1
|
Wang X, Fan C, Wang X, Feng T, Xia S, Yu J. Formation mechanism of off-flavor and the inhibition regulatory strategies in the algal oil-loaded emulsions-a review. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39216015 DOI: 10.1080/10408398.2024.2397451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Algal oil rich in docosahexaenoic acid is easily oxidized and degraded to produce volatile short-chain compounds, leading to the deterioration of product flavor. Currently, the emulsion delivery of algal oil provides a promising approach to minimize oxidative deterioration and conceal its off-flavor. However, algal oil emulsions would also experience unanticipated oxidation as a result of the large specific surface area between the aqueous phase and the oil phase. The current paper offers a mechanism overview behind off-flavor formation in algal oil emulsions and explores corresponding strategies for the inhibition regulation. Additionally, the paper delves into the factors influencing lipid oxidation and the perception of off-flavors in such emulsions. To mitigate the development of off-flavors in algal oil emulsions resulting from oxidation, it is crucial to decline the likelihood of lipid oxidation and proactively prevent the creation of off-flavors whenever possible. Minimizing the release of volatile off-flavor compounds that are inevitably generated is also considered effective for weakening off-flavor. Moreover, co-encapsulation with particular desirable aroma substances could improve the overall flavor characteristics of emulsions.
Collapse
Affiliation(s)
- Xinshuo Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Chunli Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Xingwei Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Tingting Feng
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Shuqin Xia
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Jingyang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Yu Z, Zhou L, Chen Z, Chen L, Hong K, He D, Lei F. Fabrication and Characterization of Docosahexaenoic Acid Algal Oil Pickering Emulsions Stabilized Using the Whey Protein Isolate-High-Methoxyl Pectin Complex. Foods 2024; 13:2159. [PMID: 38998664 PMCID: PMC11240950 DOI: 10.3390/foods13132159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
In this study, the whey protein isolate-high-methoxyl pectin (WPI-HMP) complex prepared by electrostatic interaction was utilized as an emulsifier in the preparation of docosahexaenoic acid (DHA) algal oils in order to improve their physicochemical properties and oxidation stability. The results showed that the emulsions stabilized using the WPI-HMP complex across varying oil-phase volume fractions (30-70%) exhibited consistent particle size and enhanced stability compared to emulsions stabilized solely using WPI or HMP at different ionic concentrations and heating temperatures. Furthermore, DHA algal oil emulsions stabilized using the WPI-HMP complex also showed superior storage stability, as they exhibited no discernible emulsification or oil droplet overflow and the particle size variation remained relatively minor throughout the storage at 25 °C for 30 days. The accelerated oxidation of the emulsions was assessed by measuring the rate of DHA loss, lipid hydroperoxide levels, and malondialdehyde levels. Emulsions stabilized using the WPI-HMP complex exhibited a lower rate of DHA loss and reduced levels of lipid hydroperoxides and malondialdehyde. This indicated that WPI-HMP-stabilized Pickering emulsions exhibit a greater rate of DHA retention. The excellent stability of these emulsions could prove valuable in food processing for DHA nutritional enhancement.
Collapse
Affiliation(s)
- Zhe Yu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
| | - Li Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China;
- Wuhan Institute for Food and Cosmetic Control, Wuhan 430023, China
| | - Zhe Chen
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China;
- Wuhan Institute for Food and Cosmetic Control, Wuhan 430023, China
| | - Ling Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
| | - Kunqiang Hong
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China;
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
| | - Dongping He
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China;
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
| | - Fenfen Lei
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China;
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
| |
Collapse
|
3
|
Zhou T, Li X. Chemically modified seaweed polysaccharides: Improved functional and biological properties and prospective in food applications. Compr Rev Food Sci Food Saf 2024; 23:e13396. [PMID: 38925601 DOI: 10.1111/1541-4337.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Seaweed polysaccharides are natural biomacromolecules with unique physicochemical properties (e.g., good gelling, emulsifying, and film-forming properties) and diverse biological activities (e.g., anticoagulant, antioxidant, immunoregulatory, and antitumor effects). Furthermore, they are nontoxic, biocompatible and biodegradable, and abundant in resources. Therefore, they have been widely utilized in food, cosmetics, and pharmaceutical industries. However, their properties and bioactivities sometimes are not satisfactory for some purposes. Modification of polysaccharides can impart the amphiphilicity and new functions to the biopolymers and change the structure and conformation, thus effectively improving their functional properties and biological activities so as to meet the requirement for targeted applications. This review outlined the modification methods of representative red algae polysaccharides (carrageenan and agar), brown algae polysaccharides (fucoidan, alginate, and laminaran), and green algae polysaccharides (ulvan) that have potential food applications, including etherification, esterification, degradation, sulfation, phosphorylation, selenylation, and so on. The improved functional properties and bioactivities of the modified seaweed polysaccharides and their potential food applications are also summarized.
