hongbo Song
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fengping An
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China.
| | - Yingmei Wu
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
7
|
Liu X, Tian G, Zhao J, Zhang Q, Huai X, Sun J, Sang Y. Integrated ultra-high pressure and salt addition to improve the in vitro digestibility of myofibrillar proteins from scallop mantle (Patinopecten yessoensis). Food Chem 2024; 447:138985. [PMID: 38507952 DOI: 10.1016/j.foodchem.2024.138985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Myofibrillar protein (MP) is susceptible to the effect of ionic strength and ultra-high pressure (UHP) treatment, respectively. However, the impact of UHP combined with ionic strength on the structure and in vitro digestibility of MP from scallop mantle (Patinopecten yessoensis) is not yet clear. Therefore, it is particularly important to analyze the structural properties and enhance the in vitro digestibility of MP by NaCl and UHP treatment. The findings demonstrated that as ionic strength increased, the α-helix and β-sheet gradually transformed into β-turn and random coil. The decrease of endogenous fluorescence intensity indicated the formation of a more stable tertiary structure. Additionally, the exposure of internal sulfhydryl groups increased the amount of total sulfhydryl content, and reactive sulfhydryl groups gradually transformed into disulfide bonds. Moreover, it reduces aggregation through increased solubility, decreased turbidity, particle sizes, and a relatively dense and uniform microstructure. When MP from the scallop mantle was treated with 0.5 mol/L ionic strength and 200 MPa UHP treatment, it had the highest solubility (90.75 ± 0.13%) and the lowest turbidity (0.41 ± 0.03). The scallop mantle MP with NaCl of 0.3 mol/L and UHP treatment had optimal in vitro digestibility (95.14 ± 2.01%). The findings may offer a fresh perspectives for developing functional foods for patients with dyspepsia and a theoretical foundation for the comprehensive utilization of scallop mantle by-products with low concentrations of NaCl.
Collapse
Affiliation(s)
- Xiaohan Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Guifang Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China.
| | - Jinrong Zhao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Qing Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiangqian Huai
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jilu Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
8
|
Fan X, Wang Q, Jin H, Zhang Y, Yang Y, Li Z, Jin G, Sheng L. Protein aggregation caused by pasteurization processing affects the foam performance of liquid egg white. Food Chem 2024; 446:138881. [PMID: 38428086 DOI: 10.1016/j.foodchem.2024.138881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Pasteurization is necessary during the production of liquid egg whites (LEW), but the thermal effects in pasteurization could cause an unavoidable loss of foaming properties of LEW. This study intended to investigate the mechanism of pasteurization processing affects the foam performance of LEW. The foaming capacity (FC) of LEW deteriorated significantly (ΔFCmax = 72.33 %) and foaming stability (FS) increased slightly (ΔFSmax = 3.64 %) under different temperature-time combinations of pasteurization conditions (P < 0.05). The increased turbidity and the decreased solubility together with the decreased absolute value of Zeta potential indicated the generation of thermally induced aggregates and the instability of the protein particles, Rheological characterization demonstrated improved viscoelasticity in pasteurization liquid egg whites (PLEW), explaining enhanced FS. The study revealed that loss in foaming properties of PLEW resulted from thermal-induced protein structural changes and aggregation, particularly affecting FC. This provided a theoretical reference for the production and processing of LEW products.
Collapse
Affiliation(s)
- Xiang Fan
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Qi Wang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haobo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanyuan Zhang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaqin Yang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhe Li
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guofeng Jin
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Long Sheng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Tan Z, Yang X, Jin Z, Han L, Li K, Prakash S, Dong X. Effect of tea polyphenols on the quality of Mackerel puree ( Scomber scombrus) during refrigerated storage: Color, oxidative stability and microstructure. Food Chem X 2024; 22:101480. [PMID: 39669665 PMCID: PMC11637205 DOI: 10.1016/j.fochx.2024.101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 12/14/2024] Open
Abstract
This study investigated the impact of adding tea polyphenols (TP) on the quality of mackerel puree during refrigerated storage. The study used whole mackerel fish and analyzed the sensory characteristics, physicochemical properties, and microstructure of the puree. As storage time increased, significant changes occurred in the puree, including increased levels of thiobarbituric acid value, protein carbonyl, and free radicals. The water holding capacity, whiteness, and pH value of the puree decreased. However, the addition of TP helped to preserve the quality of the mackerel puree, particularly in the later stages of storage. This was evidenced by reduced oxidation of lipids and proteins, minimal color change, and a more compact microstructure. The study also revealed that TP contributes to the development of a gel network within the mackerel puree, enhancing water retention and sensory qualities. These findings suggested that TP treatment has potential for preserving mackerel puree during refrigeration.
Collapse
Affiliation(s)
- Zhifeng Tan
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xiaoqing Yang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Zheng Jin
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Lin Han
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Ke Li
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Sangeeta Prakash
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xiuping Dong
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
10
|
Tan Z, Yang X, Wang Z, Chen Z, Pan J, Sun Q, Dong X. Konjac glucomannan-assisted fabrication of stable emulsion-based oleogels constructed with pea protein isolate and its application in surimi gels. Food Chem 2024; 443:138538. [PMID: 38301559 DOI: 10.1016/j.foodchem.2024.138538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/08/2024] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
Konjac glucomannan (KGM) is widely used as a stabilizer for the structuring of highly unsaturated oils. This study aimed to investigate the changes in structure and functional properties of soybean oil - based oleogels (emulsion template method) prepared with different amounts of KGM-modified pea isolate protein (PPI). The findings revealed that the oleogels formed three - dimensional networks through van der Waals interactions and hydrogen bonding between the stretched PPI and KGM. As the amount of KGM increased, the oil droplets were more uniformly dispersed within the continuous PPI - KGM rigid network, especially when the ratio of PPI to KGM was 4:1. This formulation also showed the highest thixotropy (73.2 %) and the best oil binding capacity (94 %). Cryo - SEM revealed that the oleogel - prepared surimi gels successfully enclosed oil droplets in a dense matrix through a dual stabilization mechanism. Additionally, the incorporation of oleogels significantly improved the textural properties of surimi in comparison to directly adding oil.
