1
|
Altunay N, Hazer B, Lanjwani MF, Tuzen M. Ultrasound-assisted dispersive micro solid phase extraction of maneb in water and food samples with new hybrid block copolymer material prior to micro-spectrophotometric analysis. Food Chem 2025; 463:141098. [PMID: 39265405 DOI: 10.1016/j.foodchem.2024.141098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/04/2024] [Accepted: 08/31/2024] [Indexed: 09/14/2024]
Abstract
A simple and effective ultrasound-assisted dispersive micro solid-phase extraction (UA-dμSPE) method was developed for the spectrophotometric determination of traces maneb in food and water. In this study, a new hybrid block copolymer poly (vinyl benzyl chloride-b-dimethyl aminoethyl methacrylate) (Pvb-DMA) was synthesized and characterized using techniques such as FTIR, SEM-EDX. The synthesized Pvb-DMA was used as an adsorbent for the extraction of maneb for first time in this study. The effects of different experimental variables such as pH, adsorbent amount, sample volume, eluent type were optimized. The statistical toll factorial design was applied to estimate the individual and combined impact of parameters on the extraction of maneb. The applicability of different solvents such as acetone, methanol, ethanol, tetrahydrofuran, acetonitrile for maneb recovery from adsorbent was tested. The detection and quantification limits were found to be 3.3 ng mL-1 and 10.0 ng mL-1, respectively. In addition, the preconcentration factor and linear range was obtained 300 and 10-500 ng mL-1. The extraction recovery and relative standard deviation were found to be 95 % and 2.8 %, respectively.
Collapse
Affiliation(s)
- Nail Altunay
- Sivas Cumhuriyet University, Science Faculty, Chemistry Department, Sivas, Turkey
| | - Baki Hazer
- Aircraft Airframe Engine Maintenance Department, Kapadokya University, Nevşehir, Turkey; Zonguldak Bülent Ecevit University, Nano Technology Engineering Department, 67100 Zonguldak, Turkey
| | - Muhammad Farooque Lanjwani
- Tokat Gaziosmanpasa University, Science and Arts Faculty, Chemistry Department, 60250 Tokat, Turkey; Dr M. A. Kazi Institute of Chemistry, University of Sindh, Jamshoro, Sindh, Pakistan
| | - Mustafa Tuzen
- Tokat Gaziosmanpasa University, Science and Arts Faculty, Chemistry Department, 60250 Tokat, Turkey.
| |
Collapse
|
2
|
Kumar A, Indhur R, Sheik AG, Krishna SBN, Kumari S, Bux F. A review on conventional and novel adsorbents to boost the sorption capacity of heavy metals: current status, challenges and future outlook. ENVIRONMENTAL TECHNOLOGY REVIEWS 2024; 13:521-543. [DOI: 10.1080/21622515.2024.2377801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/22/2024] [Indexed: 01/12/2025]
Affiliation(s)
- Arvind Kumar
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Riona Indhur
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Abdul Gaffar Sheik
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Suresh Babu Naidu Krishna
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| |
Collapse
|
3
|
Aguiar C, Dattani N, Camps I. Möbius carbon nanobelts interacting with heavy metal nanoclusters. J Mol Model 2023; 29:277. [PMID: 37561216 DOI: 10.1007/s00894-023-05669-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/15/2023] [Indexed: 08/11/2023]
Abstract
CONTEXT The interaction between carbon nanostructures and heavy metal clusters is of great interest due to their potential applications as sensors and filters to remove the former from environment. In this work, we investigated the interaction between two types of carbon nanobelts (Möbius-type nanobelt and simple nanobelt) and nickel, cadmium, and lead nanoclusters. Our aim was to determine how both systems interact which would shed light on the potential applications of the carbon nanostructures as pollutant removal and detecting devices. METHODS To investigate the interaction between carbon nanostructures and heavy metal nanoclusters, we utilized the semiempirical tight binding framework provided by xTB software with the GFN2-xTB Hamiltonian. We performed calculations to determine the best interaction site, lowest energy geometries, complexes stability (using molecular dynamics at 298K), binding energy, and electronic properties. We also carried out a topological study to investigate the nature and intensity of the bonds formed between the metal nanoclusters and the nanobelts. Our results demonstrate that heavy metal nanoclusters have a favorable binding affinity towards both nanobelts, with the Möbius-type nanobelt having a stronger interaction. Additionally, our calculations reveal that the nickel nanocluster has the lowest binding energy, displaying the greatest charge transfer with the nanobelts, which was nearly twice that of the cadmium and lead nanoclusters. Our combined results lead to the conclusion that the nickel nanoclusters are chemisorbed, whereas cadmium and lead nanoclusters are physisorbed in both nanobelts. These findings have significant implications for the development of sensor and filtering devices based on carbon and heavy metal nanoclusters.