Collapse
Affiliation(s)
- Tao Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| | - Xinyue Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
4
|
Liu Y, Wang Z, Lv L, Wang L, Li D, Miao X, Zhan H. Characterisation of a casein-/whey protein concentrate-Antarctic krill oil emulsion system and improvement of its storage stability. J Microencapsul 2024; 41:190-203. [PMID: 38602138 DOI: 10.1080/02652048.2024.2335152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/19/2024] [Indexed: 04/12/2024]
Abstract
AIMS To develop Antarctic krill oil emulsions with casein and whey protein concentrate (WPC) and study their physicochemical properties and storage stability. METHODS Emulsions were prepared by homogenisation and ultrasonication. The properties of the emulsions were investigated via ultraviolet ray spectroscopy, dynamic light scattering, confocal laser scanning microscope, sodium dodecyl sulphate-polyacrylamide gel electrophoresis, Fourier transform infra-red spectrometer, and fluorescence spectrum. Shelf life was predicted by the Arrhenius model. RESULTS Casein- and WPC-krill oil emulsions were well formed; the mean particle diameters were less than 128.19 ± 0.64 nm and 158 ± 1.56 nm, the polymer dispersity indices were less than 0.26 ± 0.01 and 0.27 ± 0.01, and the zeta potential were around -46.88 ± 5.02 mV and -33.51 ± 2.68 mV, respectively. Shelf life was predicted to be 32.67 ± 1.55 days and 29.62 ± 0.65 days (40 °C), 27.69 ± 1.15 days and 23.58 ± 0.14 days (50 °C), 24.02 ± 0.15 days and 20.1 ± 0.08 days (60 °C). CONCLUSION The prepared krill oil emulsions have great potential to become a new krill oil supplement.
Collapse
Affiliation(s)
- Yujia Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Ziyang Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Lu Lv
- School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Liang Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Deyang Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Dalian, Liaoning, China
| | - Xiao Miao
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, China
| | - Honglei Zhan
- School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning, China
| |
Collapse
|
5
|
Liang Q, Zhou C, Rehman A, Qayum A, Liu Y, Ren X. Improvement of physicochemical properties, microstructure and stability of lotus root starch/xanthan gum stabilized emulsion by multi-frequency power ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 101:106687. [PMID: 37976566 PMCID: PMC10692874 DOI: 10.1016/j.ultsonch.2023.106687] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Multi-frequency power ultrasound was applied as an environmentally friendly technique to control the nanoparticles (LS/XG-NPs) embedded with lotus root starch/xanthan gum, with the aim of enhancing the stability of Pickering emulsions. The present investigation was centered on evaluating the impact of ultrasound technology on various aspects of the emulsions, encompassing their mean particle size, particle size distribution, zeta potential, microstructure, rheological characteristics, and environmental stability. The findings of this study indicate that ultrasonic treatment enhanced the adsorption of LS/XG-NP onto oil droplets surface, resulting in a reduction in their size. Additionally, ultrasonic treatment decreased the viscosity and Brownian motion rate of the emulsion stabilized by LS/XG-NP, leading to increased fluidity. Furthermore, the emulsion's thermal stability and resistance to environmental oxidation were significantly enhanced through ultrasonic treatment. The Pickering emulsions that were prepared using ultrasound demonstrated excellent resistance to acid, alkali (pH 2-8) and salt ions (50-300 mM NaCl) for a period of 30 days during storage. It was worth anticipating that ultrasound-assisted LS/XG-NPs could efficiently retard the volatilization of fishy odor components within fish oil. Taken together, the present research has evinced the efficacy of ultrasound in enhancing the stability of Pickering emulsions coated with LS/XG-NPs. These findings offer significant novel insights into the advancement of ultrasound-assisted Pickering emulsions that are stabilized with starch-based or biopolymeric materials.
