1
|
Roca M, Pérez-Gálvez A. Application of EFSA EU menu database and R computing language to calculate the green chlorophyll intake in the European population. Food Chem 2024; 461:140912. [PMID: 39181052 DOI: 10.1016/j.foodchem.2024.140912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
The growing evidence of the health benefits of chlorophyll pigments and the claims that could arise from industry and academia require data on their common dietary intakes. This study presents data on the chronic intake of green chlorophyll in 23 European countries using standardised methodologies to manage food consumption data within the EU Menu methodology. A mean intake of 207.12 mg of green chlorophylls/(d × person) for the adult population was calculated, considering significant covariates. The hierarchical cluster and partial least squares discriminant analysis (PLS-DA) techniques were applied to analyse intake disparities by region and age groups, identifying common food sources of green chlorophylls, such as olive oil, kale, and spinach. This paper presents a modern mathematical approach for obtaining novel information from existing databases of food composition data. Future challenges include building a comprehensive chlorophyll composition database for foods and extending the estimation to non-green chlorophyll pigments and metallo-chlorophyll food colourants.
Collapse
Affiliation(s)
- María Roca
- Group of Chemistry and Biochemistry of Pigments, Food Phytochemistry Department, Instituto de la Grasa (CSIC), Campus Universitario, Building 46, 41013, Sevilla, Spain
| | - Antonio Pérez-Gálvez
- Group of Chemistry and Biochemistry of Pigments, Food Phytochemistry Department, Instituto de la Grasa (CSIC), Campus Universitario, Building 46, 41013, Sevilla, Spain.
| |
Collapse
|
2
|
Feye KM, Rasmussen MA, Yeater KM, Anderson RC, Crippen TL, Harvey RB, Poole TL, Ricke SC. Chlorophyllin Supplementation of Medicated or Unmedicated Swine Diets Impact on Fecal Escherichia coli and Enterococci. Animals (Basel) 2024; 14:1955. [PMID: 38998066 PMCID: PMC11240447 DOI: 10.3390/ani14131955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Considering that certain catabolic products of anaerobic chlorophyll degradation inhibit efflux pump activity, this study was conducted to test if feeding pigs a water-soluble chlorophyllin product could affect the antibiotic resistance profiles of select wild-type populations of fecal bacteria. Trial 1 evaluated the effects of chlorophyllin supplementation (300 mg/meal) on fecal E. coli and enterococcal populations in pigs fed twice daily diets supplemented without or with ASP 250 (containing chlortetracycline, sulfamethazine and penicillin at 100, 100 and 50 g/ton, respectively). Trial 2, conducted similarly, evaluated chlorophyllin supplementation in pigs fed diets supplemented with or without 100 g tylosin/ton. Each trial lasted 12 days, and fecal samples were collected and selectively cultured at 4-day intervals to enumerate the total numbers of E. coli and enterococci as well as populations of these bacteria phenotypically capable of growing in the presence of the fed antibiotics. Performance results from both studies revealed no adverse effect (p > 0.05) of chlorophyllin, antibiotic or their combined supplementation on average daily feed intake or average daily gain, although the daily fed intake tended to be lower (p = 0.053) for pigs fed diets supplemented with tylosin than those fed diets without tylosin. The results from trial 1 showed that the ASP 250-medicated diets, whether without or with chlorophyllin supplementation, supported higher (p < 0.05) fecal E. coli populations than the non-medicated diets. Enterococcal populations, however, were lower, albeit marginally and not necessarily significantly, in feces from pigs fed the ASP 250-medicated diet than those fed the non-medicated diet. Results from trial 2 likewise revealed an increase (p < 0.05) in E. coli and, to a lesser extent, enterococcal populations in feces collected from pigs fed the tylosin-medicated diet compared with those fed the non-medicated diet. Evidence indicated that the E. coli and enterococcal populations in trial 1 were generally insensitive to penicillin or chlortetracycline, as there were no differences between populations recovered without or with antibiotic selection. Conversely, a treatment x day of treatment interaction observed in trial 2 (p < 0.05) provided evidence, albeit slight, of an enrichment of tylosin-insensitive enterococci in feces from the pigs fed the tylosin-medicated but not the non-medicated diet. Under the conditions of the present study, it is unlikely that chlorophyllin-derived efflux pump inhibitors potentially present in the chlorophyllin-fed pigs were able to enhance the efficacy of the available antibiotics. However, further research specifically designed to optimize chlorophyll administration could potentially lead to practical applications for the swine industry.
