1
|
Zhang P, Zhao Q, Song Y, Jin H, Liu Y, Hu D, Liu D. Identification of key genes controlling anthocyanin biosynthesis in the fruits of a bud variety of Tarocco blood-orange. BMC PLANT BIOLOGY 2025; 25:230. [PMID: 39979800 PMCID: PMC11841362 DOI: 10.1186/s12870-025-06212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
Tarocco is a prevalent blood-orange variety in China, has a bud variant identified in Wenzhou City. To characterize the quality traits and molecular mechanisms underlying inhibition of anthocyanin synthesis in this variety, we collected fruits of Tarocco (WT) and the bud variant Ouya (MT) at nine developmental stages. Their anthocyanin, soluble sugar, and organic acid profiles were examined, and transcriptomes and metabolites were analyzed at three developmental stages. The results revealed that MT is a new blood orange variety with weak anthocyanins and a better sugar-acid ratio than the WT. The content of anthocyanin in MT fruits were significantly lower than those in WT fruits, especially cyanidin-like anthocyanins, while the flavone contents exhibited no remarkable variation. A total of 64 differentially expressed genes (DEGs), including five transcription factors (TFs), five methylation-related genes, and one flavonoid biosynthesis gene, were identified between WT and MT at three fruit developmental stages. The potential regulatory networks of these TFs were further constructed using weighted gene co-expression network analysis.Furthermore, in MT fruit treated with the 5-azacytidine, we observed hypomethylation of anthocyanins accumulated in the pulp and the promoters and genebodies of some anthocyanin synthesis-related genes. These results provide new insights into the influence of DNA methylation on anthocyanin accumulation in MT and also provide support for the promotion of MT as a new variety.
Collapse
Affiliation(s)
- Peian Zhang
- Zhejiang Institute of Subtropical Crops, Wenzhou, China
| | - Quan Zhao
- Zhejiang Institute of Subtropical Crops, Wenzhou, China
| | - Yang Song
- Zhejiang Institute of Subtropical Crops, Wenzhou, China
| | - Huanchun Jin
- Wenzhou Agricultural Technology Extension and Service Center, Wenzhou, China
| | - Yingyao Liu
- Zhejiang Institute of Subtropical Crops, Wenzhou, China
| | - Dan Hu
- Wenzhou Agricultural Technology Extension and Service Center, Wenzhou, China
| | - Dongfeng Liu
- Zhejiang Institute of Subtropical Crops, Wenzhou, China.
| |
Collapse
|
2
|
Shao Y, Li S, Chen X, Zhang J, Jianaerbieke H, Chen G, Wang X, Song J. Characteristic Polyphenols in 15 Varieties of Chinese Jujubes Based on Metabolomics. Metabolites 2024; 14:661. [PMID: 39728442 DOI: 10.3390/metabo14120661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Jujube is a homologous herb of medicine and food, and polyphenols are key in determining the functional effects of jujubes. METHODS In this study, characteristic polyphenols in 15 varieties of Chinese jujubes were investigated based on untargeted metabolomics. RESULTS The results showed that a total of 79 characteristic polyphenols were identified in the 15 varieties of Chinese jujube, and 55 characteristic polyphenols such as syringetin, spinosin and kaempferol were reported for the first time. Scopoletin (63.94% in LZYZ), pectolinarin (22.63% in HZ) and taxifolin (19.69% in HZ) contributed greatly and presented significant (p < 0.05) differences in the 15 varieties of Chinese jujubes. HZ was characterized by pectolinarin, erianin and wogonoside, while XSHZ, NYDZ and RQHZ, with similar polyphenol profiles, were characterized by (+)-catechin, combretastatin A4 and tectorigenin. JSBZ, HMDZ, TZ, JCJZ and HPZ had similar polyphenol profiles of galangin, isoferulic acid and hydroxysafflor yellow A. CONCLUSIONS Metabolomics is critical in grasping the full polyphenol contents of jujubes, and the differences in the polyphenol profiles and characteristic individual polyphenols of the 15 varieties of Chinese jujubes were well analyzed by principal component analysis (PCA).