Collapse
Affiliation(s)
- Zhifeng Tan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoqing Yang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zheming Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhejin Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jinfeng Pan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Qinxiu Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Xiuping Dong
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Academy of Food Interdisciplinary Science, Dalian Technology Innovation Center for Chinese Prepared Food, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
11
|
Lin M, Cui Y, Shi L, Li Z, Liu S, Liu Z, Weng W, Ren Z. Characteristics of hairtail surimi gels treated with myofibrillar protein-stabilized Pickering emulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4251-4259. [PMID: 38311866 DOI: 10.1002/jsfa.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/26/2023] [Accepted: 01/15/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Hairtail (Trichiurus haumela) surimi exhibits poor gelation properties and a dark gray appearance, which hinder its utilization in high-quality surimi gel products. The effect of Pickering emulsions stabilized by myofibrillar proteins (MPE) on the gel properties of hairtail surimi has been unclear. In particular, the impact of MPE under NaCl and KCl treatments on the quality of hairtail surimi gels requires further elucidation. RESULTS Pickering emulsions stabilized by myofibrillar proteins and treated with NaCl or KCl (Na-MPE, K-MPE) were added to hairtail surimi in amounts of 10-70 g kg-1. The addition of 50 g kg-1 Na-MPE and K-MPE improved the gel strength, textural properties, whiteness, and water-holding capacity (WHC) of hairtail surimi. The relative content of β-turn and β-sheet in the surimi gels increased and the relative content of random coils and α-helix decreased with the addition of oil. The addition of Na-MPE and K-MPE did not affect the secondary structure of surimi gels but stimulated the gelation of hairtail surimi gels. Hairtail surimi containing K-MPE demonstrated similar performance in terms of hardness, microstructure, and WHC compared with the addition of Na-MPE. CONCLUSION The quality of hairtail surimi gels can be improved by the addition of Na-MPE or K-MPE. The K-MPE proved to be an effective option for enhancing the properties of hairtail surimi gels at 50 g kg-1 to replace Na-MPE. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Yaqing Cui
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Linfan Shi
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Beijing, China
| | - Zhanming Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Shuji Liu
- Fisheries Research Institute of Fujian // Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province // Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Xiamen, China
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian // Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province // Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Xiamen, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| |
Collapse
|
12
|
Liu J, Yang K, Wu D, Gong H, Guo L, Ma J, Sun W. Study on the interaction and gel properties of pork myofibrillar protein with konjac polysaccharides. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2284-2293. [PMID: 37950529 DOI: 10.1002/jsfa.13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/16/2023] [Accepted: 11/11/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Natural myofibrillar protein (MP) is sensitive to changes in the microenvironment, such as pH and ionic strength, and therefore can adversely affect the final quality of meat products. The aim of this study was to modify natural MP as well as to improve its functional properties. Therefore, the quality improvement effect of konjac polysaccharides with different concentrations (0, 1.5, 3, 4.5 and 6 g kg-1 protein) on MP gels was investigated. RESULTS With a concentration of konjac polysaccharides of 6 g kg-1 protein, the composite gel obtained exhibited a significant improvement of water binding (water holding capacity increased by 7.71%) and textural performance (strength increased from 29.12 to 37.55 N mm, an increase of 8.43 N mm). Meanwhile, konjac polysaccharides could help to form more disulfide bonds and non-disulfide covalent bonds, which enhanced the crosslinking of MP and maintained the MP gel network structure. Then, with the preservation of α-helix structure (a significant increase of 8.11%), slower protein aggregation and formation of small aggregates, this supported the formation of a fine and homogeneous network structure and allowed a reduction in water mobility. CONCLUSION During the heating process, konjac polysaccharides could absorb the surrounding water and fill the gel system, which resulted in an increase in the water content of the gel network and enhanced the gel-forming ability of the gel. Meanwhile, konjac polysaccharides might inhibit irregular aggregation of proteins and promote the formation of small aggregates, which in turn form a homogeneous and continuous gel matrix by orderly arrangement. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingyang Liu
- College of Life Science, Yangtze University, Jingzhou, China
| | - Kun Yang
- College of Life Science, Yangtze University, Jingzhou, China
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Di Wu
- College of Life Science, Yangtze University, Jingzhou, China
| | - Honghong Gong
- College of Life Science, Yangtze University, Jingzhou, China
| | - Linxiao Guo
- College of Marxism, Yangtze University, Jingzhou, China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, China
| |
Collapse
|
13
|
Zhang Y, Fu W, Liu D, Chen X, Zhou P. Deciphering the thick filaments assembly behavior of myosin as affected by enzymatic deamidation. Food Chem 2024; 433:137385. [PMID: 37696090 DOI: 10.1016/j.foodchem.2023.137385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Enzymatic deamidation is a promising approach in enhancing the solubility of myofibrillar proteins (MPs) in water paving the way of tailor manufacturing muscle protein-based beverages. This work aimed to clarify the solubilization mechanism by deciphering myosin thick filaments assembly as affected by protein-glutaminase deamidation. With the extension of deamidation, filamentous structures in MPs shortened continuously. Dynamic monitoring of quartz crystal microbalance-dissipated showed the adsorption capacity of the deaminated MPs was reduced from 3.66 ng/cm2 to 2.03 ng/cm2, indicating that the ability to assemble myosin thick filaments was significantly weakened. By simulating the surface charge, it was found that deamidation may neutralize the positive charged clusters distanced at 14-29 nm from rod C-terminus. Since this region confers myosin electrostatic property to initiate staggered dimerization, deamidation in this region, which severely affected the electrostatic balance between residues, impaired ordered thick filament growing and elongating, thus promoting the solubilization of MPs in water.