Collapse
Affiliation(s)
- C Aguiar
- Laboratório de Modelagem Computacional -LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas - UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - N Dattani
- HPQC College, Waterloo, Canada.
- HPQC Labs, Waterloo, Canada.
| | - I Camps
- Laboratório de Modelagem Computacional -LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas - UNIFAL-MG, Alfenas, Minas Gerais, Brazil.
- HPQC Labs, Waterloo, Canada.
| |
Collapse
|
4
|
Naseri A, Abed Z, Rajabi M, Asghari A, Lal B, Baigenzhenov O, Arghavani-Beydokhti S, Hosseini-Bandegharaei A. Use of Chrysosporium/carbon nanotubes for preconcentration of ultra-trace cadmium levels from various samples after extensive studies on its adsorption properties. CHEMOSPHERE 2023; 335:139168. [PMID: 37295689 DOI: 10.1016/j.chemosphere.2023.139168] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/13/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Carbon nanotubes were used to immobilize Chrysosporium fungus for building an adequate adsorbent to be used as an desirable sorbent for preconcentration and measurement of cadmium ultra-trace levels in various samples. After characterization, the potential of Chrysosporium/carbon nanotubes for the sorption of Cd(II) ions was scrutinized by the aid of central composite design, and comprehensive studies of sorption equilibrium, kinetics and thermodynamic aspects were accomplished. Then, the composite was utilized for preconcentration of ultra-trace cadmium levels, by a mini-column packed with Chrysosporium/carbon nanotubes, before its determination with ICP-OES. The outcomes vouchsafed that (i) Chrysosporium/carbon nanotube has a high tendency for selective and rapid sorption of cadmium ion, at pH 6.1, and (ii) kinetic, equilibrium, and thermodynamic studies showed a high affinity of the Chrysosporium/carbon nanotubes for cadmium ion. Also, the outcomes displayed that cadmium can quantitatively be sorbed at a flow speed lesser than 7.0 mL/min and a 1.0 M HCl solution (3.0 mL) was sufficient to desorbe the analyte. Eventually, preconcentration and measurement of Cd(II) in different foods and waters were successfully accomplished with good accuracy, high precision (RSDs ≤5.65%), and low limit of detection (0.015 μg/L).
Collapse
Affiliation(s)
- Ali Naseri
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Zahra Abed
- Faculty of Chemistry, Semnan University, Semnan, Iran
| | - Maryam Rajabi
- Faculty of Chemistry, Semnan University, Semnan, Iran.