Collapse
Affiliation(s)
- Yong Shao
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Siying Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xuan Chen
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiahui Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huxitaer Jianaerbieke
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gang Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaodong Wang
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239000, China
| | - Jianxin Song
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
3
|
Schumaker B, Mortensen L, Klein RR, Mandal S, Dykes L, Gladman N, Rooney WL, Burson B, Klein PE. UV-induced reactive oxygen species and transcriptional control of 3-deoxyanthocyanidin biosynthesis in black sorghum pericarp. FRONTIERS IN PLANT SCIENCE 2024; 15:1451215. [PMID: 39435026 PMCID: PMC11491397 DOI: 10.3389/fpls.2024.1451215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024]
Abstract
Black pericarp sorghum has notable value due to the biosynthesis of 3-deoxyanthocyanidins (3-DOAs), a rare class of bioactive polyphenols valued as antioxidant food additives and as bioactive compounds with cytotoxicity to human cancer cells. A metabolic and transcriptomic study was conducted to ascertain the cellular events leading to the activation of 3-DOA biosynthesis in black sorghum pericarp. Prolonged exposure of pericarp during grain maturation to high-fluence ultraviolet (UV) light resulted in elevated levels of reactive oxygen species (ROS) and the activation of 3-DOA biosynthesis in pericarp tissues. In conjunction with 3-DOA biosynthesis was the transcriptional activation of specific family members of early and late flavonoid biosynthesis pathway genes as well as the downstream activation of defense-related pathways. Promoter analysis of genes highly correlated with 3-DOA biosynthesis in black pericarp were enriched in MYB and HHO5/ARR-B motifs. Light microscopy studies of black pericarp tissues suggest that 3-DOAs are predominantly localized in the epicarp and are associated with the cell wall. A working model of UV-induced 3-DOA biosynthesis in black pericarp is proposed that shares features of plant immunity associated with pathogen attack or mechanical wounding. The present model depicts ROS accumulation, the transcriptional activation of receptor kinases and transcription factors (TFs) including NAC, WRKY, bHLH, AP2, and C2H2 Zinc finger domain. This study identified key biosynthetic and regulatory genes of 3-DOA accumulation in black pericarp and provided a deeper understanding of the gene networks and cellular events controlling this tissue-and genotype-specific trait.
Collapse
Affiliation(s)
- Brooklyn Schumaker
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Lauren Mortensen
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Robert R. Klein
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, United States
| | - Sabyasachi Mandal
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Linda Dykes
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Unit, Fargo, ND, United States
| | - Nicholas Gladman
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, United States
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - William L. Rooney
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Byron Burson
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, United States
| | - Patricia E. Klein
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
4
|
Daldoul S, Hanzouli F, Boubakri H, Nick P, Mliki A, Gargouri M. Deciphering the regulatory networks involved in mild and severe salt stress responses in the roots of wild grapevine Vitis vinifera spp. sylvestris. PROTOPLASMA 2024; 261:447-462. [PMID: 37963978 DOI: 10.1007/s00709-023-01908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
Transcriptional regulatory networks are pivotal components of plant's response to salt stress. However, plant adaptation strategies varied as a function of stress intensity, which is mainly modulated by climate change. Here, we determined the gene regulatory networks based on transcription factor (TF) TF_gene co-expression, using two transcriptomic data sets generated from the salt-tolerant "Tebaba" roots either treated with 50 mM NaCl (mild stress) or 150 mM NaCl (severe stress). The analysis of these regulatory networks identified specific TFs as key regulatory hubs as evidenced by their multiple interactions with different target genes related to stress response. Indeed, under mild stress, NAC and bHLH TFs were identified as central hubs regulating nitrogen storage process. Moreover, HSF TFs were revealed as a regulatory hub regulating various aspects of cellular metabolism including flavonoid biosynthesis, protein processing, phenylpropanoid metabolism, galactose metabolism, and heat shock proteins. These processes are essentially linked to short-term acclimatization under mild salt stress. This was further consolidated by the protein-protein interaction (PPI) network analysis showing structural and plant growth adjustment. Conversely, under severe salt stress, dramatic metabolic changes were observed leading to novel TF members including MYB family as regulatory hubs controlling isoflavonoid biosynthesis, oxidative stress response, abscisic acid signaling pathway, and proteolysis. The PPI network analysis also revealed deeper stress defense changes aiming to restore plant metabolic homeostasis when facing severe salt stress. Overall, both the gene co-expression and PPI network provided valuable insights on key transcription factor hubs that can be employed as candidates for future genetic crop engineering programs.