Collapse
Affiliation(s)
- Kristina M. Feye
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Mark A. Rasmussen
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA;
| | - Kathleen M. Yeater
- United States Department of Agriculture/Agricultural Research Service, Plains Area Office of the Director, Fort Collins, CO 80521, USA;
| | - Robin C. Anderson
- Southern Plains Agricultural Research Center, United States Department of Agriculture/Agricultural Research Service, College Station, TX 77845, USA; (R.C.A.); (T.L.C.); (R.B.H.); (T.L.P.)
| | - Tawni L. Crippen
- Southern Plains Agricultural Research Center, United States Department of Agriculture/Agricultural Research Service, College Station, TX 77845, USA; (R.C.A.); (T.L.C.); (R.B.H.); (T.L.P.)
| | - Roger B. Harvey
- Southern Plains Agricultural Research Center, United States Department of Agriculture/Agricultural Research Service, College Station, TX 77845, USA; (R.C.A.); (T.L.C.); (R.B.H.); (T.L.P.)
| | - Toni L. Poole
- Southern Plains Agricultural Research Center, United States Department of Agriculture/Agricultural Research Service, College Station, TX 77845, USA; (R.C.A.); (T.L.C.); (R.B.H.); (T.L.P.)
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
3
|
Herrera M, Viera I, Roca M. Study of the authentic composition of the novel green foods: Food colorants and coloring foods. Food Res Int 2023; 170:112974. [PMID: 37316058 DOI: 10.1016/j.foodres.2023.112974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023]
Abstract
The clean label approach is behind the development of the new concept, coloring food, in contrast to regulated food colorants, although few data are available regarding its composition. Consequently, twenty-six commercial green foods (including novel foods) have been analyzed to investigate the authentic composition behind the different labels. It has been identified by HPLC-ESI/APCI-hrTOF-MS2 the complete array of chlorophylls in the regulated green food colorants, several of them identified for the first time in foods. The coloring food alternative is based on mixing blue (such as spirulina) and yellow (such as safflower) hues. Our data suggest that in the analyzed samples, spirulina is water or solvent extracted before being added to the food. The obtained results showed for the first time, the authentic data on the chemical composition of the new green foods.
Collapse
Affiliation(s)
- Marta Herrera
- Food Phytochemistry Department, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), University Campus, Building 46, Carretera de Utrera km. 1, Sevilla 41013, Spain.
| | - Isabel Viera
- Food Phytochemistry Department, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), University Campus, Building 46, Carretera de Utrera km. 1, Sevilla 41013, Spain.
| | - María Roca
- Food Phytochemistry Department, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), University Campus, Building 46, Carretera de Utrera km. 1, Sevilla 41013, Spain.