Collapse
Affiliation(s)
- Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Jiangsu Provincial Key Laboratory for Physical Processing of Agricultural Products, Zhenjiang, Jiangsu 212013, China
| | - Chengwei Zhou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yuxuan Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Jiangsu Provincial Key Laboratory for Physical Processing of Agricultural Products, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
6
|
Cai X, Du X, Zhu G, Shi X, Chen Q. Fabrication of carboxymethyl starch/xanthan gum combinations Pickering emulsion for protection and sustained release of pterostilbene. Int J Biol Macromol 2023; 248:125963. [PMID: 37487995 DOI: 10.1016/j.ijbiomac.2023.125963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Carboxymethyl starch (CMS)/xanthan gum (XG) combinations with different ratios (CMS/XG: 1/1, 3/1, 5/1, 7/1, 9/1, w/w) were used as Pickering emulsion delivery systems to encapsulate pterostilbene (PTS) to improve its stability. The results showed that the Pickering emulsion prepared using CMS/XG combinations could effectively encapsulate PTS. When the mass ratio of CMS to XG was 1:1, the encapsulation efficiency reached 91.20 %. The spherical particles in the PTS emulsion were dissociated and homogenous. The results of backscattered light experiments and storage stability studies showed that the PTS emulsion system prepared using CMS/XG was uniform and stable, with no obvious phase separation or emulsion droplet coalescence. With an increase in the mass ratio of XG, the water distribution in the emulsion became more evenly distributed, and the aggregation of droplets was reduced. The PTS emulsion prepared using CMS/XG improved the storage retention percentage of PTS. The cumulative release of PTS in the simulated gastric fluid was significantly lower than that in simulated intestinal fluid. The Pickering emulsion prepared using CMS/XG combinations can be used as a delivery system for functional foods and help to develop an efficient and reliable release system for hydrophobic bioactive substances.
Collapse
Affiliation(s)
- Xuran Cai
- College of Biology and Food Engineering, Hefei Normal University, Hefei 230601, China
| | - Xianfeng Du
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China.
| | - Guilan Zhu
- College of Biology and Food Engineering, Hefei Normal University, Hefei 230601, China
| | - Xiaming Shi
- College of Biology and Food Engineering, Hefei Normal University, Hefei 230601, China
| | - Qianying Chen
- College of Biology and Food Engineering, Hefei Normal University, Hefei 230601, China
| |
Collapse
|
7
|
Ren X, Zhou C, Qayum A, Tang J, Liang Q. Pickering emulsion: A multi-scale stabilization mechanism based on modified lotus root starch/xanthan gum nanoparticles. Int J Biol Macromol 2023; 233:123459. [PMID: 36739046 DOI: 10.1016/j.ijbiomac.2023.123459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
New Pickering emulsion stabilizer LS/XG-NPs (Lotus root starch/xanthan gum nanoparticles) was prepared via autoclaving-cooling method followed by combination with XG. The LS/XG-NPs showed uniform and stable particles with particle size <500 nm, PDI <30, and zeta potential 30-40. The autoclaving-cooling treatment completely changed the crystalline form (from A-type to B-type) and structure of starch; hydrogen bonding and electrostatic interactions were proved to be existed between starch and XG in LS/XG-NPs. The addition of XG increased the contact angle of LS/XG-NPs from 58.79° to 85.42°. In the prepared Pickering emulsion, the LS/XG-NPs adsorbed well on the oil droplets surface, forming a three-dimensional gel network with evenly distributed oil droplets. The Pickering emulsion prepared with LS/XG-NPs showed excellent storage stability and auto-oxidation resistance; the EPA + DHA content in the emulsion remained at 92.46 % after 5 d of storage. The results of this study suggest that LS/XG-NPs have the potential to be food-grade Pickering emulsifiers that not only stabilize emulsions but also prevent emulsion oils from oxidizing.