Collapse
Affiliation(s)
- Samia Daldoul
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP. 901, Hammam-Lif, Tunisia.
| | - Faouzia Hanzouli
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP. 901, Hammam-Lif, Tunisia
- Faculty of Sciences of Tunis, University Tunis El-Manar, El Manar II, 2092, Tunis, Tunisia
| | - Hatem Boubakri
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, B.P 901, 2050, Hammam-Lif, Tunisia
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP. 901, Hammam-Lif, Tunisia
| | - Mahmoud Gargouri
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP. 901, Hammam-Lif, Tunisia.
| |
Collapse
|
5
|
Yu Y, Huang J, Deng Z, Wang Y, Jiang X, Wang J. Soil Application of Bacillus subtilis Regulates Flavonoid and Alkaloids Biosynthesis in Mulberry Leaves. Metabolites 2024; 14:180. [PMID: 38668308 PMCID: PMC11052171 DOI: 10.3390/metabo14040180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Flavonoids and alkaloids are the major active ingredients in mulberry leaves that have outstanding medicinal value. Bacillus subtilis can effectively activate the plants defense response and regulate the plant secondary metabolism. In this study, we explored the effects of soil application of B. subtilis on the content of flavonoids and the most important alkaloids (1-deoxynojirimycin, DNJ) in mulberry leaves. Significant decreases in flavonoid content were observed in tender leaves and mature leaves after treatment with B. subtilis; at the same time, significant increases in DNJ content were observed in tender leaves. Based on widely targeted LC-MS/MS and high-throughput approaches, we screened out 904 differentially synthesized metabolites (DSMs) and 9715 differentially expressed genes (DEGs). KEGG analyses showed that these DSMs and DEGs were both significantly enriched in the biosynthesis of secondary metabolites, flavonoid synthesis and plant hormone signal transduction. Further correlation analysis of DEMs and DEGs showed that 40 key genes were involved in flavonoid biosynthesis, with 6 key genes involved in DNJ biosynthesis. The expression of CHS, CHI, F3H, F3'H, FLS, UGT and AOC significantly responded to B. subtilis soil application. This study broadens our understanding of the molecular mechanisms underlying the accumulation of flavonoids and alkaloids in mulberry leaves.
Collapse
Affiliation(s)
- Yanfang Yu
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (Y.Y.); (J.H.); (Z.D.); (Y.W.); (X.J.)
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Nanchang 330202, China
| | - Jinzhi Huang
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (Y.Y.); (J.H.); (Z.D.); (Y.W.); (X.J.)
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Nanchang 330202, China
| | - Zhenhua Deng
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (Y.Y.); (J.H.); (Z.D.); (Y.W.); (X.J.)
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Nanchang 330202, China
| | - Yawei Wang
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (Y.Y.); (J.H.); (Z.D.); (Y.W.); (X.J.)
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Nanchang 330202, China
| | - Xinfeng Jiang
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (Y.Y.); (J.H.); (Z.D.); (Y.W.); (X.J.)
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Nanchang 330202, China
| | - Junwen Wang
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (Y.Y.); (J.H.); (Z.D.); (Y.W.); (X.J.)
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Nanchang 330202, China
| |
Collapse
|
6
|
Gong Q, Yu J, Guo Z, Fu K, Xu Y, Zou H, Li C, Si J, Cai S, Chen D, Han Z. Accumulation mechanism of metabolite markers identified by machine learning between Qingyuan and Xiushui counties in Polygonatum cyrtonema Hua. BMC PLANT BIOLOGY 2024; 24:173. [PMID: 38443808 PMCID: PMC10916035 DOI: 10.1186/s12870-024-04871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
Polygonatum cyrtonema Hua is a traditional Chinese medicinal plant acclaimed for its therapeutic potential in diabetes and various chronic diseases. Its rhizomes are the main functional parts rich in secondary metabolites, such as flavonoids and saponins. But their quality varies by region, posing challenges for industrial and medicinal application of P. cyrtonema. In this study, 482 metabolites were identified in P. cyrtonema rhizome from Qingyuan and Xiushui counties. Cluster analysis showed that samples between these two regions had distinct secondary metabolite profiles. Machine learning methods, specifically support vector machine-recursive feature elimination and random forest, were utilized to further identify metabolite markers including flavonoids, phenolic acids, and lignans. Comparative transcriptomics and weighted gene co-expression analysis were performed to uncover potential candidate genes including CHI, UGT1, and PcOMT10/11/12/13 associated with these compounds. Functional assays using tobacco transient expression system revealed that PcOMT10/11/12/13 indeed impacted metabolic fluxes of the phenylpropanoid pathway and phenylpropanoid-related metabolites such as chrysoeriol-6,8-di-C-glucoside, syringaresinol-4'-O-glucopyranosid, and 1-O-Sinapoyl-D-glucose. These findings identified metabolite markers between these two regions and provided valuable genetic insights for engineering the biosynthesis of these compounds.
