1
|
Zhang Y, Yang X, Zhang Z, Wang H. Classifiability Analysis of Spectroscopic Profiling Datasets in Food Safety-related Discriminative Tasks. J Food Prot 2025; 88:100407. [PMID: 39547580 DOI: 10.1016/j.jfp.2024.100407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/12/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Discriminative tasks, i.e., the identification of different food materials, brands, and origins, have become an essential part of food safety control. In recent years, spectroscopic profiling combined with machine learning is becoming popular for food-related discriminative tasks, but finding an appropriate classification model can be challenging. Compared to the current "trial-and-error" practice, this paper proposes a dedicated two-step classifiability analysis framework to address this issue. The first step collects more than 90 diversified metrics to measure the dataset separability from different perspectives. The second step synthesizes these metrics into a quantitative score using meta-learner and decomposition-based strategies. Finally, two Raman spectroscopic profiling case studies were conducted to validate the method, demonstrating higher scores for the easily separable liquor dataset (around 1.0) compared to the more challenging table salt dataset (<0.5). This score can guide researchers to determine the required model complexity and assess the adequacy of the current physio-chemical profiling instrument. We expected the classifiability analysis framework proposed in this research to be generalized to a wide range of machine learning applications within the realm of food, where data-driven classification or discriminative tasks are involved.
Collapse
Affiliation(s)
- Yinsheng Zhang
- Zhejiang Food and Drug Quality & Safety Engineering Research Institute, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xudong Yang
- School of Management and E-Business, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhengyong Zhang
- School of Management Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Haiyan Wang
- Zhejiang Food and Drug Quality & Safety Engineering Research Institute, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Liu H, Wang X, Tian H, Yuan Y, Wang J, Cheng Y, Sun L, Chen H, Song X. Visualized Nucleic Acid Hybridization Lateral Flow Strip Integrating with Microneedle for the Point-of-Care Authentication of Ophiocordyceps sinensis. Int J Mol Sci 2024; 25:13599. [PMID: 39769360 PMCID: PMC11677120 DOI: 10.3390/ijms252413599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Due to the price and demand of Ophiocordyceps sinensis having increased dramatically, adulteration with other fungi is a common problem. Thus, a reliable method of authentic O. sinensis identification is essential. In the present work, a rapid DNA extraction and double-tailed recombinase polymerase amplification (RPA) coupled with nucleic acid hybridization lateral flow strip (NAH-LFS) was developed to distinguish authentic O. sinensis ingredients from other fungi substitutes. In the presence of O. sinensis, the RPA amplicons with two ssDNA tails in the opposite ends, which could simultaneously bind with the SH-probes on gold nanoparticles (AuNPs) and capture the probe on the test line, formed visible red bands. RPA combined with NAH-LFS can efficiently detect O. sinensis DNA down to 1.4 ng/μL; meanwhile, the specificity test validated no cross reaction with common adulterants, including Cordyceps gunnii, Cordyceps cicadae, Cordyceps militaris, yungui Cordyceps, and Ophiocordyceps nutans. The whole RPA-NAH-LFS could be completed within 16 min. The RPA-NAH-LFS results in detecting 20 commercial O. sinensis samples are consistent with PCR-AGE and RT-PCR, confirming the feasibility of the RPA-NAH-LFS method. In conclusion, these results are expected to facilitate the application of RPA-NAH-LFS in the authentication detection of O. sinensis materials, providing a convenient and efficient method for O. sinensis quality control.
Collapse
Affiliation(s)
- Haibin Liu
- College of Life Sciences, North China University of Science and Technology, Tangshan 063200, China; (H.L.); (X.W.); (H.T.); (Y.Y.); (J.W.); (Y.C.); (L.S.)
| | - Xinyue Wang
- College of Life Sciences, North China University of Science and Technology, Tangshan 063200, China; (H.L.); (X.W.); (H.T.); (Y.Y.); (J.W.); (Y.C.); (L.S.)
| | - Hang Tian
- College of Life Sciences, North China University of Science and Technology, Tangshan 063200, China; (H.L.); (X.W.); (H.T.); (Y.Y.); (J.W.); (Y.C.); (L.S.)
| | - Yi Yuan
- College of Life Sciences, North China University of Science and Technology, Tangshan 063200, China; (H.L.); (X.W.); (H.T.); (Y.Y.); (J.W.); (Y.C.); (L.S.)
| | - Jing Wang
- College of Life Sciences, North China University of Science and Technology, Tangshan 063200, China; (H.L.); (X.W.); (H.T.); (Y.Y.); (J.W.); (Y.C.); (L.S.)