Collapse
Affiliation(s)
- Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Jiangsu Provincial Key Laboratory for Physical Processing of Agricultural Products, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Chengwei Zhou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jialing Tang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Jiangsu Provincial Key Laboratory for Physical Processing of Agricultural Products, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
8
|
Keramat M, Ehsandoost E, Golmakani MT. Recent Trends in Improving the Oxidative Stability of Oil-Based Food Products by Inhibiting Oxidation at the Interfacial Region. Foods 2023; 12:foods12061191. [PMID: 36981117 PMCID: PMC10048451 DOI: 10.3390/foods12061191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
In recent years, new approaches have been developed to limit the oxidation of oil-based food products by inhibiting peroxidation at the interfacial region. This review article describes and discusses these particular approaches. In bulk oils, modifying the polarity of antioxidants by chemical methods (e.g., esterifying antioxidants with fatty alcohol or fatty acids) and combining antioxidants with surfactants with low hydrophilic–lipophilic balance value (e.g., lecithin and polyglycerol polyricinoleate) can be effective strategies for inhibiting peroxidation. Compared to monolayer emulsions, a thick interfacial layer in multilayer emulsions and Pickering emulsions can act as a physical barrier. Meanwhile, high viscosity of the water phase in emulsion gels tends to hinder the diffusion of pro-oxidants into the interfacial region. Furthermore, applying surface-active substances with antioxidant properties (such as proteins, peptides, polysaccharides, and complexes of protein-polysaccharide, protein-polyphenol, protein-saponin, and protein-polysaccharide-polyphenol) that adsorb at the interfacial area is another novel method for enhancing oil-in-water emulsion oxidative stability. Furthermore, localizing antioxidants at the interfacial region through lipophilization of hydrophilic antioxidants, conjugating antioxidants with surfactants, or entrapping antioxidants into Pickering particles can be considered new strategies for reducing the emulsion peroxidation.
Collapse
|
9
|
Ghelichi S, Hajfathalian M, Yesiltas B, Sørensen ADM, García-Moreno PJ, Jacobsen C. Oxidation and oxidative stability in emulsions. Compr Rev Food Sci Food Saf 2023; 22:1864-1901. [PMID: 36880585 DOI: 10.1111/1541-4337.13134] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/27/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023]
Abstract
Emulsions are implemented in the fabrication of a wide array of foods and therefore are of great importance in food science. However, the application of emulsions in food production is restricted by two main obstacles, that is, physical and oxidative stability. The former has been comprehensively reviewed somewhere else, but our literature review indicated that there is a prominent ground for reviewing the latter across all kinds of emulsions. Therefore, the present study was formulated in order to review oxidation and oxidative stability in emulsions. In doing so, different measures to render oxidative stability to emulsions are reviewed after introducing lipid oxidation reactions and methods to measure lipid oxidation. These strategies are scrutinized in four main categories, namely storage conditions, emulsifiers, optimization of production methods, and antioxidants. Afterward, oxidation in all types of emulsions, including conventional ones (oil-in-water and water-in-oil) and uncommon emulsions in food production (oil-in-oil), is reviewed. Furthermore, the oxidation and oxidative stability of multiple emulsions, nanoemulsions, and Pickering emulsions are taken into account. Finally, oxidative processes across different parent and food emulsions were explained taking a comparative approach.