Collapse
Affiliation(s)
- Qiqi Gong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jianfeng Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhicheng Guo
- Shandong Marine Resource and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai, 264006, China
| | - Ke Fu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yi Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Hui Zou
- Yipuyuan Huangjing Technology Co., Ltd, Xinhua, 417600, China
| | - Cong Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Shengguan Cai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310030, China
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Zhigang Han
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
7
|
Cao D, Ma Y, Cao Z, Hu S, Li Z, Li Y, Wang K, Wang X, Wang J, Zhao K, Zhao K, Qiu D, Li Z, Ren R, Ma X, Zhang X, Gong F, Jung MY, Yin D. Coordinated Lipid Mobilization during Seed Development and Germination in Peanut ( Arachis hypogaea L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3218-3230. [PMID: 38157443 PMCID: PMC10870768 DOI: 10.1021/acs.jafc.3c06697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Peanut (Arachis hypogaea L.) is one of the most important oil crops in the world due to its lipid-rich seeds. Lipid accumulation and degradation play crucial roles in peanut seed maturation and seedling establishment, respectively. Here, we utilized lipidomics and transcriptomics to comprehensively identify lipids and the associated functional genes that are important in the development and germination processes of a large-seed peanut variety. A total of 332 lipids were identified; triacylglycerols (TAGs) and diacylglycerols were the most abundant during seed maturation, constituting 70.43 and 16.11%, respectively, of the total lipids. Significant alterations in lipid profiles were observed throughout seed maturation and germination. Notably, TAG (18:1/18:1/18:2) and (18:1/18:2/18:2) peaked at 23386.63 and 23392.43 nmol/g, respectively, at the final stage of seed development. Levels of hydroxylated TAGs (HO-TAGs) increased significantly during the initial stage of germination. Accumulation patterns revealed an inverse relationship between free fatty acids and TAGs. Lipid degradation was determined to be regulated by diacylglycerol acyltransferase, triacylglycerol lipase, and associated transcription factors, predominantly yielding oleic acid, linoleic acid, and linolenic acid. Collectively, the results of this study provide valuable insights into lipid dynamics during the development and germination of large-seed peanuts, gene resources, and guiding future research into lipid accumulation in an economically important crop.
Collapse
Affiliation(s)
- Di Cao
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Yongzhe Ma
- College
of Food Science, Woosuk University, Samrea-Up, Wanju-Kun, Jeonbuk Province 55338, Republic of Korea
| | - Zenghui Cao
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Sasa Hu
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Zhan Li
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Yanzhe Li
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Kuopeng Wang
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Xiaoxuan Wang
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Jinzhi Wang
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Kunkun Zhao
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Kai Zhao
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Ding Qiu
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Zhongfeng Li
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Rui Ren
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Xingli Ma
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Xingguo Zhang
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Fangping Gong
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Mun Yhung Jung
- College
of Food Science, Woosuk University, Samrea-Up, Wanju-Kun, Jeonbuk Province 55338, Republic of Korea
| | - Dongmei Yin
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| |
Collapse
|
8
|
Li C, Gong Q, Liu P, Xu Z, Yu Q, Dai H, Shi Y, Si J, Zhang X, Chen D, Han Z. Co-expressed network analysis based on 289 transcriptome samples reveals methyl jasmonate-mediated gene regulatory mechanism of flavonoid compounds in Dendrobium catenatum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108226. [PMID: 38039587 DOI: 10.1016/j.plaphy.2023.108226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/21/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Flavonoids are momentous bioactive ingredients in orchid plant Dendrobium catenatum (D. catenatum), which are bioactive compounds with great medical and commercial potential. However, the accurate dissection of flavonoids profiling and their accumulation mechanism are largely unknown. In this study, methyl jasmonate (MeJA) treatment was used to investigate the change of flavonoids content and transcripts in two D. catenatum clones (A6 and B1). We identified 40 flavonoids using liquid chromatograph mass spectrometer (LC-MS). By weighted gene co-expressed network analysis (WGCNA) of flavonoids content and transcript expression of MeJA-treated samples, 37 hub genes were identified. Among them, DcCHIL, DcFLS, and DcDFR were highly correlation with two key transcription factors DcWRKY3/4 by correlation analysis of large-scale transcriptome data and above hub genes expression. Furthermore, transient overexpression of DcWRKY3/4 in tobacco leaves significantly increased the content of flavonoids. This study identified flavonoid profiling and built a new approach to mine regulatory mechanism of flavonoids in D. catenatum. These valuable flavonoids and gene resources will be key for understanding and harnessing natural flavonoids products in pharmaceuticals and foods industry of D. catenatum.