| | - Yani Cheng
- College of Life Sciences, North China University of Science and Technology, Tangshan 063200, China; (H.L.); (X.W.); (H.T.); (Y.Y.); (J.W.); (Y.C.); (L.S.)
| | - Linyao Sun
- College of Life Sciences, North China University of Science and Technology, Tangshan 063200, China; (H.L.); (X.W.); (H.T.); (Y.Y.); (J.W.); (Y.C.); (L.S.)
| | - Hongshuo Chen
- College of Electrical Engineering, North China University of Science and Technology, Tangshan 063200, China
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, Tangshan 063200, China; (H.L.); (X.W.); (H.T.); (Y.Y.); (J.W.); (Y.C.); (L.S.)
| |
Collapse
|
3
|
Meliana C, Liu J, Show PL, Low SS. Biosensor in smart food traceability system for food safety and security. Bioengineered 2024; 15:2310908. [PMID: 38303521 PMCID: PMC10841032 DOI: 10.1080/21655979.2024.2310908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
The burden of food contamination and food wastage has significantly contributed to the increased prevalence of foodborne disease and food insecurity all over the world. Due to this, there is an urgent need to develop a smarter food traceability system. Recent advancements in biosensors that are easy-to-use, rapid yet selective, sensitive, and cost-effective have shown great promise to meet the critical demand for onsite and immediate diagnosis and treatment of food safety and quality control (i.e. point-of-care technology). This review article focuses on the recent development of different biosensors for food safety and quality monitoring. In general, the application of biosensors in agriculture (i.e. pre-harvest stage) for early detection and routine control of plant infections or stress is discussed. Afterward, a more detailed advancement of biosensors in the past five years within the food supply chain (i.e. post-harvest stage) to detect different types of food contaminants and smart food packaging is highlighted. A section that discusses perspectives for the development of biosensors in the future is also mentioned.
Collapse
Affiliation(s)
- Catarina Meliana
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, Zhejiang Province, China
| | - Jingjing Liu
- College of Automation Engineering, Northeast Electric Power University, Jilin, Jilin Province, China
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, Abu Dhabi Municipality, United Arab Emirates
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Sze Shin Low
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, Zhejiang Province, China
| |
Collapse
|
4
|
Fernando I, Fei J, Cahoon S, Close DC. A review of the emerging technologies and systems to mitigate food fraud in supply chains. Crit Rev Food Sci Nutr 2024:1-28. [PMID: 39356551 DOI: 10.1080/10408398.2024.2405840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Food fraud has serious consequences including reputational damage to businesses, health and safety risks and lack of consumer confidence. New technologies targeted at ensuring food authenticity has emerged and however, the penetration and diffusion of sophisticated analytical technologies are faced with challenges in the industry. This review is focused on investigating the emerging technologies and strategies for mitigating food fraud and exploring the key barriers to their application. The review discusses three key areas of focus for food fraud mitigation that include systematic approaches, analytical techniques and package-level anti-counterfeiting technologies. A notable gap exists in converting laboratory based sophisticated technologies and tools in high-paced, live industrial applications. New frontiers such as handheld laser-induced breakdown spectroscopy (LIBS) and smart-phone spectroscopy have emerged for rapid food authentication. Multifunctional devices with hyphenating sensing mechanisms together with deep learning strategies to compare food fingerprints can be a great leap forward in the industry. Combination of different technologies such as spectroscopy and separation techniques will also be superior where quantification of adulterants are preferred. With the advancement of automation these technologies will be able to be deployed as in-line scanning devices in industrial settings to detect food fraud across multiple points in food supply chains.
Collapse
Affiliation(s)
- Indika Fernando
- Australian Maritime College (AMC), University of Tasmania, Newnham, TAS, Australia
| | - Jiangang Fei
- Australian Maritime College (AMC), University of Tasmania, Newnham, TAS, Australia
| | - Stephen Cahoon
- Australian Maritime College (AMC), University of Tasmania, Newnham, TAS, Australia
| | - Dugald C Close
- Tasmanian Institute of Agriculture (TIA), University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
5
|
Zhou C, Liu L, Chen J, Fu Q, Chen Z, Wang J, Sun X, Ai L, Xu X, Wang J. Rapid authentication of characteristic milk powders by recombinase polymerase amplification assays. Food Chem 2024; 443:138540. [PMID: 38277935 DOI: 10.1016/j.foodchem.2024.138540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/30/2023] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
The authentication of dairy species has great significance for food safety. This study focused on a more rapid method for identifying major dairy species, and specific recombinase polymerase amplification (RPA)-based assays for cattle, goat, sheep, camel and donkey were developed. Through the developed RPA-based assays, goats and sheep could be simultaneously identified and bovine families could be differentiated. The performances of the RPA assays were validated using 37 milk powder samples, of which 16.2% (6/37) were suspected of being adulterated and 24.3% (9/37) were potentially at risk of being wrongly identified as adulteration. The effectiveness of the developed assays for crude DNA detection was also validated by a rapid nucleic acid extraction kit, and results showed that the presence of large amounts of protein and fat did not affect the qualitative results. Therefore, these assays could combine with the rapid nucleic acids extraction methods for being used in field detection.