| |
Collapse
|
4
|
Mandal BK, Ling YC. Analysis of Chlorophylls/Chlorophyllins in Food Products Using HPLC and HPLC-MS Methods. Molecules 2023; 28:molecules28104012. [PMID: 37241753 DOI: 10.3390/molecules28104012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Of the different quality parameters of any food commodity or beverage, color is the most important, attractive and choice-affecting sensory factor to consumers and customers. Nowadays, food industries are interested in making the appearance of their food products attractive and interesting in order to appeal to consumers/customers. Natural green colorants have been accepted universally due to their natural appeal as well as their nontoxic nature to consumers. In addition, several food safety issues mean that natural green colorants are preferable to synthetic food colorants, which are mostly unsafe to the consumers but are less costly, more stable, and create more attractive color hues in food processing. Natural colorants are prone to degradation into numerous fragments during food processing, and thereafter, in storage. Although different hyphenated techniques (especially high-performance liquid chromatography (HPLC), LC-MS/HRMS, and LC/MS-MS are extensively used to characterize all these degradants and fragments, some of them are not responsive to any of these techniques, and some substituents in the tetrapyrrole skeleton are insensitive to these characterization tools. Such circumstances warrant an alternative tool to characterize them accurately for risk assessment and legislation purposes. This review summarizes the different degradants of chlorophylls and chlorophyllins under different conditions, their separation and identification using various hyphenated techniques, national legislation regarding them, and the challenges involved in their analysis. Finally, this review proposes that a non-targeted analysis method that combines HPLC and HR-MS assisted by powerful software tools and a large database could be an effective tool to analyze all possible chlorophyll and chlorophyllin-based colorants and degradants in food products in the future.
Collapse
Affiliation(s)
- Badal Kumar Mandal
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India
| | - Yong-Chien Ling
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
5
|
Li Y, Agarry IE, Ding D, Zalán Z, Huang P, Cai T, Chen K. Screening of dephytinization reaction of chlorophyll pigments with citrus acetone powder by UPLC-DAD-MS. J Food Sci 2023; 88:147-160. [PMID: 36517982 DOI: 10.1111/1750-3841.16411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/19/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
The preparation of dephytylated chlorophyll standards is inefficient and the process is complicated, which hinders chlorophyll determination and related bioactive property investigation. In this paper, chlorophyll derivatives from four phytylated chlorophylls (chlorophyll a, chlorophyll b, pheophytin a, and pheophytin b) before and after the enzymatic reaction were qualitatively and quantitatively characterized by UPLC-DAD-MS. A simple index was proposed to characterize chlorophyll pigments from their oxidized counterparts by the λmax of the typical peak of chlorophyll derivatives in UV-visible spectrum and their signal intensity ratios. The optimal reaction conditions for the enzymatic reaction of four chlorophyll pigments were optimized, and kinetic models were fitted. The results showed that the optimal temperatures for the enzymatic reactions of chlorophyll a, chlorophyll b, pheophytin a, and pheophytin b were 30, 30, 60, and 60°C, respectively, and their optimal reaction time was 2, 3, 1, and 3 h, respectively. Kinetic models were fitted under optimal reaction conditions to study the Km and Vm values of the enzymatic reactions. PRACTICAL APPLICATION: Dephytylated chlorophylls, such as chlorophyllide and pheophorbide, are frequently determined in food industry and are always required to be prepared in lab with acetone powder from plant tissue. Moreover, chlorophyll pigments are easy to undergo oxidations, which make the characterization of dephytylated chlorophyll pigments more complicated and difficult. In this paper, four types of phytylated chlorophylls were investigated respectively about the dephytinization process with the citrus acetone powder, and the reaction mixture was analyzed with UPLC-DAD-MS, which can provide an important reference for relevant chlorophyll determination studies and the development of chlorophyll identification protocols.
Collapse
Affiliation(s)
- Yunchang Li
- College of Food Science, Southwest University, Chongqing, P. R. China.,Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, P. R. China.,Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing, P. R. China
| | - Israel Emiezi Agarry
- College of Food Science, Southwest University, Chongqing, P. R. China.,Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, P. R. China.,Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing, P. R. China
| | - Desheng Ding
- College of Food Science, Southwest University, Chongqing, P. R. China.,Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, P. R. China.,Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing, P. R. China
| | - Zsolt Zalán
- Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, Gödöllő, Hungary
| | - Pimiao Huang
- College of Food Science, Southwest University, Chongqing, P. R. China.,Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, P. R. China.,Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing, P. R. China
| | - Tian Cai
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, P. R. China
| | - Kewei Chen
- College of Food Science, Southwest University, Chongqing, P. R. China.,Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, P. R. China.,Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing, P. R. China
| |
Collapse
|
6
|
Abstract
Chlorophylls provide the basis for photosynthesis and thereby most life on Earth. Besides their involvement in primary charge separation in the reaction center, they serve as light-harvesting and light-sensing pigments, they also have additional functions, e.g., in inter-system electron transfer. Chlorophylls also have a wealth of applications in basic science, medicine, as colorants and, possibly, in optoelectronics. Considering that there has been more than 200 years of chlorophyll research, one would think that all has been said on these pigments. However, the opposite is true: ongoing research evidenced in this Special Issue brings together current work on chlorophylls and on their carotenoid counterparts. These introductory notes give a very brief and in part personal account of the history of chlorophyll research and applications, before concluding with a snapshot of this year's publications.