Collapse
Affiliation(s)
- Sakhi Ghelichi
- Department of Chemistry and Biochemistry Research, Daneshafzayan-e-Fardaye Giti Research and Education Co., Gorgan, Iran
| | - Mona Hajfathalian
- Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Betül Yesiltas
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | | | | | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
10
|
Jia Y, Du J, Li K, Li C. Emulsification mechanism of persimmon pectin with promising emulsification capability and stability. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Chen Y, Sun Y, Ding Y, Ding Y, Liu S, Zhou X, Wu H, Xiao J, Lu B. Recent progress in fish oil-based emulsions by various food-grade stabilizers: Fabrication strategy, interfacial stability mechanism and potential application. Crit Rev Food Sci Nutr 2022; 64:1677-1700. [PMID: 36062818 DOI: 10.1080/10408398.2022.2118658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fish oil, rich in a variety of long-chain ω-3 PUFAs, is widely used in fortified foods due to its broad-spectrum health benefits. However, its undesired characteristics include oxidation sensitivity, poor water solubility, and fishy off-flavor greatly hinder its exploitation in food field. Over the past two decades, constructing fish oil emulsions to encapsulate ω-3 PUFAs for improving their physicochemical and functional properties has undergone great progress. This review mainly focuses on understanding the fabrication strategies, stabilization mechanism, and potential applications of fish oil emulsions, including fish oil microemulsions, nanoemulsions, double emulsions, Pickering emulsions and emulsion gels. Furthermore, the role of oil-water interfacial stabilizers in the fish oil emulsions stability will be discussed with a highlight on food-grade single emulsifiers and natural complex systems for achieving this purpose. Additionally, its roles and applications in food industry and nutrition field are delineated. Finally, possible innovative food trends and applications are highlighted, such as novel fish oil-based delivery systems construction (e.g., Janus emulsions and nutraceutical co-delivery systems), exploring digestion and absorption mechanisms and enhancing functional evaluation (e.g., nutritional supplement enhancer, and novel fortified/functional foods). This review provides a reference for the application of fish oil-based emulsion systems in future precision diet intervention implementations.
Collapse
Affiliation(s)
- Yufeng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- College of Biosystems Engineering and Food Science, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Yi Sun
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yicheng Ding
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Huawei Wu
- Ningbo Today Food Co Ltd, Ningbo, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Formation, Structure and stability of high internal phase Pickering emulsions stabilized by BSPI-C3G covalent complexes. Food Chem X 2022; 16:100455. [PMID: 36203951 PMCID: PMC9530839 DOI: 10.1016/j.fochx.2022.100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
The HIIPPE was stabilized by BSPI-C3G covalent particles. HIPPEs stabilized with 74% (v/v) oil phase fraction have a stable gel-like state. HIPPEs stability was the best with the 3 % (w/v) BSPI-C3G particle concentration.
Food-grade high internal phase Pickering emulsions (HIPPEs) are stabilized by protein-based particles, which have attracted extensive attention due to their good gel-like structure. The black soybean isolate protein/cyanidin-3-O-glucoside (BSPI-C3G) covalent particles were used as a particulate emulsifier to form stable HIPPEs with oil phase fractions (74 % v/v) and low particle concentrations (0.5 %–3 % w/v) The particle size distribution and microstructure demonstrated that the BSPI-C3G covalent particles acted as an interfacial layer and surrounded the oil droplets. As the concentration of BSPI-C3G particles increased from 0.5 % to 3 %, the droplet size, elasticity, antioxidant capacity of the heated or stored HIPPEs more stable. So, the HIPPEs had the best stability with the BSPI-C3G particle at 3 % (w/v) concentration. These findings may extend the application of BSPI and C3G in foods and provide the guidelines for the rational design of food-grade HIPPEs stabilized by protein/anthocyanin complexes.
Collapse
|
13
|
Huang Z, Zeng YJ, Wu XL, Li MF, Zong MH, Lou WY. Development of Millettia speciosa champ polysaccharide conjugate stabilized oil-in-water emulsion for oral delivery of β-carotene: Protection effect and in vitro digestion fate. Food Chem 2022; 397:133764. [PMID: 35905621 DOI: 10.1016/j.foodchem.2022.133764] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022]
Abstract
In this study, a natural antioxidant emulsifier, Millettia speciosa Champ polysaccharide conjugates (MSC-PC), was used for fabricating oil-in-water emulsion, and the influences of MSC-PC on β-carotene stability and bioaccessibility were studied. Results suggested that MSC-PC stabilized emulsion exhibited excellent resistance to a wide range of salt levels (0-500 mM of Na+), thermal treatments (50-90 °C) and pH values (3.0-11.0). MSC-PC also exhibited an outstanding inhibition capacity on lipid oxidation. Besides, MSC-PC stabilized emulsion had a better protective effect on β-carotene than other systems. Interestingly, in spite of similar lipolysis extent, β-carotene bioaccessibility in MSC-PC fabricated emulsion (14.75 %) was markedly higher than that in commercial Tween 80 fabricated emulsion (10.08 %), likely due to the steric-hindrance effect and antioxidant ability of MSC-PC, building interfacial layers that prevented β-carotene from degradation. This work supplied a deep insight into elucidating the mechanisms of emulsifying performance and β-carotene protection effect of MSC-PC fabricated emulsion.