Collapse
Affiliation(s)
- Cong Li
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, PR China.
| | - Qiqi Gong
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, PR China.
| | - Pei Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, PR China.
| | - Zhanwei Xu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, PR China.
| | - Qiaoxian Yu
- Zhejiang Senyu Co., Ltd., Yiwu, Zhejiang, 322000, PR China.
| | - Hanjun Dai
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, PR China.
| | - Yan Shi
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, PR China.
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, PR China.
| | - Xinfeng Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, PR China.
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, PR China.
| | - Zhigang Han
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, PR China.
| |
Collapse
|
9
|
Zhang T, Liu Z, Wang H, Zhang H, Li H, Lu W, Zhu J. Multi-omics analysis reveals genes and metabolites involved in Bifidobacterium pseudocatenulatum biofilm formation. Front Microbiol 2023; 14:1287680. [PMID: 38029154 PMCID: PMC10666050 DOI: 10.3389/fmicb.2023.1287680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Bacterial biofilm is an emerging form of life that involves cell populations living embedded in a self-produced matrix of extracellular polymeric substances (EPS). Currently, little is known about the molecular mechanisms of Bifidobacterium biofilm formation. We used the Bifidobacterium biofilm fermentation system to preparation of biofilms on wheat fibers, and multi-omics analysis of both B. pseudocatenulatum biofilms and planktonic cells were performed to identify genes and metabolites involved in biofilm formation. The average diameter of wheat fibers was around 50 μm, while the diameter of particle in wheat fibers culture of B. pseudocatenulatum was over 260 μm at 22 h with 78.96% biofilm formation rate (BR), and the field emission scanning electron microscopy (FESEM) results showed that biofilm cells on the surface of wheat fibers secreted EPS. Transcriptomic analysis indicated that genes associated with stress response (groS, mntH, nth, pdtaR, pstA, pstC, radA, rbpA, whiB, ybjG), quorum sensing (dppC, livM, luxS, sapF), polysaccharide metabolic process (rfbX, galE, zwf, opcA, glgC, glgP, gtfA) may be involved in biofilm formation. In addition, 17 weighted gene co-expression network analysis (WGCNA) modules were identified and two of them positively correlated to BR. Metabolomic analysis indicated that amino acids and amides; organic acids, alcohols and esters; and sugar (trehalose-6-phosphate, uridine diphosphategalactose, uridine diphosphate-N-acetylglucosamine) were main metabolites during biofilm formation. These results indicate that stress response, quorum sensing (QS), and EPS production are essential during B. pseudocatenulatum biofilm formation.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zongmin Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Haitao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Han Z, Gong Q, Huang S, Meng X, Xu Y, Li L, Shi Y, Lin J, Chen X, Li C, Ma H, Liu J, Zhang X, Chen D, Si J. Machine learning uncovers accumulation mechanism of flavonoid compounds in Polygonatum cyrtonema Hua. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107839. [PMID: 37352696 DOI: 10.1016/j.plaphy.2023.107839] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
The compositions and yield of flavonoid compounds of Polygonatum cyrtonema Hua (PC) are important indices of the quality of medicinal materials. However, the flavonoids compositions and accumulation mechanism are still unclear in PC. Here, we identified 22 flavonoids using widely-targeted metabolome analysis in 15 genotypes of PC. Then weighted gene co-expression network analysis based on 45 transcriptome samples was performed to construct 12 co-expressed modules, in which blue module highly correlated with flavonoids was identified. Furthermore, 4 feature genes including PcCHS1, PcCHI, PcCHS2 and PcCHR5 were identified from 94 hub genes in blue module via machine learning methods support vector machine-recursive feature elimination (SVM-RFE) and random forest (RF), and their functions on metabolic flux of flavonoids pathway were confirmed by tobacco transient expression system. Our findings identified representative flavonoids and key enzymes in PC that provided new insight for elite breeding rich in flavonoids, and thus will be beneficial for rapid development of great potential economic and medicinal value of PC.