Collapse
Affiliation(s)
- Yanyun Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenyan Fu
- Wuxi Biologics Co., Ltd, Wuxi 214092, China
| | - Dongmei Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xing Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Peng Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
14
|
Liu G, Li Z, Li Z, Hao C, Liu Y. Molecular dynamics simulation and in vitro digestion to examine the impact of theaflavin on the digestibility and structural properties of myosin. Int J Biol Macromol 2023; 247:125836. [PMID: 37455005 DOI: 10.1016/j.ijbiomac.2023.125836] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
In this study, the interaction mechanism between theaflavin and myosin was explored to confirm the potential application of theaflavin in the meat protein system. A series of theaflavin and myosin solutions were prepared for spectroscopic studies. Spectroscopy results showed that theaflavins formed complexes with myosin and affected the microenvironment of myosin. And that addition of theaflavin cause static quenching of the myosin solution. Theaflavin and bovine myosin combined through hydrophobic interaction to form a complex, and gradually increasing the temperature was conducive to the binding of theaflavin and bovine myosin. This interaction results in a decrease in the α -helix content of myosin. Molecular dynamics simulation results confirmed that hydrophobic interactions and hydrogen bonds made the protein structure more compact and stable. And the in vitro digestion process was simulated. The results showed that the addition of theaflavin could significantly reduce the digestibility of myosin.
Collapse
Affiliation(s)
- Guanxu Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Zhixi Li
- College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Zekun Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Changchun Hao
- College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| |
Collapse
|
15
|
Zhang Y, Liu G, Xie Q, Wang Y, Yu J, Ma X. Physicochemical and structural changes of myofibrillar proteins in muscle foods during thawing: Occurrence, consequences, evidence, and implications. Compr Rev Food Sci Food Saf 2023; 22:3444-3477. [PMID: 37306543 DOI: 10.1111/1541-4337.13194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023]
Abstract
Myofibrillar protein (MP) endows muscle foods with texture and important functional properties, such as water-holding capacity (WHC) and emulsifying and gel-forming abilities. However, thawing deteriorates the physicochemical and structural properties of MPs, significantly affecting the WHC, texture, flavor, and nutritional value of muscle foods. Thawing-induced physicochemical and structural changes in MPs need further investigation and consideration in the scientific development of muscle foods. In this study, we reviewed the literature for the thawing effects on the physicochemical and structural characters of MPs to identify potential associations between MPs and the quality of muscle-based foods. Physicochemical and structural changes of MPs in muscle foods occur because of physical changes during thawing and microenvironmental changes, including heat transfer and phase transformation, moisture activation and migration, microbial activation, and alterations in pH and ionic strength. These changes are not only essential inducements for changes in spatial conformation, surface hydrophobicity, solubility, Ca2+ -ATPase activity, intermolecular interaction, gel properties, and emulsifying properties of MPs but also factors causing MP oxidation, characterized by thiols, carbonyl compounds, free amino groups, dityrosine content, cross-linking, and MP aggregates. Additionally, the WHC, texture, flavor, and nutritional value of muscle foods are closely related to MPs. This review encourages additional work to explore the potential of tempering techniques, as well as the synergistic effects of traditional and innovative thawing technologies, in reducing the oxidation and denaturation of MPs and maintaining the quality of muscle foods.
Collapse
Affiliation(s)
- Yuanlv Zhang
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qiwen Xie
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Yanyao Wang
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Jia Yu
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoju Ma
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
16
|
He X, Zhao H, Xu Y, Yi S, Li J, Li X. Synergistic effects of oat β-glucan combined with ultrasound treatment on gel properties of silver carp surimi. ULTRASONICS SONOCHEMISTRY 2023; 95:106406. [PMID: 37088028 PMCID: PMC10457573 DOI: 10.1016/j.ultsonch.2023.106406] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/26/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
The effect of oat β-glucan (OG) combined with ultrasound treatment on the gelation properties of silver carp surimi with different salt contents was investigated. The results demonstrated that the gelation properties of surimi gels at high salt concentration were superior than those at low salt level. The addition of OG or ultrasound treatment could significantly enhance the texture properties, gel strength and water holding capacity (WHC) of gel samples, regardless of salt contents. The ultrasound treatment improved the whiteness of surimi gels, whereas the OG addition slightly declined the whiteness. Both OG addition and ultrasound treatment markedly reduced the total sulfhydryl content (total SH) and strengthened the hydrophobic interactions, forming the more uniform and denser gel network structures, hence more water was captured in network structures and became immobilized. Moreover, the combined treatment of OG and ultrasound showed synergic action on the gelation properties of surimi, and the gel strength and WHC of low-salt surimi gel treated by the combination of OG and ultrasound were even superior than that of high-salt gel without OG by traditional heating.
Collapse
Affiliation(s)
- Xueli He
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China
| | - Honglei Zhao
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China
| | - Yongxia Xu
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China.
| | - Shumin Yi
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
17
|
Zhang M, Zhu S, Li Q, Xue D, Jiang S, Han Y, Li C. Effect of Thermal Processing on the Conformational and Digestive Properties of Myosin. Foods 2023; 12:foods12061249. [PMID: 36981174 PMCID: PMC10048447 DOI: 10.3390/foods12061249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Heat treatment affects the structural properties of meat proteins, which in turn leads to changes in their sensitivity to digestive enzymes, further affecting the nutritional value of meat and meat products. The mechanism of changes in the structure and digestive properties of myosin under different heating conditions were studied. An increase in heating temperature led to the exposure of internal groups to a polar environment, but to a decrease in the sturdy α-helix structure of myosin (p < 0.05). The results of tryptophan fluorescence verified that the tertiary structure of the protein seemed to be unfolded at 70 °C. Higher protein denaturation after overheating, as proven by the sulfhydryl contents and turbidity, caused irregular aggregate generation. The excessive heating mode of treatment at 100 °C for 30 min caused myosin to exhibit a lower degree of pepsin digestion, which increased the Michaelis constant (Km value) of pepsin during the digestion, but induced the production of new peptides with longer peptide sequences. This study elucidates the effects of cooking temperature on the conformation of myosin and the change in digestibility of pepsin treatment during heating.