Collapse
Affiliation(s)
- Zhi Huang
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Ying-Jie Zeng
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Xiao-Ling Wu
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Meng-Fan Li
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Wen-Yong Lou
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China.
| |
Collapse
|
14
|
Seaweed-Derived Polysaccharides Attenuate Heat Stress-Induced Splenic Oxidative Stress and Inflammatory Response via Regulating Nrf2 and NF-κB Signaling Pathways. Mar Drugs 2022; 20:md20060358. [PMID: 35736162 PMCID: PMC9227903 DOI: 10.3390/md20060358] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
With global warming, heat stress (HS) has become a worldwide concern in both humans and animals. The ameliorative effect of seaweed (Enteromorpha prolifera) derived polysaccharides (SDP) on HS-induced oxidative stress and the inflammatory response of an immune organ (spleen) was evaluated using an animal model (Gallus gallus domesticus). In total, 144 animals were used in this 4-week trial and randomly assigned to the following three groups: thermoneutral zone, HS, and HS group supplemented with 1000 mg/kg SDP. Dietary SDP improved the antioxidant capacity and reduced the malondialdehyde (MDA) of the spleen when exposed to HS, regulated via enhancing nuclear factor erythroid 2-related factor-2 (Nrf2) signaling. Furthermore, the inclusion of SDP reduced the levels of pro-inflammatory cytokines and alleviated HS-induced splenic inflammatory response by suppressing the nuclear factor-kappa B (NF-κB) p65 signaling. These findings suggest that the SDP from E. prolifera can be used as a functional food and/or feed supplement to attenuate HS-induced oxidative stress and inflammatory responses of the immune organs. Moreover, the results could contribute to the development of high-value marine products from seaweed for potential use in humans and animals, owing to their antioxidant and anti-inflammatory effects.
Collapse
|
15
|
Du Q, Zhou L, Li M, Lyu F, Liu J, Ding Y. Omega‐3 polyunsaturated fatty acid encapsulation system: Physical and oxidative stability, and medical applications. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Qiwei Du
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Linhui Zhou
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Minghui Li
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Fei Lyu
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Jianhua Liu
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Yuting Ding
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| |
Collapse
|
16
|
Bordón MG, Bodoira RM, González A, Piloni R, Ribotta PD, Martínez ML. Spray‐Drying, Oil Blending, and the Addition of Antioxidants Enhance the Storage Stability at Room Temperature of Omega‐3‐Rich Microcapsules Based on Chia Oil. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- María Gabriela Bordón
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC – CONICET) Universidad Nacional de Córdoba Córdoba 5000 Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA) Facultad de Ciencias Exactas Físicas y Naturales Universidad Nacional de Córdoba Córdoba 5000 Argentina
| | - Romina Mariana Bodoira
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC – CONICET) Universidad Nacional de Córdoba Córdoba 5000 Argentina
| | - Agustín González
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA, CONICET) Universidad Nacional de Córdoba Córdoba 5000 Argentina
| | - Roxana Piloni
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC – CONICET) Universidad Nacional de Córdoba Córdoba 5000 Argentina
| | - Pablo Daniel Ribotta
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC – CONICET) Universidad Nacional de Córdoba Córdoba 5000 Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA) Facultad de Ciencias Exactas Físicas y Naturales Universidad Nacional de Córdoba Córdoba 5000 Argentina
- Departamento de Química Industrial y Aplicada Facultad de Ciencias Exactas Físicas y Naturales Universidad Nacional de Córdoba Córdoba 5000 Argentina
| | - Marcela Lilian Martínez
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA) Facultad de Ciencias Exactas Físicas y Naturales Universidad Nacional de Córdoba Córdoba 5000 Argentina
- Departamento de Química Industrial y Aplicada Facultad de Ciencias Exactas Físicas y Naturales Universidad Nacional de Córdoba Córdoba 5000 Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV, CONICET) Universidad Nacional de Córdoba Córdoba 5000 Argentina