Collapse
Affiliation(s)
- Cang Zhou
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Libing Liu
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China
| | - Qi Fu
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China
| | - Zhimin Chen
- Shijiazhuang Food and Drug Inspection Center, Shijiazhuang 050020, China
| | - Jinfeng Wang
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China
| | - Xiaoxia Sun
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China
| | - Lianfeng Ai
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China
| | - Xiangdong Xu
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China.
| | - Jianchang Wang
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China.
| |
Collapse
|
6
|
Ma X, Xia H, Pan Y, Huang Y, Xu T, Guan F. Double-Tube Multiplex TaqMan Real-Time PCR for the Detection of Eight Animal-Derived Dairy Ingredients. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11640-11651. [PMID: 38725129 PMCID: PMC11117397 DOI: 10.1021/acs.jafc.4c01294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/09/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
Milk and dairy products represent important sources of nutrition in our daily lives. The identification of species within dairy products holds importance for monitoring food adulteration and ensuring traceability. This study presented a method that integrated double-tube and duplex real-time polymerase chain reaction (PCR) with multiplex TaqMan probes to enable the high-throughput detection of animal-derived ingredients in milk and dairy products. The detection system utilized one pair of universal primers, two pairs of specific primers, and eight animal-derived specific probes for cow, buffalo, goat, sheep, camel, yak, horse, and donkey. These components were optimized within a double-tube and four-probe PCR multiplex system. The developed double-tube detection system could simultaneously identify the above eight targets with a detection limit of 10-0.1 pg/μL. Validation using simulated adulterated milk samples demonstrated a detection limit of 0.1%. The primary advantage of this method lies in the simplification of the multiplex quantitative real-time PCR (qPCR) system through the use of universal primers. This method provides an efficient approach for detecting ingredients in dairy products, providing powerful technical support for market supervision.
Collapse
Affiliation(s)
- Xinyu Ma
- College
of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Huili Xia
- Taizhou
Food and Drug Inspection and Research Institute, Taizhou 318000, China
| | - Yingqiu Pan
- Taizhou
Food and Drug Inspection and Research Institute, Taizhou 318000, China
| | - Yafang Huang
- College
of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Ting Xu
- College
of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Feng Guan
- College
of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
7
|
Kalligosfyri PM, Tragoulias SS, Tsikas P, Lamprou E, Christopoulos TK, Kalogianni DP. Design and Validation of a Three-Dimensional Printer-Based System Enabling Rapid, Low-Cost Construction of the Biosensing Areas of Lateral Flow Devices for Immunoassays and Nucleic Acid Assays. Anal Chem 2024; 96:572-580. [PMID: 38150187 DOI: 10.1021/acs.analchem.3c04915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The COVID-19 pandemic proved the great usefulness of lateral flow tests as self- and rapid tests. The rapid expansion of this field requires the design and validation of novel, affordable, and versatile technologies for the easy fabrication of a variety of lateral flow devices. In the present work, we have developed a new, simple, and cost-effective system for the dispensing of reagents on the membranes of lateral flow devices to be used for research purposes. The 3D printing technology is integrated, for the first time, with simple and inexpensive tools such as a technical pen and disposable pipet tips for the construction of the test and the control areas of the devices. We also used this system for the automated fabrication of spots on the membrane for multiplex analysis. The devices were applied for the detection of proteins/antibodies and single- and double-stranded DNA targets. Also, devices with multiple biosensing areas on the membrane were constructed for the simultaneous detection of different analytes. The proposed system is very simple, automated, and inexpensive and has provided rapid and reproducible construction of lateral flow devices. Compared to a commercially available automated dispenser, the devices showed similar detection capabilities and reproducibility in various real samples. Moreover, contrary to the existing dispensers, the proposed system does not require any gas or costly precision pumps and syringes for the deposition. In conclusion, the developed 3D printer-based system could be an extremely useful alternative for research laboratories for the construction of lateral flow devices of various assay configurations.