Collapse
Affiliation(s)
- Miao Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- International Joint Collaborative Research Laboratory for Animal Health and Food Safety, Ministry of Education, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuran Zhu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dejiang Xue
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Jiang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Han
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
18
|
Zhu W, Guo H, Han M, Shan C, Bu Y, Li J, Li X. Evaluating the effects of nanoparticles combined ultrasonic-microwave thawing on water holding capacity, oxidation, and protein conformation in jumbo squid (Dosidicus gigas) mantles. Food Chem 2023; 402:134250. [DOI: 10.1016/j.foodchem.2022.134250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/14/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
|
19
|
Nuerjiang M, Li Y, Yue X, Kong B, Liu H, Wu K, Xia X. Analysis of inhibition of guava (Psidium guajava l.) leaf polyphenol on the protein oxidative aggregation of frozen chicken meatballs based on structural changes. Food Res Int 2023; 164:112433. [PMID: 36738000 DOI: 10.1016/j.foodres.2022.112433] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
This study compared the effects of guava leaf polyphenol (GLP) on the aggregation and structural changes of myofibrillar proteins (MPs) from chicken meatballs, frozen for 6 months, with that of tea polyphenol (TP). The high antioxidation ability of 450 mg/L GLP was manifested by changes in 1, 1-diphenyl-2-picrylhydrazyl (DDPH), 2, 2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, and the ferric reducing antioxidant power (FRAP) in vitro. Compared with the control, the carbonyl, disulfide bond content, particle size, zeta potential and turbidity of sample with GLP decreased by 25.9 %, 17.7 %, 18.2 %, 11.4 % and 11.7 %, respectively, while the solubility of the sample, after freezing it for 6 months, increased by 14.8 %. Meanwhile, in sustaining the structural stability of MPs, the GLP-treated group exhibited better microstructure (scanning electron microscopy, SEM), lower free amino and sulfhydryl loss, higher α-helix structure and fluorescence intensity than the control. Our results showed that GLP significantly inhibited MP aggregation, and was superior to TP in terms of its particle size, solubility, and turbidity, sulfhydryl content (P < 0.05). Overall, it was demonstrated that GLP has the potential to inhibit protein aggregation and enhance structural stability during frozen storage.
Collapse
Affiliation(s)
- Maheshati Nuerjiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaoxiang Yue
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Kairong Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
20
|
Hou Y, Ren X, Huang Y, Xie K, Wang K, Wang L, Wei F, Yang F. Effects of hydrodynamic cavitation on physicochemical structure and emulsifying properties of tilapia ( Oreochromis niloticus) myofibrillar protein. Front Nutr 2023; 10:1116100. [PMID: 36761226 PMCID: PMC9905136 DOI: 10.3389/fnut.2023.1116100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
The purpose of this research was to explore the different hydrodynamic cavitation (HC) times (0, 5, 10, 15, 20 min; power 550 W, pressure 0.14 MPa) on the emulsifying properties of tilapia myofibrillar protein (TMP). Results of pH, particle size, turbidity, solubility, surface hydrophobicity, and reactive sulfhydryl (SH) group indicated that HC changed the structure of TMP, as confirmed by the findings of intrinsic fluorescence and circular dichroism (CD) spectra. Furthermore, HC increased the emulsifying activity index (EAI) significantly (P < 0.05) and changed the emulsifying stability index (ESI), droplet size, and rheology of TMP emulsions. Notably, compared with control group, the 10-min HC significantly decreased particle size and turbidity but increased solubility (P < 0.05), resulting in accelerated diffusion of TMP in the emulsion. The prepared TMP emulsion showed the highest ESI (from 71.28 ± 5.50 to 91.73 ± 5.56 min), the smallest droplet size (from 2,754 ± 110 to 2,138 ± 182 nm) and the best rheological properties, as demonstrated by the microstructure photographs. Overall, by showing the effect of HC in improving the emulsifying properties of TMP, the study demonstrated HC as a potential technique for meat protein processing.
Collapse
Affiliation(s)
- Yucheng Hou
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Xian’e Ren
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China,Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou, China
| | - Yongchun Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China,Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou, China
| | - Kun Xie
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Keyao Wang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Liyang Wang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Fengyan Wei
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Feng Yang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China,Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou, China,*Correspondence: Feng Yang,
| |
Collapse
|
21
|
Chen J, Wu F, Wang H, Guo C, Zhang W, Luo P, Zhou J, Hao W, Yang G, Huang J. Identification of key taste components in Baccaurea ramiflora Lour. fruit using non-targeted metabolomics. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Application of ultrasound-assisted alkaline extraction for improving the solubility and emulsifying properties of pale, soft, and exudative (PSE)-like chicken breast meat protein isolate. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
23
|
Wu Y, Xiang X, Liu L, An F, Geng F, Huang Q, Wei S. Ultrasound-assisted succinylation comprehensively improved functional properties of egg white protein. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
You G, Niu G, Zhou X, Gao K, Liu X. Interactions of heat-induced myosin with hsian-tsao polysaccharide to affect the fishy odor adsorption capacity. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Quantitative proteomics provides a new perspective on the mechanism of network structure depolymerization during egg white thinning. Food Chem 2022; 392:133320. [DOI: 10.1016/j.foodchem.2022.133320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022]
|
26
|
Pei Z, Wang H, Xia G, Hu Y, Xue C, Lu S, Li C, Shen X. Emulsion gel stabilized by tilapia myofibrillar protein: Application in lipid-enhanced surimi preparation. Food Chem 2022; 403:134424. [DOI: 10.1016/j.foodchem.2022.134424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 10/14/2022]
|
27
|
Xu Y, Lv Y, Yin Y, Zhao H, Li X, Yi S, Li J. Improvement of the gel properties and flavor adsorption capacity of fish myosin upon yeast β-glucan incorporation. Food Chem 2022; 397:133766. [PMID: 35908465 DOI: 10.1016/j.foodchem.2022.133766] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022]
Abstract
The potential effects of yeast β-glucan (YG) on heat-induced gel properties, microstructure and flavor adsorption capacity of fish myosin at different NaCl concentrations were investigated in this study. The incorporation of YG significantly improved the texture properties, gel strength, water holding capacity (WHC), storage modulus and loss modulus of myosin gels, especially at a high salt level, whereas the whiteness declined. Furthermore, myosin gels containing YG displayed a more compact and ordered three-dimensional network structure, accompanied by the increasing immobilization of water in gels. The binding abilities of gels to selected flavor compounds at high salt content were inferior to those at the low salt content. Regardless of the salt level, YG addition boosted the flavor binding capacity of gels, which might be attributed to the unfolding of the protein conformation by exposing more flavor-binding sites, as well as the porous sponge structure of YG with unique adsorption capacity.