Collapse
Affiliation(s)
- Zhigang Han
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Qiqi Gong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Suya Huang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Xinyue Meng
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Yi Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Lige Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Yan Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Junhao Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Xueliang Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Cong Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Haijie Ma
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Jingjing Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Xinfeng Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
11
|
Sun Y, Cai D, Qin D, Chen J, Su Y, Zheng X, Meng Z, Zhang J, Xiong L, Dong Z, Cheng P, Peng X, Yu G. The plant protection preparation GZM improves crop immunity, yield, and quality. iScience 2023; 26:106819. [PMID: 37250797 PMCID: PMC10212988 DOI: 10.1016/j.isci.2023.106819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/10/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Lauryl alcohol, a natural compound found in plants and other organisms, is widely used to make surfactants, food, and pharmaceuticals. GZM, a plant protection preparation with lauryl alcohol as its major component is thought to establish a physical barrier on the plant surface, but its physiological functions are unknown. Here, we show that GZM improves the performance of peanut (Arachis hypogaea) plants in both the laboratory and the field. We demonstrate that the treatment with GZM or lauryl alcohol raises the contents of several specific lysophospholipids and induces the biosynthesis of phenylpropanoids, flavonoids, and wax in various plant species. In the field, GZM improves crop immunity, yield, and quality. In addition, GZM and lauryl alcohol can inhibit the growth of some pathogenic fungi. Our findings provide insights into the physiological and biological effects of GZM treatment on plants and show that GZM and lauryl alcohol are promising preparations in agricultural production.
Collapse
Affiliation(s)
- Yunhao Sun
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Dianxian Cai
- Laboratory of Plant Health, Zhuhai Runnong Science and Technology Co. Ltd, Zhuhai 519000, China
| | - Di Qin
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jialiang Chen
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yutong Su
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaoying Zheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhen Meng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jie Zhang
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lina Xiong
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhangyong Dong
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ping Cheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
| | - Xiaoming Peng
- Laboratory of Plant Health, Zhuhai Runnong Science and Technology Co. Ltd, Zhuhai 519000, China
| | - Guohui Yu
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
12
|
Liu X, Yuan M, Dang S, Zhou J, Zhang Y. Comparative transcriptomic analysis of transcription factors and hormones during flower bud differentiation in 'Red Globe' grape under red‒blue light. Sci Rep 2023; 13:8932. [PMID: 37264033 DOI: 10.1038/s41598-023-29402-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 02/03/2023] [Indexed: 06/03/2023] Open
Abstract
Grape is a globally significant fruit-bearing crop, and the grape flower bud differentiation essential to fruit production is closely related to light quality. To investigate the regulatory mechanism of grape flower bud differentiation under red‒blue light, the transcriptome and hormone content were determined at four stages of flower bud differentiation. The levels of indole-3-acetic acid (IAA) and abscisic acid (ABA) in grape flower buds at all stages of differentiation under red‒blue light were higher than those in the control. However, the levels of cytokinins (CKs) and gibberellic acid (giberellins, GAs) fluctuated continuously over the course of flower bud differentiation. Moreover, many differentially expressed genes were involved in auxin, CK, GA, and the ABA signal transduction pathways. There were significant differences in the AUX/IAA, SAUR, A-RR, and ABF gene expression levels between the red‒blue light treatment and the control buds, especially in regard to the ABF genes, the expression levels of which were completely different between the two groups. The expression of GBF4 and AI5L2 in the control was always low, while the expression under red‒blue light increased. AI5L7 and AI5L5 expression levels showed an upwards trend in the control plant buds and gradually decreased in red‒blue light treatment plant buds. Through weighted gene coexpression network analysis, we determined that the transcription factors WRK48 (WRKY family), EF110 (ERF family), ABR1, CAMTA3 (CAMTA family), and HSFA3 (HSF family) may be involved in the regulation of the GBF4 gene. This study lays a foundation for further analysis of grape flower bud differentiation regulation under red‒blue light.