Collapse
Affiliation(s)
- Panagiota M Kalligosfyri
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, GR26504, Rio, 26504 Patras, Greece
| | - Sotirios S Tragoulias
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, GR26504, Rio, 26504 Patras, Greece
| | - Panagiotis Tsikas
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, GR26504, Rio, 26504 Patras, Greece
| | - Eleni Lamprou
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, GR26504, Rio, 26504 Patras, Greece
| | - Theodore K Christopoulos
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, GR26504, Rio, 26504 Patras, Greece
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), Patras 26504, Greece
| | - Despina P Kalogianni
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, GR26504, Rio, 26504 Patras, Greece
| |
Collapse
|
8
|
Liang M, Zhang G, Song J, Tan M, Su W. Paper-Based Microfluidic Chips for Food Hazard Factor Detection: Fabrication, Modification, and Application. Foods 2023; 12:4107. [PMID: 38002165 PMCID: PMC10670051 DOI: 10.3390/foods12224107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Food safety and quality are paramount concerns for ensuring the preservation of human life and well-being. As the field of food processing continues to advance, there is a growing interest in the development of fast, instant, cost-effective, and convenient methods for detecting food safety issues. In this context, the utilization of paper-based microfluidic chips has emerged as a promising platform for enabling rapid detection, owing to their compact size, high throughput capabilities, affordability, and low resource consumption, among other advantages. To shed light on this topic, this review article focuses on the functionalization of paper-based microfluidic surfaces and provides an overview of the latest research and applications to colorimetric analysis, fluorescence analysis, surface-enhanced Raman spectroscopy, as well as their integration with paper-based microfluidic platforms for achieving swift and reliable food safety detection. Lastly, the article deliberates on the challenges these analytical methods and presents insights into their future development prospects in facilitating rapid food safety assessment.
Collapse
Affiliation(s)
- Meiqi Liang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (M.L.); (G.Z.); (J.S.); (M.T.)
- National Engineering Research Center of Seafood, Dalian 116034, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Guozhi Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (M.L.); (G.Z.); (J.S.); (M.T.)
- National Engineering Research Center of Seafood, Dalian 116034, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Song
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (M.L.); (G.Z.); (J.S.); (M.T.)
- National Engineering Research Center of Seafood, Dalian 116034, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (M.L.); (G.Z.); (J.S.); (M.T.)
- National Engineering Research Center of Seafood, Dalian 116034, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (M.L.); (G.Z.); (J.S.); (M.T.)
- National Engineering Research Center of Seafood, Dalian 116034, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
9
|
Liu Q, Wei Y, Wang Z, Song DP, Cui J, Qi H. Sustainable DNA Data Storage on Cellulose Paper. SMALL METHODS 2023; 7:e2201610. [PMID: 37263984 DOI: 10.1002/smtd.202201610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/04/2023] [Indexed: 06/03/2023]
Abstract
DNA is a promising material for high density and long-term archival data storage. In addition to algorithms for encoding digital information into DNA sequences, the DNA writing (chemical synthesis) and reading (DNA sequencing), the preservation of DNA mixtures with high sequence diversity is another critical issue for sustainable, long-term, and large-scale DNA data storage. Here, this work demonstrates a method for low-cost, convenient and sustainable DNA data storage on cellulose paper. A DNA pool comprising thousands of sequences, in which archival data are encoded, is conveniently stored on a cellulose paper with a calculated density as high as 15 TB per mm3 through electrostatic adsorption. This work demonstrates that these digitally encoded DNA pools can be stable for years on the cellulose paper after drying even when directly exposed to air. Furthermore, the reversible electrostatic adsorption enables repeated loading/retrieval of DNA on/off cellulose paper. Therefore, this sustainable DNA preservation on cellulose paper through the convenient electrostatic adsorption exhibits a great advantage in terms of storage capacity and cost that is crucial for practical systems to achieve large-scale and long-time data storage.