| |
Collapse
|
17
|
Xu YY, Huo YF, Xu L, Zhu YZ, Wu YT, Wei XY, Zhou T. Resveratrol-loaded ovalbumin/Porphyra haitanensis polysaccharide composite nanoparticles: Fabrication, characterization and antitumor activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Wang J, Han L, Wang D, Sun Y, Huang J, Shahidi F. Stability and stabilization of omega-3 oils: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Feng T, Wang X, Wang X, Xia S, Huang Q. Plant protein-based antioxidant Pickering emulsions and high internal phase Pickering emulsions against broad pH range and high ionic strength: Effects of interfacial rheology and microstructure. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111953] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Tong X, Cao J, Sun M, Liao P, Dai S, Cui W, Cheng X, Li Y, Jiang L, Wang H. Physical and oxidative stability of oil-in-water (O/W) emulsions in the presence of protein (peptide): Characteristics analysis and bioinformatics prediction. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Gonzalez Toledo SY, Wu J. Impact of Adding Polysaccharides on the Stability of Egg Yolk/Fish Oil Emulsions under Accelerated Shelf-Life Conditions. Molecules 2021; 26:molecules26134020. [PMID: 34209325 PMCID: PMC8271835 DOI: 10.3390/molecules26134020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 11/30/2022] Open
Abstract
Polysaccharides can form interfacial complexes with proteins to form emulsions with enhanced stability. We assessed the effect of adding gum guar or gum arabic to egg yolk/fish oil emulsions. The emulsions were produced using simple or high-pressure homogenization, stored for up to 10 days at 45 °C, and characterized for their particle size and distribution, viscosity, encapsulation efficiency, oxidative stability, and cytotoxicity. Emulsions containing gum guar and/or triglycerides had the highest viscosity. There was no significant difference in the encapsulation efficiency of emulsions regardless of the polysaccharide used. However, emulsions containing gum arabic displayed a bridging flocculation effect, resulting in less stability over time compared to those using gum guar. Emulsions produced using high-pressure homogenization displayed a narrower size distribution and higher stability. The formation of peroxides and propanal was lower in emulsions containing gum guar and was attributed to the surface oil. No significant toxicity toward Caco-2 cells was found from the emulsions over time. On the other hand, after 10 days of storage, nonencapsulated fish oil reduced the cell viability to about 80%. The results showed that gum guar can increase the particle stability of egg yolk/fish oil emulsions and decrease the oxidation rate of omega-3 fatty acids.
Collapse
|
22
|
Lv T, Qin Z, Wang S, Liu H, Ma Y, Zheng Y, Wang X. Effect of proanthocyanidin‐rich extracts from Chinese quince (
Chaenomeles sinensis
) fruit on the physical and oxidative stability of sunflower oil‐in‐water emulsions. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Ting‐Ting Lv
- College of Food Science and Engineering Henan University of Technology Zhengzhou 4750000 China
| | - Zhao Qin
- College of Food Science and Engineering Henan University of Technology Zhengzhou 4750000 China
| | - Shou‐Tao Wang
- College of Food Science and Engineering Henan University of Technology Zhengzhou 4750000 China
| | - Hua‐Min Liu
- College of Food Science and Engineering Henan University of Technology Zhengzhou 4750000 China
| | - Yu‐Xiang Ma
- College of Food Science and Engineering Henan University of Technology Zhengzhou 4750000 China
| | - Yong‐Zhan Zheng
- Henan Sesame Research Center Henan Academy of Agricultural Sciences Zhengzhou 4750000 China
| | - Xue‐De Wang
- College of Food Science and Engineering Henan University of Technology Zhengzhou 4750000 China
| |
Collapse
|
23
|
Liu WC, Ou BH, Liang ZL, Zhang R, Zhao ZH. Algae-derived polysaccharides supplementation ameliorates heat stress-induced impairment of bursa of Fabricius via modulating NF-κB signaling pathway in broilers. Poult Sci 2021; 100:101139. [PMID: 34225200 PMCID: PMC8264154 DOI: 10.1016/j.psj.2021.101139] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