Collapse
Affiliation(s)
- Yongxia Xu
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Yanan Lv
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Yiming Yin
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Honglei Zhao
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China.
| | - Shumin Yi
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China.
| |
Collapse
|
28
|
Su C, He Z, Wang Z, Zhang D, Li H. The Structural Rearrangement and Depolymerization Induced by
High‐Pressure
Homogenization Inhibit the Thermal Aggregation of Myofibrillar Protein. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chang Su
- College of Food Science Southwest University, No.2 Tiansheng Road, Beibei District Chongqing 400715 China
| | - Zhifei He
- College of Food Science Southwest University, No.2 Tiansheng Road, Beibei District Chongqing 400715 China
- Chongqing Engineering Research Center of Regional Food, No.2 Tiansheng Road, Beibei District Chongqing 400715 China
- Chongqing Key Laboratory of Speciality Food Co‐Built by Sichuan and Chongqing, No.2 Tiansheng Road, Beibei District Chongqing 400715 China
| | - Zefu Wang
- College of Food Science and Technology, Guangdong Ocean University, No. 1, Haida Road, Mazhang District Zhanjiang 524088 China
| | - Dong Zhang
- School of Food and Biological Engineering Xihua University, No.999 Jinzhou Road, Jinniu District Chengdu 610039 China
| | - Hongjun Li
- College of Food Science Southwest University, No.2 Tiansheng Road, Beibei District Chongqing 400715 China
- Chongqing Engineering Research Center of Regional Food, No.2 Tiansheng Road, Beibei District Chongqing 400715 China
- Chongqing Key Laboratory of Speciality Food Co‐Built by Sichuan and Chongqing, No.2 Tiansheng Road, Beibei District Chongqing 400715 China
| |
Collapse
|
29
|
Lv Y, Liang Q, Li Y, Zhang D, Yi S, Li X, Li J. Study on the interactions between the screened polyphenols and Penaeus vannamei myosin after freezing treatment. Int J Biol Macromol 2022; 217:701-713. [PMID: 35843403 DOI: 10.1016/j.ijbiomac.2022.07.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/16/2022] [Accepted: 07/11/2022] [Indexed: 11/19/2022]
Abstract
The denaturation of proteins (particularly myosin) due to freezing can lead to the deterioration of Penaeus vannamei. The purpose of this study was to verify the antifreeze protective effects of polyphenols screened by a molecular docking technique, and to explore their interactions with myosin after freezing treatment. It was found that the screened polyphenols could significantly increase the freezing rate and unfreezable water content of shrimp paste. The results of fluorescence spectra indicated that the hesperetin to myosin quenching process included both dynamic and static quenching, and it was primarily bound to myosin through hydrophobic interactions; The quenching of myosin by both dihydroquercetin and mangiferin was static quenching, and they were bound to myosin mainly by hydrogen bonds and van der Waals forces; All three of these polyphenols had only one binding site on myosin. Surface hydrophobicity indicated that all four polyphenols were engaged in non-covalent binding (hydrophobic interactions) with myosin. Infrared spectra demonstrated that the addition of these four polyphenols significantly increased the α-helix content of myosin. They also reduced the myosin particle size, zeta potential, and protein degeneration degree. Scanning electron microscopy revealed that the four polyphenols reduced the degree of aggregation, while more uniformly distributing the myosin particles. These observations provide a basis for the screening of polyphenols and further research into the protective mechanism of polyphenols on frozen myosin.
Collapse
Affiliation(s)
- Yanfang Lv
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Qianqian Liang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Ying Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Defu Zhang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Shumin Yi
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
| |
Collapse
|
30
|
Ren Z, Cui Y, Wang Y, Shi L, Yang S, Hao G, Qiu X, Wu Y, Zhao Y, Weng W. Effect of ionic strength on the structural properties and emulsion characteristics of myofibrillar proteins from hairtail (Trichiurus haumela). Food Res Int 2022; 157:111248. [DOI: 10.1016/j.foodres.2022.111248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 01/20/2023]
|
31
|
Wang K, Li Y, Zhang Y, Luo X, Sun J. Improving myofibrillar proteins solubility and thermostability in low-ionic strength solution: A review. Meat Sci 2022; 189:108822. [PMID: 35413661 DOI: 10.1016/j.meatsci.2022.108822] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 11/19/2022]
Abstract
The development of myofibrillar proteins drinks (MPDs) can provide meat protein nutrition to specific groups of people. However, one major challenge is that myofibrillar proteins (MPs) are insoluble in solutions with a low ionic strength. Another functional constraint is the susceptibility of MPs to heat-induced aggregation. Currently, the primary approach used to improve the water solubility of MPs is to inhibit the assembly of myofilaments. Increasing the thermostability of MPs primarily inhibits the aggregation of myosin or oxidizes myosin to soluble substances. This review focuses on the description of several chemical and physical strategies, with an emphasis on the advantages, disadvantages, and recent progress. Under the myosin filament assembly process and the cross-linking aggregation mechanism, this summary helps improve our understanding of the solution and thermostability of MPs in low-ionic-strength solutions, thus providing new ideas to the development of MPDs.