Collapse
Affiliation(s)
- Qian Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Yanan Wei
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Zhaoguan Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Jingsong Cui
- School of Cyber Science and Engineering, Wuhan University, Wuhan, 430072, China
| | - Hao Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Zhejiang, 312369, China
| |
Collapse
|
10
|
Ferrari E. Gold Nanoparticle-Based Plasmonic Biosensors. BIOSENSORS 2023; 13:bios13030411. [PMID: 36979623 PMCID: PMC10046074 DOI: 10.3390/bios13030411] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 06/10/2023]
Abstract
One of the emerging technologies in molecular diagnostics of the last two decades is the use of gold nanoparticles (AuNPs) for biosensors. AuNPs can be functionalized with various biomolecules, such as nucleic acids or antibodies, to recognize and bind to specific targets. AuNPs present unique optical properties, such as their distinctive plasmonic band, which confers a bright-red color to AuNP solutions, and their extremely high extinction coefficient, which makes AuNPs detectable by the naked eye even at low concentrations. Ingenious molecular mechanisms triggered by the presence of a target analyte can change the colloidal status of AuNPs from dispersed to aggregated, with a subsequent visible change in color of the solution due to the loss of the characteristic plasmonic band. This review describes how the optical properties of AuNPs have been exploited for the design of plasmonic biosensors that only require the simple mixing of reagents combined with a visual readout and focuses on the molecular mechanisms involved. This review illustrates selected examples of AuNP-based plasmonic biosensors and promising approaches for the point-of-care testing of various analytes, spanning from the viral RNA of SARS-CoV-2 to the molecules that give distinctive flavor and color to aged whisky.
Collapse
Affiliation(s)
- Enrico Ferrari
- Department of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK
| |
Collapse
|
11
|
Popescu M, Ungureanu C. Biosensors in Food and Healthcare Industries: Bio-Coatings Based on Biogenic Nanoparticles and Biopolymers. COATINGS 2023; 13:486. [DOI: 10.3390/coatings13030486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Biosensors use biological materials, such as enzymes, antibodies, or DNA, to detect specific analytes. These devices have numerous applications in the health and food industries, such as disease diagnosis, food safety monitoring, and environmental monitoring. However, the production of biosensors can result in the generation of chemical waste, which is an environmental concern for the developed world. To address this issue, researchers have been exploring eco-friendly alternatives for immobilising biomolecules on biosensors. One solution uses bio-coatings derived from nanoparticles synthesised via green chemistry and biopolymers. These materials offer several advantages over traditional chemical coatings, such as improved sensitivity, stability, and biocompatibility. In conclusion, the use of bio-coatings derived from green-chemistry synthesised nanoparticles and biopolymers is a promising solution to the problem of chemical waste generated from the production of biosensors. This review provides an overview of these materials and their applications in the health and food industries, highlighting their potential to improve the performance and sustainability of biosensors.
Collapse
Affiliation(s)
- Melania Popescu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania
| | - Camelia Ungureanu
- General Chemistry Department, University “Politehnica” of Bucharest, Gheorghe Polizu Street, 1-7, 011061 Bucharest, Romania
| |
Collapse
|
12
|
A comprehensive overview of emerging techniques and chemometrics for authenticity and traceability of animal-derived food. Food Chem 2023; 402:134216. [DOI: 10.1016/j.foodchem.2022.134216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/21/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
|
13
|
A signal-enhanced DNA-based lateral flow assay. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Ray R, Prabhu A, Prasad D, Garlapati VK, Aminabhavi TM, Mani NK, Simal-Gandara J. Paper-based microfluidic devices for food adulterants: Cost-effective technological monitoring systems. Food Chem 2022; 390:133173. [PMID: 35594772 DOI: 10.1016/j.foodchem.2022.133173] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 01/14/2023]
Abstract
Analytical sciences have witnessed emergent techniques for efficient clinical and industrial food adulterants detection. In this review, the contributions made by the paper-based devices are highlighted for efficient and rapid detection of food adulterants and additives, which is the need of the hour and how different categories of techniques have been developed in the past decade for upgrading the performance for point-of-care testing. A simple strategy with an arrangement for detecting specific adulterants followed by the addition of samples to obtain well-defined qualitative or quantitative signals for confirming the presence of target species. The paper-based microfluidics-based technology advances and prospects for food adulterant detection are discussed given the high-demand from the food sectors and serve as a valued technology for food researchers working in interdisciplinary technological frontiers.
Collapse
Affiliation(s)
- Rohitraj Ray
- Microfluidics, Sensors and Diagnostics (µSenD) Laboratory, Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Anusha Prabhu
- Microfluidics, Sensors and Diagnostics (µSenD) Laboratory, Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Dinesh Prasad
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Vijay Kumar Garlapati
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh 173234, India.