This study aimed to investigate the protective effects of dietary algae-derived polysaccharides (ADP) from Enteromorpha prolifera against heat stress (HS)-induced bursa of Fabricius injure in broilers, and to elucidate the molecular mechanisms underlying the protective effect. A total of 144 8-week-old male yellow-feathered broilers were randomly allocated into 3 treatments of 6 replicates each (8 broilers per replicate): thermoneutral zone group (TN, fed basal diet); heat stress group (HS, fed basal diet); heat stress + ADP group (HSA, basal diet supplemented with 1,000 mg/kg ADP). Broilers in TN group were raised at 23.6 ± 1.8°C during the whole study. Broilers in HS and HSA groups were exposed to 33.2 ± 1.5°C for 10 h/day. The experimental period lasted for four weeks. The results showed that HS and dietary ADP had no significant effects on bursa of Fabricius index (P > 0.05). HS exposure increased the apoptosis rate of bursa of Fabricius (P < 0.05), and the apoptosis rate was reduced by dietary ADP (P < 0.05). Besides, broilers in HS and HSA groups had a lower glutathione-S transferase (GST) activity and total anti-oxidation capacity (T-AOC), whereas had a higher malondialdehyde (MDA) levels of bursa of Fabricius than those in TN group (P < 0.05). HS exposure elevated the concentration of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-4, and IL-6, while decreased the concentration of interferon-γ (INF-γ) and IL-2 (P < 0.05), and dietary inclusion of ADP reduced the IL-1β level and increased the IL-2 level of bursa of Fabricius (P < 0.05). Compared with TN group, broilers in HS and HSA groups had lower relative mRNA expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and GSTT1 in bursa of Fabricius (P < 0.05). Additionally, HS exposure down-regulated the mRNA expression of inhibitor kappa B alpha (IκBα), IFN-γ, and IL-2, while up-regulated the mRNA expression of nuclear factor-kappa B (NF-κB) p65, TNF-α, IL-1β, and IL-6 in bursa of Fabricius (P < 0.05). However, dietary inclusion of ADP up-regulated the mRNA expression of IκBα and down-regulated the mRNA expression of NF-κB p65, TNF-α, and IL-6 in bursa of Fabricius (P < 0.05). Furthermore, HS exposure increased the relative protein expression levels of total and nuclear NF-κB p65 (P < 0.05), but dietary ADP supplementation reduced the relative protein expression levels of total and nuclear NF-κB p65 in bursa of Fabricius (P < 0.05). Collectively, dietary ADP ameliorated the impairment of histology, cell apoptosis and immune balance in bursa of Fabricius of heat stressed broilers, which is involved in modulation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Bin-Huo Ou
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zi-Long Liang
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Rui Zhang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, PR China; College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, 518088, PR China; Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhi-Hui Zhao
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China.
| |
Collapse
|
24
|
Wang Y, Yang F, Yang J, Bai Y, Li B. Synergistic stabilization of oil in water emulsion with chitin particles and tannic acid. Carbohydr Polym 2021; 254:117292. [PMID: 33357861 DOI: 10.1016/j.carbpol.2020.117292] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 02/01/2023]
Abstract
The aim of the present study was to explore the effect of CP and TA on stability of oil in water emulsion stabilized by the two components, so as to fabricate the most efficient chitin based emulsifying agents. It was found that there was synergistic effect for CP and TA in stabilizing emulsion, specifically, the complex of chitin particles (CP) (3 g/L) with tannic acid (TA) (2 g/L) produced the most physically and oxidatively stable oil-in-water emulsion compared with other groups in this study. This is because CP-TA (3/5) complex had the lowest zeta potential, the lowest the oil water interfacial tension, the highest viscosity and the highest content of TA with excellent antioxidant activity. Furthermore, this is because there was intense interaction between CP and TA in CP-TA complex from results of FTIR, XRD and ITC, which then result in the formation of large CP-TA particles.
Collapse
Affiliation(s)
- Yuntao Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, 450001, China
| | - Fang Yang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, 450001, China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, 450000, Henan, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, 450001, China.
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|