Collapse
Affiliation(s)
- Hugo Scheer
- Bereich Systematik, Biodiversität und Evolution der Pflanzen, Universität München, Menzinger Str. 67, 80638 München, Germany
| |
Collapse
|
7
|
Varvara RA, Szabo K, Vodnar DC. 3D Food Printing: Principles of Obtaining Digitally-Designed Nourishment. Nutrients 2021; 13:3617. [PMID: 34684618 PMCID: PMC8541666 DOI: 10.3390/nu13103617] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Three-dimensional printing (3DP) technology gained significance in the fields of medicine, engineering, the food industry, and molecular gastronomy. 3D food printing (3DFP) has the main objective of tailored food manufacturing, both in terms of sensory properties and nutritional content. Additionally, global challenges like food-waste reduction could be addressed through this technology by improving process parameters and by sustainable use of ingredients, including the incorporation of recovered nutrients from agro-industrial by-products in printed nourishment. The aim of the present review is to highlight the implementation of 3DFP in personalized nutrition, considering the technology applied, the texture and structure of the final product, and the integrated constituents like binding/coloring agents and fortifying ingredients, in order to reach general acceptance of the consumer. Personalized 3DFP refers to special dietary necessities and can be promising to prevent different non-communicable diseases through improved functional food products, containing bioactive compounds like proteins, antioxidants, phytonutrients, and/or probiotics.
Collapse
Affiliation(s)
- Rodica-Anita Varvara
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (R.-A.V.); (K.S.)
| | - Katalin Szabo
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (R.-A.V.); (K.S.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (R.-A.V.); (K.S.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Viera I, Herrera M, Roca M. In Vitro Bioaccessibility Protocol for Chlorophylls. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8777-8786. [PMID: 34328725 PMCID: PMC8389804 DOI: 10.1021/acs.jafc.1c02815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 05/24/2023]
Abstract
The daily ingestion of chlorophylls has been estimated at 50 g, but the knowledge about their bioaccessibility is limited. Different in vitro models have been utilized to estimate their potential bioavailability, but among other factors, the diversity of structures, chemical properties, and lability of chlorophylls hamper the investigations. By the first time, three extreme food matrices, one rich in fiber (vegetable puree), one rich in fat (virgin olive oil), and one liquid (fruit juice), have been assayed for chlorophyll bioaccessibility, controlling crucial variables. Chlorophyll polarity and food matrix were the determining factors, but surprisingly, chlorophyll bioaccessibility was affected during the application of the in vitro standardized protocol. Therefore, the present research has identified the reactions that can be biased during the estimation of chlorophyll bioaccessibility, defining a specific protocol in the function of chlorophyll structures.
Collapse
Affiliation(s)
- Isabel Viera
- Group of Chemistry and Biochemistry
of Pigments. Food Phytochemistry Department, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas
(CSIC), University Campus, Building 46, Carretera de Utrera km. 1, Sevilla 41013, Spain
| | - Marta Herrera
- Group of Chemistry and Biochemistry
of Pigments. Food Phytochemistry Department, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas
(CSIC), University Campus, Building 46, Carretera de Utrera km. 1, Sevilla 41013, Spain
| | - María Roca
- Group of Chemistry and Biochemistry
of Pigments. Food Phytochemistry Department, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas
(CSIC), University Campus, Building 46, Carretera de Utrera km. 1, Sevilla 41013, Spain
| |
Collapse
|