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580 031, India; School of Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248 007, India.
| | - Naresh Kumar Mani
- Microfluidics, Sensors and Diagnostics (µSenD) Laboratory, Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.
| |
Collapse
|
15
|
Mafra I, Honrado M, Amaral JS. Animal Species Authentication in Dairy Products. Foods 2022; 11:1124. [PMID: 35454711 PMCID: PMC9027536 DOI: 10.3390/foods11081124] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Milk is one of the most important nutritious foods, widely consumed worldwide, either in its natural form or via dairy products. Currently, several economic, health and ethical issues emphasize the need for a more frequent and rigorous quality control of dairy products and the importance of detecting adulterations in these products. For this reason, several conventional and advanced techniques have been proposed, aiming at detecting and quantifying eventual adulterations, preferentially in a rapid, cost-effective, easy to implement, sensitive and specific way. They have relied mostly on electrophoretic, chromatographic and immunoenzymatic techniques. More recently, mass spectrometry, spectroscopic methods (near infrared (NIR), mid infrared (MIR), nuclear magnetic resonance (NMR) and front face fluorescence coupled to chemometrics), DNA analysis (real-time PCR, high-resolution melting analysis, next generation sequencing and droplet digital PCR) and biosensors have been advanced as innovative tools for dairy product authentication. Milk substitution from high-valued species with lower-cost bovine milk is one of the most frequent adulteration practices. Therefore, this review intends to describe the most relevant developments regarding the current and advanced analytical methodologies applied to species authentication of milk and dairy products.
Collapse
Affiliation(s)
- Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Mónica Honrado
- CIMO, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal;
| | - Joana S. Amaral
- CIMO, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal;
| |
Collapse
|
16
|
Evaluation of Olive Oil Quality with Electrochemical Sensors and Biosensors: A Review. Int J Mol Sci 2021; 22:ijms222312708. [PMID: 34884509 PMCID: PMC8657724 DOI: 10.3390/ijms222312708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 01/11/2023] Open
Abstract
Electrochemical sensors, sensor arrays and biosensors, alongside chemometric instruments, have progressed remarkably of late, being used on a wide scale in the qualitative and quantitative evaluation of olive oil. Olive oil is a natural product of significant importance, since it is a rich source of bioactive compounds with nutritional and therapeutic properties, and its quality is important both for consumers and for distributors. This review aims at analysing the progress reported in the literature regarding the use of devices based on electrochemical (bio)sensors to evaluate the bioactive compounds in olive oil. The main advantages and limitations of these approaches on construction technique, analysed compounds, calculus models, as well as results obtained, are discussed in view of estimation of future progress related to achieving a portable, practical and rapid miniature device for analysing the quality of virgin olive oil (VOO) at different stages in the manufacturing process.
Collapse
|
17
|
Vafin RR, Galstyan AG, Tyulkin SV, Gilmanov KK, Yurova EA, Semipyatniy VK, Bigaeva AV. Species identification of ruminant milk by genotyping of the κ-casein gene. J Dairy Sci 2021; 105:1004-1013. [PMID: 34802731 DOI: 10.3168/jds.2020-19931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 09/29/2021] [Indexed: 12/18/2022]
Abstract
The development of molecular genetic and bioinformatic systems for identifying the species of milk and the raw material composition of dairy products is of great scientific and practical importance with the purpose of introducing developments in the system for controlling the turnover of falsified products. The aim of the research is to develop a method of PCR-RFLP analysis for species identification of milk and dairy products from agricultural ruminant animals by the κ-casein gene (CSN3) with the possibility of qualitative and relative quantitative assessment of species-specific DNA of the tested biomaterial. The objects of research were samples of raw milk and milk powder, pasteurized cream, and hard and semi-hard cheeses. The developed method of species identification of milk and dairy products includes sample preparation of the studied samples, nucleic acid extraction, combined PCR-RFLP technique, detection of obtained results by the method of horizontal electrophoresis in agarose gel and their analysis, including using the developed mathematical algorithms and software. The synergistic effect established in combined operation of 2 restriction enzymes ensured their application in a mix with increased performance in an ergonomic way in the context of DNA authentication of cow, goat, and sheep milk and dairy products based on them. The specificity and sensitivity of the proposed method is potentially suitable for implementing the development of a system to control the turnover of falsified and counterfeit goods.