Collapse
Affiliation(s)
- Ke Wang
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China; College of Food Science & Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Li
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yimin Zhang
- College of Food Science & Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Xin Luo
- College of Food Science & Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jingxin Sun
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
32
|
de Albuquerque Sousa TC, Ferreira VCDS, da Silva Araújo ÍB, da Silva FAP. Natural Additives as Quality Promoters in Surimi: a Brief Review. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2092434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Thamyres César de Albuquerque Sousa
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| | - Valquiria Cardoso da Silva Ferreira
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| | - Íris Braz da Silva Araújo
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| | - Fábio Anderson Pereira da Silva
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| |
Collapse
|
33
|
Wang H, Pei Z, Xue C, Cao J, Shen X, Li C. Comparative Study on the Characterization of Myofibrillar Proteins from Tilapia, Golden Pompano and Skipjack Tuna. Foods 2022; 11:foods11121705. [PMID: 35741902 PMCID: PMC9222683 DOI: 10.3390/foods11121705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, the physicochemical properties, functional properties and N-glycoproteome of tilapia myofibrillar protein (TMP), golden pompano myofibrillar protein (GPMP) and skipjack tuna myofibrillar protein (STMP) were assessed. The microstructures and protein compositions of the three MPs were similar. TMP and GPMP had higher solubility, sulfhydryl content and endogenous fluorescence intensity, lower surface hydrophobicity and β-sheet contents than STMP. The results showed that the protein structures of TMP and GPMP were more folded and stable. Due to its low solubility and high surface hydrophobicity, STMP had low emulsifying activity and high foaming activity. By N-glycoproteomics analysis, 23, 85 and 22 glycoproteins that contained 28, 129 and 35 N-glycosylation sites, were identified in TMP, GPMP and STMP, respectively. GPMP had more N-glycoproteins and N-glycosylation sites than STMP, which was possibly the reason for GPMP’s higher solubility and EAI. These results provide useful information for the effective utilization of various fish products.
Collapse
Affiliation(s)
- Huibo Wang
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.W.); (Z.P.); (J.C.); (X.S.)
| | - Zhisheng Pei
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.W.); (Z.P.); (J.C.); (X.S.)
- School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya 572022, China;
| | - Changfeng Xue
- School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya 572022, China;
| | - Jun Cao
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.W.); (Z.P.); (J.C.); (X.S.)
| | - Xuanri Shen
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.W.); (Z.P.); (J.C.); (X.S.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Constructin for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Chuan Li
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.W.); (Z.P.); (J.C.); (X.S.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Constructin for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: ; Tel./Fax: +86-0898-66256495
| |
Collapse
|
34
|
Effects of hydrodynamic cavitation at different pH values on the physicochemical properties and aggregation behavior of soybean glycinin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Bao P, Chen L, Hu Y, Wang Y, Zhou C. l-Arginine and l-lysine retard aggregation and polar residue modifications of myofibrillar proteins: Their roles in solubility of myofibrillar proteins in frozen porcine Longissimus lumborum. Food Chem 2022; 393:133347. [PMID: 35661602 DOI: 10.1016/j.foodchem.2022.133347] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/25/2022] [Accepted: 05/28/2022] [Indexed: 11/04/2022]
Abstract
This study investigated the ability of l-arginine and l-lysine to inhibit the adverse effects of freezing on the structure and solubility of myofibrillar proteins extract (MPE) in porcine Longissimus lumborum. The results showed that freezing decreased solubility of MPE, band densities of actin and myosin heavy and light chains, fluorescence intensity, and contents of free amino group and total sulfhydryls, but increased content of carbonyl groups and absolute zeta-potential of MPE. l-Arginine and l-lysine effectively alleviated the adverse effects of freezing. l-Arginine and l-lysine significantly increased β-sheet content, Tmax1 and ΔH1, but decreased α-helix content and disulfide bond content in MPE. Additionally, the SDS-PAGE analysis showed that l-arginine and l-lysine could prevent appearance of bands at about 150 kDa. Overall, this study shows that both l-arginine and l-lysine could not only abate the aggregation and disruption of MPs, but also reduce the oxidation of their polar amino groups, which ultimately contribute to their superior solubility. The results may be interesting in meat industry.
Collapse
Affiliation(s)
- Pengqi Bao
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Li Chen
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yue Hu
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yan Wang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Cunliu Zhou
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
36
|
Molecular dynamics simulation of the interactions between sesamol and myosin combined with spectroscopy and molecular docking studies. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Chen X, Chen K, Cheng H, Liang L. Soluble Aggregates of Myofibrillar Proteins Engineered by Gallic Acid: Colloidal Structure and Resistance to In Vitro Gastric Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4066-4075. [PMID: 35285231 DOI: 10.1021/acs.jafc.1c05840] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Myofibrillar protein (MP)-soluble aggregates can be made by tactics of gallic acid (GA) modification during pH shifting, and this work aimed to disclose their aggregation pattern and in vitro digestion behavior. GA modification dissociated the filamentous structure of myofibrils and caused structural reassembly to form small-sized aggregates. These aggregates were evidenced to contain GA-bridged dimers and oligomers of myosin or actin, having a molecular weight of ∼1225 kDa. Additionally, the structural rearrangement significantly decreased the surface hydrophobicity while substantially increased the surface charge. As a result, the obtained colloidal solution was translucent and heat-resistant. Intriguingly, MP-soluble aggregates exhibited a retarded digestive behavior. Further evaluation by a quartz crystal microbalance suggested that the reduced binding affinity of soluble aggregates toward gastric pepsin could be the underlying reason. This work may foster the engineering advances of modulating the MP structure-digestion for the tailor manufacturing of muscle protein-based beverages.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Kaiwen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
38
|
Lv X, Huang X, Ma B, Chen Y, Batool Z, Fu X, Jin Y. Modification methods and applications of egg protein gel properties: A review. Compr Rev Food Sci Food Saf 2022; 21:2233-2252. [PMID: 35293118 DOI: 10.1111/1541-4337.12907] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/24/2021] [Accepted: 12/22/2021] [Indexed: 01/11/2023]
Abstract
Egg protein (EP) has a variety of functional properties, such as gelling, foaming, and emulsifying. The gel characteristics provide a foundation for applications in the food industry and research on EP. The proteins denature and aggregate to form a dense three-dimensional gel network structure, with a process influenced by protein concentration, pH, ion type, and strength. In addition, the gelation properties of EP can be altered to varying degrees by applying different treatment conditions to EP. Currently, modification methods for proteins include physical modification (heat-induced denaturation, freeze-thaw modification, high-pressure modification, and ultrasonic modification), chemical modification (glycosylation modification, phosphorylation modification, acylation modification, ethanol modification, polyphenol modification), and biological modification (enzyme modification). Pidan, salted eggs, egg tofu, and other egg products have unique sensory properties, due to the gel properties of EP. In accessions, EP has also been used as a new ingredient in food packaging and biopharmaceuticals due to its gel properties. This review will further promote EP gel research and provide guidance for its full application in many fields.