| | | | - Basant Lal
- Department of Chemistry, Institute of Applied Science and Humanities, GLA University, Mathura, 281406, India
| | - Omirserik Baigenzhenov
- Department of Metallurgical Sciences, Satbayev University, 22a Satbaev Str., Almaty, 050013, Kazakhstan
| | | | | |
Collapse
|
5
|
Silva EC, Gomes CG, Vieira MA, Fajardo AR. Composite hydrogel based on alginate-g-poly(acrylamide)/carbon nanotubes for solid phase extraction of metals from corn cereal samples. Int J Biol Macromol 2023; 242:124586. [PMID: 37105249 DOI: 10.1016/j.ijbiomac.2023.124586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Composite hydrogels containing nanofillers are extensively applied in the sorption of different compounds from aqueous solutions; however, this ability is poorly exploited in the extraction and pre-concentration of analytes from complex matrices. As a contribution to this field, this study reports the synthesis of a composite hydrogel of alginate-g-poly(acrylamide) matrix filled with functionalized multi-walled carbon nanotubes (ALG-g-PAAM/MWCNT-f). This composite served as a solid-phase extractor (SPE) for the separation of Pb2+ and Cd2+ ions from a digested corn cereal sample before their analytical determination. After composite characterization, a series of experiments using low dosages of ALG-g-PAAM/MWCNT-f demonstrated that the composite has a higher sorption capacity for Pb2+ (5.1 mg/g) and Cd2+ (3.9 mg/g) under favorable experimental conditions. As demonstrated, the presence of the MWCNT-f benefited the SPE performance of the composite. The sorption of both cations followed the pseudo-first order kinetics, while the experimental data were well-fitted by the Freundlich isotherm. Also, ALG-g-PAAM/MWCNT-f showed selectivity for Pb2+, and it is reusable up to 10 times without losing sorption performance. After sorption and extraction, both metals were completely recovered, facilitating their quantification by the MIP OES technique. In short, ALG-g-PAAM/MWCNT-f was an effective SPE for the separation and extraction of Pb2+ and Cd2+, which can be beneficial for food control and safety.
Collapse
Affiliation(s)
- Emilly C Silva
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil
| | - Charlie G Gomes
- Laboratório de Metrologia Química (LabMequi), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil
| | - Mariana A Vieira
- Laboratório de Metrologia Química (LabMequi), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil.
| |
Collapse
|
6
|
Ingrassia EB, Fiorentini EF, Escudero LB. Hybrid biomaterials to preconcentrate and determine toxic metals and metalloids: a review. Anal Bioanal Chem 2023:10.1007/s00216-023-04683-x. [PMID: 37085739 DOI: 10.1007/s00216-023-04683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 04/23/2023]
Abstract
Toxic elements represent a serious threat to the environment and cause harmful effects on different environmental components, even at trace levels. These toxic elements are often difficult to detect through the typical instrumentation of an analytical laboratory because they are found at very low concentrations in matrices such as food and water. Therefore, preconcentration plays a fundamental role since it allows the effects of the matrix to be minimized, thus reaching lower detection limits and greater sensitivity of detection techniques. In recent years, solid-phase extraction has been successfully used for the preconcentration of metals as an environmentally friendly technique due to the fact that it eliminates or minimizes the use of reagents and solvents and offers reduced analysis times and low generation of waste in the laboratory. Hybrid biomaterials are low-cost, eco-friendly, and useful as efficient solid phases for the preconcentration of elements. In this review, recent investigations based on the use of hybrid biomaterials for the preconcentration and determination of toxic metals are presented and discussed, given special attention to bionanomaterials. A brief description of hybrid biomaterials often used for analytical purposes, as well as analytical techniques mostly used to characterize the hybrid biomaterials, is explained. Finally, the future prospects that encourage the search for new hybrid biomaterials are commented upon.
Collapse
Affiliation(s)
- Estefanía B Ingrassia
- Laboratory of Environmental Biotechnology (BioTA), Faculty of Exact and Natural Sciences, National University of Cuyo/Interdisciplinary Institute of Basic Sciences (ICB), CONICET UNCUYO, Padre J. Contreras 1300, 5500, Mendoza, Argentina
| | - Emiliano F Fiorentini
- Laboratory of Environmental Biotechnology (BioTA), Faculty of Exact and Natural Sciences, National University of Cuyo/Interdisciplinary Institute of Basic Sciences (ICB), CONICET UNCUYO, Padre J. Contreras 1300, 5500, Mendoza, Argentina
| | - Leticia B Escudero
- Laboratory of Environmental Biotechnology (BioTA), Faculty of Exact and Natural Sciences, National University of Cuyo/Interdisciplinary Institute of Basic Sciences (ICB), CONICET UNCUYO, Padre J. Contreras 1300, 5500, Mendoza, Argentina.