Collapse
Affiliation(s)
- R R Vafin
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316, Moscow, Russia
| | - A G Galstyan
- All-Russian Scientific Research Institute of the Dairy Industry, 115093, Moscow, Russia
| | - S V Tyulkin
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316, Moscow, Russia
| | - Kh Kh Gilmanov
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316, Moscow, Russia
| | - E A Yurova
- All-Russian Scientific Research Institute of the Dairy Industry, 115093, Moscow, Russia
| | - V K Semipyatniy
- All-Russian Scientific Research Institute of the Dairy Industry, 115093, Moscow, Russia.
| | - A V Bigaeva
- All-Russian Scientific Research Institute of the Dairy Industry, 115093, Moscow, Russia
| |
Collapse
|
18
|
Qin X, Liu J, Zhang Z, Li J, Yuan L, Zhang Z, Chen L. Microfluidic paper-based chips in rapid detection: Current status, challenges, and perspectives. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116371] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Wu Y, Dong Y, Shi Y, Yang H, Zhang J, Khan MR, Deng S, He G, He Q, Lv Y, Deng R. CRISPR-Cas12-Based Rapid Authentication of Halal Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10321-10328. [PMID: 34436881 DOI: 10.1021/acs.jafc.1c03078] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The halal food market is globally growing along with the increased risk of adulteration. We proposed an amplification-free and mix-to-read CRISPR-Cas12-based nucleic acid analytical strategy allowing rapid identification and analysis of pork components, thus enriching the toolbox for ensuring halal food authenticity. We designed and optimized guide RNA (gRNA) targeting the pork cytochrome b (Cyt b) gene. gRNA allowed specific identification of the target Cyt b gene from pork components followed by activation of Cas12 protein to abundantly cleave single-stranded DNA probes with terminally labeled fluorophore and quencher groups, thus turning on fluorescence. The presence of the pork Cyt b gene thus can be mix-and-read- and only-one-step-detected, which may indicate the risk of halal food adulteration. The method allowed specific discrimination of pork meat from beef, mutton, and chicken and yielded a detection limit of 2.7 ng/μL of total DNA from pork meat. The reliability of the method was tested using the following processed meat products: halal foods beef luncheon meat and spiced beef and non-halal foods sausage and dried pork slices. The CRISPR-Cas12-based nucleic acid test strategy is promising for rapid food authentication.
Collapse
Affiliation(s)
- Yinhuan Wu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yi Dong
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yachen Shi
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Jiaqi Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sha Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Guiping He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Qiang He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yuanping Lv
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| |
Collapse
|
20
|
Alahmad W, Varanusupakul P, Varanusupakul P. Recent Developments and Applications of Microfluidic Paper-Based Analytical Devices for the Detection of Biological and Chemical Hazards in Foods: A Critical Review. Crit Rev Anal Chem 2021; 53:233-252. [PMID: 34304654 DOI: 10.1080/10408347.2021.1949695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nowadays, food safety has become a major concern for the sustainability of global public health. Through the production and distribution steps, food can be contaminated by either chemical hazards or pathogens, and the determination of these plays a critical role in the processes of ensuring food safety. Therefore, the development of analytical tools that can provide rapid screening of these hazards is highly necessary. Microfluidic paper-based analytical devices (µPADs) have advanced significantly in recent years as they are rapid and low-cost analytical screening tools for testing contaminated food products. This review focuses on recent developments of µPADs for various applications in the food safety field. A description of the fabrication of selected papers is briefly discussed, and evaluation of the μPADs' performance with regard to their precision and accuracy as well as their limits of detection is critically assessed. The advantages and disadvantages of these devices are highlighted.
Collapse
Affiliation(s)
- Waleed Alahmad
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Pakorn Varanusupakul
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
21
|
Artigues M, Gilabert-Porres J, Texidó R, Borrós S, Abellà J, Colominas S. Analytical Parameters of a Novel Glucose Biosensor Based on Grafted PFM as a Covalent Immobilization Technique. SENSORS (BASEL, SWITZERLAND) 2021; 21:4185. [PMID: 34207185 PMCID: PMC8235154 DOI: 10.3390/s21124185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/31/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022]
Abstract
Bioanalytical methods, in particular electrochemical biosensors, are increasingly used in different industrial sectors due to their simplicity, low cost, and fast response. However, to be able to reliably use this type of device, it is necessary to undertake in-depth evaluation of their fundamental analytical parameters. In this work, analytical parameters of an amperometric biosensor based on covalent immobilization of glucose oxidase (GOx) were evaluated. GOx was immobilized using plasma-grafted pentafluorophenyl methacrylate (pgPFM) as an anchor onto a tailored HEMA-co-EGDA hydrogel that coats a titanium dioxide nanotubes array (TiO2NTAs). Finally, chitosan was used to protect the enzyme molecules. The biosensor offered outstanding analytical parameters: repeatability (RSD = 1.7%), reproducibility (RSD = 1.3%), accuracy (deviation = 4.8%), and robustness (RSD = 2.4%). In addition, the Ti/TiO2NTAs/ppHEMA-co-EGDA/pgPFM/GOx/Chitosan biosensor showed good long-term stability; after 20 days, it retained 89% of its initial sensitivity. Finally, glucose concentrations of different food samples were measured and compared using an official standard method (HPLC). Deviation was lower than 10% in all measured samples. Therefore, the developed biosensor can be considered to be a reliable analytical tool for quantification measurements.