Collapse
Affiliation(s)
- Xiaohui Lv
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xi Huang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Bin Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yue Chen
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zahra Batool
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xing Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
39
|
Hu J, Feng C, Yu Z, Zhu Y. Effect of partial substitution of NaCl by KCl, CaCl
2
, and MgCl
2
on properties of mixed gelation from myofibrillar protein and
Flammulina velutipes
protein. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Jingrong Hu
- College of Food Science and Engineering Shanxi Agricultural University Taigu 030801 China
| | - Cuiping Feng
- College of Food Science and Engineering Shanxi Agricultural University Taigu 030801 China
| | - Zhihui Yu
- College of Food Science and Engineering Shanxi Agricultural University Taigu 030801 China
| | - Yingchun Zhu
- College of Food Science and Engineering Shanxi Agricultural University Taigu 030801 China
| |
Collapse
|
40
|
Niu F, Yu J, Fan J, Zhang B, Ritzoulis C, Pan W. The role of glycerol on the thermal gelation of myofibrillar protein from giant squid (Dosidicus gigas) mince. Food Chem 2022; 371:131149. [PMID: 34583173 DOI: 10.1016/j.foodchem.2021.131149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
This work studies the effect of glycerol on the chemical physics of the thermal gelatin of protein from giant squid minced meat. The presence of glycerol induced changes in the nano protein particles (NPP) self-assembled structures. These nanoscale events resulted in dramatic changes on the interactions between proteins when forming gels, with the contribution of ionic interactions increasing by 17% upon gelation, that of hydrogen bonds reducing by 50%, that of hydrophobic interactions decreasing by 45%, and that of disulphide bonding increasing by 18%. Glycerol also induced cluster formation in myofibrillar solutions. As a result, incorporation of glycerol increased springiness, resilience, and adhesiveness of the formed gels by 13%, 25%, and 370% respectively. The heating gelation of myofibrillar proteins was monitored at various temperatures via recording the elastic and storage moduli. Rheology and micro-rheology studies revealed that the presence of glycerol increased G' and G″ of thermally-gelled giant squid meat.
Collapse
Affiliation(s)
- Fuge Niu
- The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jiao Yu
- The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jiamei Fan
- The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Bo Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Christos Ritzoulis
- The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Department of Food Science and Technology, International Hellenic University, 57400 Thessaloniki, Greece
| | - Weichun Pan
- The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
41
|
Khalid W, Arshad MS, Aslam N, Majid Noor M, Siddeeg A, Abdul Rahim M, Zubair Khalid M, Ali A, Maqbool Z. Meat myofibril: Chemical composition, sources and its potential for cardiac layers and strong skeleton muscle. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2044847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | | | - Noman Aslam
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Muhammad Majid Noor
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Azhari Siddeeg
- Department of Food Engineering and Technology, Faculty of Engineering and Technology, University of Gezira, Wad Medani, Sudan
| | | | | | - Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, HN, China
| | - Zahra Maqbool
- Department of Food Science, Government College University, Faisalabad, Pakistan
| |
Collapse
|
42
|
Fu W, Chen X, Cheng H, Liang L. Tailoring protein intrinsic charge by enzymatic deamidation for solubilizing chicken breast myofibrillar protein in water. Food Chem 2022; 385:132512. [PMID: 35299018 DOI: 10.1016/j.foodchem.2022.132512] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/01/2022] [Accepted: 02/16/2022] [Indexed: 01/26/2023]
Abstract
Inspired by the salt-in effect, the potential use of protein-glutaminase (PG) to increase the intrinsic charges of chicken breast myofibrillar proteins (CMPs) for enhanced water solubility was tested. The degree of deamidation (DD) and solubility of CMPs increased with PG reaction time. Over 60% of CMPs were soluble in water under a DD of 6.5% due to specific conversion of glutamine to glutamic acid. PG deamidation could remarkably increase the net charge of CMPs with a merit in maintaining most of the amino acid and protein subunit compositions. Such a high electrostatic repulsion exerted a transformation of β-sheet into α-helix, unfolded the structure to expose hydrophobic residues, and allowed the dissociation of myofibril and release of subunits (myosin, actin or their oligomers), leading to a stable colloidal state. This work may foster the engineering advances of protein micro-modification in the tailor manufacture of muscle protein-based beverages.