| |
Collapse
|
7
|
Mohammadzadeh A, Kadhim MM, Taban TZ, Baigenzhenov O, Ivanets A, Lal B, Kumar N, Hosseini-Bandegharaei A. Adsorption performance of Enterobacter cloacae towards U(VI) ion and application of Enterobacter cloacae/carbon nanotubes to preconcentration and determination of low-levels of U(VI) in water samples. CHEMOSPHERE 2023; 311:136804. [PMID: 36228723 DOI: 10.1016/j.chemosphere.2022.136804] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Keeping the high potential of some microorganisms in adsorption of radionuclides in view, the adsorption properties of Enterobacter cloacae towards uranium were attentively scrutinized, and then it was used for preconcentration of uranium in different samples, using Enterobacter cloacae/carbon nanotube composite. First, using ultrasonic agitation, the effects of operational factors on biosorption of uranium on the inactive Enterobacter cloacae were appraised and modeled by central composite design, and a comprehensive study was performed on the equilibrium, kinetics, thermodynamic, and selectivity aspects of biosorption. The optimization studies along with the evaluations of the adsorption properties revealed that Enterobacter cloacae have a high affinity for fast and selective biosorption of uranium ions, at pH 5.1. Second, the Enterobacter cloacae/carbon nanotube was synthesized, characterized, and utilized for preconcentration of uranium in different samples, using a mini-column packed with the composite. The optimization of operational factors on recovery of uranium, using the central composite design, showed that uranium can be quantitively adsorbed at a sample flow rate lower than 4.5 mL min-1 and the desorption could be accomplished with 3.0 mL HCl 0.6 M solution. Finally, the mini-column was exploited for preconcentration and determination of uranium in different samples. The results revealed the low detection limit (0.015 μg.L-1), high precision (RSDs ≤3.92%), and good accuracy of the proposed procedure.
Collapse
Affiliation(s)
- Alireza Mohammadzadeh
- Department of Microbiology, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mustafa M Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq
| | - Talib Zeedan Taban
- Laser and Optoelectronics Engineering Department, Kut University College, Kut, Wasit, 52001, Iraq
| | - Omirserik Baigenzhenov
- Department of Metallurgical Sciences, Satbayev University, 22a Satbaev Str., Almaty, 050013, Kazakhstan.
| | - Andrei Ivanets
- Institute of General and Inorganic Chemistry of National Academy of Sciences of Belarus, St. Surganova 9/1, 220072, Minsk, Belarus
| | - Basant Lal
- Department of Chemistry, Institute of Applied Science and Humanities, GLA University, Mathura, 281406, India
| | - Naveen Kumar
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | | |
Collapse
|
8
|
Shahryari T, Singh P, Raizada P, Davidyants A, Thangavelu L, Sivamani S, Naseri A, Vahidipour F, Ivanets A, Hosseini-Bandegharaei A. Adsorption properties of Danthron-impregnated carbon nanotubes and their usage for solid phase extraction of heavy metal ions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128528] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Hou Q, Zhou H, Zhang W, Chang Q, Yang J, Xue C, Hu S. Boosting adsorption of heavy metal ions in wastewater through solar-driven interfacial evaporation of chemically-treated carbonized wood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:144317. [PMID: 33338693 DOI: 10.1016/j.scitotenv.2020.144317] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Once the adsorbent is selected, almost introducing larger specific surface area and more surface functional groups becomes the only way to improve its adsorption performance. However, this approach is generally limited in practical application for intricate and costly engineering steps. Herein, we provided a novel avenue for boosting adsorption activities towards specific metal ions in wastewater. Solar-driven interfacial water evaporation produces the localized temperature field and concentration gradient of metal ions inside small pores, endowing with a new sorption mechanism. By using chemically-treated carbonized wood as all-in-one solar absorption and metal ion adsorption system, we achieved higher water evaporation rate and heavy metal ion removal efficiency than carbonization-only wood reported previously. In particular, this system exhibited a strong dependence of specific metal ion adsorption capacity on solar intensity. Pb2+ adsorption capacity was enhanced by over 225% with the solar intensity increased to 3.0 kW·m-2. This could originate from the formed temperature field localized specially on the surface of adsorbents that not only induces Pb2+ concentration gradient near to solid-liquid interface but also activate inactive adsorption sites. Besides, the chemical-treated & carbonized wood showed excellent cyclic stability and can be directly utilized for wastewater treatment, recovery and reuse.