Collapse
Affiliation(s)
- Margalida Artigues
- Electrochemical Methods Laboratory-Analytical and Applied Chemistry Department at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain; (M.A.); (J.A.)
| | - Joan Gilabert-Porres
- Tractivus SL, Via Augusta, 394, 08017 Barcelona, Spain; (J.G.-P.); (R.T.); (S.B.)
- Grup d’Enginyeria de Materials (GEMAT) at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain
| | - Robert Texidó
- Tractivus SL, Via Augusta, 394, 08017 Barcelona, Spain; (J.G.-P.); (R.T.); (S.B.)
- Grup d’Enginyeria de Materials (GEMAT) at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain
| | - Salvador Borrós
- Tractivus SL, Via Augusta, 394, 08017 Barcelona, Spain; (J.G.-P.); (R.T.); (S.B.)
- Grup d’Enginyeria de Materials (GEMAT) at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain
- CIBER-BBN, Networking Center on Bioengineering, Biomaterials and Nanomedicine, 500018 Zaragoza, Spain
| | - Jordi Abellà
- Electrochemical Methods Laboratory-Analytical and Applied Chemistry Department at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain; (M.A.); (J.A.)
| | - Sergi Colominas
- Electrochemical Methods Laboratory-Analytical and Applied Chemistry Department at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain; (M.A.); (J.A.)
| |
Collapse
|
22
|
Ng HY, Lee WC, Kung CT, Li LC, Lee CT, Fu LM. Recent Advances in Microfluidic Devices for Contamination Detection and Quality Inspection of Milk. MICROMACHINES 2021; 12:558. [PMID: 34068982 PMCID: PMC8156775 DOI: 10.3390/mi12050558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023]
Abstract
Milk is a necessity for human life. However, it is susceptible to contamination and adulteration. Microfluidic analysis devices have attracted significant attention for the high-throughput quality inspection and contaminant analysis of milk samples in recent years. This review describes the major proposals presented in the literature for the pretreatment, contaminant detection, and quality inspection of milk samples using microfluidic lab-on-a-chip and lab-on-paper platforms in the past five years. The review focuses on the sample separation, sample extraction, and sample preconcentration/amplification steps of the pretreatment process and the determination of aflatoxins, antibiotics, drugs, melamine, and foodborne pathogens in the detection process. Recent proposals for the general quality inspection of milk samples, including the viscosity and presence of adulteration, are also discussed. The review concludes with a brief perspective on the challenges facing the future development of microfluidic devices for the analysis of milk samples in the coming years.
Collapse
Affiliation(s)
- Hwee-Yeong Ng
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Wen-Chin Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Chia-Te Kung
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan;
| | - Lung-Chih Li
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Chien-Te Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
23
|
Baptista M, Cunha JT, Domingues L. DNA-based approaches for dairy products authentication: A review and perspectives. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Kızılkaya P, Şenkuytu E, Davarcı D, Pala U, Ölçer Z, Yenilmez Çiftçi G. Novel paraben derivatives of tetracyclic spermine cyclotriphosphazenes: synthesis, characterization and biosensor based DNA interaction analysis. NEW J CHEM 2020. [DOI: 10.1039/d0nj03908j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new series of paraben-substituted dispiroansa (tetracyclic) spermine derivatives of cyclotriphosphazenes likely to be biologically active were synthesized for the first time and their effects on DNA were studied.
Collapse
Affiliation(s)
- Perihan Kızılkaya
- Department of Chemistry
- Gebze Technical University
- Gebze
- Turkey
- Faculty of Arts and Science, Department of Chemistry
| | - Elif Şenkuytu
- Department of Chemistry
- Gebze Technical University
- Gebze
- Turkey
- Faculty of Science
| | - Derya Davarcı
- Department of Chemistry
- Gebze Technical University
- Gebze
- Turkey
| | - Uğur Pala
- Department of Chemistry
- Gebze Technical University
- Gebze
- Turkey
| | - Zehra Ölçer
- Department of Chemistry
- Gebze Technical University
- Gebze
- Turkey
| | | |
Collapse
|