Collapse
Affiliation(s)
- Wenyan Fu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Hao Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
43
|
Wang Q, Pan MH, Chiou YS, Li Z, Ding B. Surface characteristics and emulsifying properties of whey protein/nanoliposome complexes. Food Chem 2022; 384:132510. [PMID: 35217464 DOI: 10.1016/j.foodchem.2022.132510] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/23/2021] [Accepted: 02/16/2022] [Indexed: 11/04/2022]
Abstract
The surface characteristics and emulsifying properties of whey proteins (WP) after complexation with nanoliposomes (NL) were investigated. WP surface hydrophobicity enhanced after complexation with NL, and it indicated the exposure increase of WP hydrophobic groups. WPNL interfacial tension significantly decreased compared with that of WP. The interfacial protein content of WPNL-stabilized emulsions was slightly different from that of WP-stabilized emulsions. WP emulsifying properties were significantly improved after complexation with NL. The mean sizes and polydispersity indexes of WPNL-stabilized emulsion droplets were smaller than those of WP-stabilized emulsion droplets. The absolute zeta-potential values of WPNL-stabilized emulsions were greater than those of WP-stabilized emulsions. Electrostatic repulsion played a vital role in WPNL-stabilized emulsion stability. Moreover, surface and emulsifying properties of WPNL were changed by exterior factor-induced alteration of protein advanced structures. The emulsifying properties of WP after complexation with NL were improved due to the modification of WP surface characteristics.
Collapse
Affiliation(s)
- Qian Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Yi-Shiou Chiou
- College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan, ROC
| | - Zhenshun Li
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Baomiao Ding
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, PR China; Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan, ROC.
| |
Collapse
|
44
|
Shen X, Li T, Li X, Wang F, Liu Y, Wu J. Dual cryoprotective and antioxidant effects of silver carp (Hypophthalmichthys molitrix) protein hydrolysates on unwashed surimi stored at conventional and ultra-low frozen temperatures. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112563] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Mechanism of effect of heating temperature on functional characteristics of thick egg white. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Wang X, Cheng L, Wang H, Yang Z. Limited Alcalase hydrolysis improves the thermally-induced gelation of quinoa protein isolate (QPI) dispersions. Curr Res Food Sci 2022; 5:2061-2069. [DOI: 10.1016/j.crfs.2022.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
|
47
|
Gao Y, Zheng J, Liu S, Shi L, Shao J. Effects of lipids on the properties of emulsified interfacial film of myofibrillar protein by Raman spectroscopy. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yang Gao
- College of Food Science Shenyang Agricultural University Shenyang PR China
| | - Jinyue Zheng
- College of Food Science Shenyang Agricultural University Shenyang PR China
| | - Sinong Liu
- College of Food Science Shenyang Agricultural University Shenyang PR China
| | - Lishuang Shi
- College of Food Science Shenyang Agricultural University Shenyang PR China
| | - Jun‐Hua Shao
- College of Food Science Shenyang Agricultural University Shenyang PR China
| |
Collapse
|
48
|
Pan N, Wan W, Du X, Kong B, Liu Q, Lv H, Xia X, Li F. Mechanisms of Change in Emulsifying Capacity Induced by Protein Denaturation and Aggregation in Quick-Frozen Pork Patties with Different Fat Levels and Freeze-Thaw Cycles. Foods 2021; 11:44. [PMID: 35010168 PMCID: PMC8750440 DOI: 10.3390/foods11010044] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/27/2021] [Accepted: 12/09/2021] [Indexed: 01/16/2023] Open
Abstract
Herein, we discuss changes in the emulsifying properties of myofibrillar protein (MP) because of protein denaturation and aggregation from quick-frozen pork patties with multiple fat levels and freeze-thaw (F-T) cycles. Protein denaturation and aggregation were confirmed by the significantly increased surface hydrophobicity, turbidity, and particle size, as well as the significantly decreased solubility and absolute zeta potential, of MPs with increases in fat levels and F-T cycles (p < 0.05). After multiple F-T cycles, the emulsifying activity and emulsion stability indices of all samples were significantly reduced (p < 0.05). The emulsion droplets of MP increased in size, and their distributions were dense and irregular. The results demonstrated that protein denaturation and aggregation due to multiple F-T cycles and fat levels changed the distribution of surface chemical groups and particle sizes of protein, thus affecting the emulsifying properties.
Collapse
Affiliation(s)
- Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (N.P.); (W.W.); (X.D.); (B.K.); (Q.L.)
| | - Wei Wan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (N.P.); (W.W.); (X.D.); (B.K.); (Q.L.)
| | - Xin Du
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (N.P.); (W.W.); (X.D.); (B.K.); (Q.L.)
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (N.P.); (W.W.); (X.D.); (B.K.); (Q.L.)
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (N.P.); (W.W.); (X.D.); (B.K.); (Q.L.)
| | - Hong Lv
- Department of Food and Pharmaceuticals, Harbin Light Industry School, Harbin 150076, China;
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (N.P.); (W.W.); (X.D.); (B.K.); (Q.L.)
| | - Fangfei Li
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
49
|
Peptidomic analysis of digested products of surimi gels with different degrees of cross-linking: In vitro gastrointestinal digestion and absorption. Food Chem 2021; 375:131913. [PMID: 34959144 DOI: 10.1016/j.foodchem.2021.131913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/03/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022]
Abstract
To investigate the cross-linking degree on the in vitro gastrointestinal digestion and absorption properties of surimi gel, three types of surimi gels with low, moderate, and high cross-linking degrees were prepared, and then in vitro digestion models (static and dynamic) and a Caco-2 cell monolayer model combined with LC-MS/MS were used to do peptidomic analysis of digestive and absorbed juices. The results showed that an increase in cross-linking degree promoted the release of peptides after gastrointestinal digestion. These peptides originated from the myosin head and rod, the rod was the main digestion region. More potential bioactive peptides from intestinal digestive juice could be transported through the intestinal epithelium. Compared with static digestion, dynamic digestion digested surimi gels more thoroughly, especially during gastric digestion. This study provides a theoretical basis and guidance for the production of surimi products with higher nutritional value and the in vitro digestion methods of gelatinous foods.
Collapse
|
50
|
Water-holding capacity of enzymatic protein hydrolysates: A study on the synergistic effects of peptide fractions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|