Collapse
Affiliation(s)
- Qiao Hou
- North University of China, School of Energy and Power Engineering & School of Material Science and Engineering, Taiyuan 030051, PR China
| | - Haoyang Zhou
- North University of China, School of Energy and Power Engineering & School of Material Science and Engineering, Taiyuan 030051, PR China
| | - Wei Zhang
- North University of China, School of Energy and Power Engineering & School of Material Science and Engineering, Taiyuan 030051, PR China
| | - Qing Chang
- North University of China, School of Energy and Power Engineering & School of Material Science and Engineering, Taiyuan 030051, PR China
| | - Jinlong Yang
- North University of China, School of Energy and Power Engineering & School of Material Science and Engineering, Taiyuan 030051, PR China; State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, PR China
| | - Chaorui Xue
- North University of China, School of Energy and Power Engineering & School of Material Science and Engineering, Taiyuan 030051, PR China.
| | - Shengliang Hu
- North University of China, School of Energy and Power Engineering & School of Material Science and Engineering, Taiyuan 030051, PR China.
| |
Collapse
|
10
|
Ozdemir S, Kılınç E, Şen F, Soylak M. Development of Armillae mellea immobilized nanodiamond for the preconcentrations of Cr(III), Hg(II) and Zn(II). Anal Biochem 2021; 617:114122. [PMID: 33515499 DOI: 10.1016/j.ab.2021.114122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 01/13/2023]
Abstract
In this study, we present an environmental friend and easy procedure for simultaneous preconcentration of Cr(III), Hg(II) and Zn(II) by solid-phase extraction before their determination by inductively coupled plasma optical emission spectrometry. Armillae mellea immobilized nanodiamond was used as sorbent. During the study, critical parameters influencing the extraction performance were investigated in detail. The best parameters were found as pH 5.0, 2.0 mL min-1 of flow rate, 200 mg of Armillae mellea, 300 mL of sample volume. LOD values were found as 0.025, 0.13 and 0.038 ng mL-1, respectively for Cr(III), Hg(II) and Zn(II). By applying the developed procedure, sensitivities of ICP-OES were improved for 60 fold for Cr(III), Hg(II) and Zn(II). Their concentrations in different food samples were measured after microwave digestion and solid-phase extraction.
Collapse
Affiliation(s)
- Sadin Ozdemir
- Department of Food Processing, Technical Science Vocational School, Mersin University, TR-33343 Yenisehir, Mersin, Turkey
| | - Ersin Kılınç
- Health Services Vocational High School, Medical Marketing and Promotion Programme, Mardin Artuklu University, 47200 Mardin, Turkey.
| | - Fatih Şen
- Sen Research Group, Department of Biochemistry, Faculty of Art and Science, Dumlupinar University, Turkey.
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Science, Erciyes University, TR-38039 Kayseri, Turkey
| |
Collapse
|
11
|
Magnetic dispersive micro-solid phase extraction merged with micro-sampling flame atomic absorption spectrometry using (Zn-Al LDH)-(PTh/DBSNa)-Fe3O4 nanosorbent for effective trace determination of nickel(II) and cadmium(II) in food samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
A selective and sensitive procedure for magnetic solid-phase microextraction of lead(II) on magnetic cellulose nanoparticles from environmental samples prior to its flame atomic absorption spectrometric detection. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-02085-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|