Collapse
Affiliation(s)
- Xin Liu
- College of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Miao Yuan
- College of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Shizhuo Dang
- College of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Juan Zhou
- College of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Yahong Zhang
- College of Agriculture, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
13
|
Kong L, Li S, Qian Y, Cheng H, Zhang Y, Zuo D, Lv L, Wang Q, Li J, Song G. Comparative Transcriptome Analysis Revealed Key Genes Regulating Gossypol Synthesis in Tetraploid Cultivated Cotton. Genes (Basel) 2023; 14:1144. [PMID: 37372323 DOI: 10.3390/genes14061144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Tetraploid cultivated cotton (Gossypium spp.) produces cottonseeds rich in protein and oil. Gossypol and related terpenoids, stored in the pigment glands of cottonseeds, are toxic to human beings and monogastric animals. However, a comprehensive understanding of the genetic basis of gossypol and gland formation is still lacking. We performed a comprehensive transcriptome analysis of four glanded versus two glandless tetraploid cultivars distributed in Gossypium hirsutum and Gossypium barbadense. A weighted gene co-expression network analysis (WGCNA) based on 431 common differentially expressed genes (DEGs) uncovered a candidate module that was strongly associated with the reduction in or disappearance of gossypol and pigment glands. Further, the co-expression network helped us to focus on 29 hub genes, which played key roles in the regulation of related genes in the candidate module. The present study contributes to our understanding of the genetic basis of gossypol and gland formation and serves as a rich potential source for breeding cotton cultivars with gossypol-rich plants and gossypol-free cottonseed, which is beneficial for improving food safety, environmental protection, and economic gains of tetraploid cultivated cotton.
Collapse
Affiliation(s)
- Linglei Kong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Semi-Arid Agriculture Engineering & Technology Research Center of P. R. China, Shijiazhuang 050051, China
| | - Shaoqi Li
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, National Cotton Improvement Center Hebei Branch, Shijiazhuang 050051, China
| | - Yuyuan Qian
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, National Cotton Improvement Center Hebei Branch, Shijiazhuang 050051, China
| | - Hailiang Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Youping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Dongyun Zuo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Limin Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Qiaolian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Junlan Li
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, National Cotton Improvement Center Hebei Branch, Shijiazhuang 050051, China
| | - Guoli Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
14
|
Azam M, Zhang S, Huai Y, Abdelghany AM, Shaibu AS, Qi J, Feng Y, Liu Y, Li J, Qiu L, Li B, Sun J. Identification of genes for seed isoflavones based on bulk segregant analysis sequencing in soybean natural population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:13. [PMID: 36662254 DOI: 10.1007/s00122-023-04258-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
We identified four hub genes for isoflavone biosynthesis based on BSA-seq and WGCNA methods and validated that GmIE3-1 positively contribute to isoflavone accumulation in soybean. Soybean isoflavones are secondary metabolites of great interest owing to their beneficial impact on human health. Herein, we profiled the seed isoflavone content by HPLC in 1551 soybean accessions grown in two locations for two years and constructed two extreme pools with high (4065.1 µg g-1) and low (1427.23 µg g-1) isoflavone contents to identify candidate genes involved in isoflavone biosynthesis pathways using bulk segregant analysis sequencing (BSA-seq) approach. The results showed that the average sequencing depths were 50.3× and 65.7× in high and low pools, respectively. A total of 23,626 polymorphic SNPs and 5299 InDels were detected between both pools and 1492 genes with different variations were identified. Based on differential genes in BSA-seq and weighted gene co-expression network analysis (WGCNA), four hub genes, Glyma.06G290400 (designated as GmIE3-1), Glyma.01G239200, Glyma.01G241500, Glyma.13G256100 were identified, encoding E3 ubiquitin-protein ligase, arm repeat protein interacting with ABF2, zinc metallopeptidase EGY3, and dynamin-related protein 3A, respectively. The allelic variation in GmIE3-1 showed a significant influence on isoflavone accumulation. The virus-induced gene silencing (VIGS) and RNAi hairy root transformation of GmIE3-1 revealed partial suppression of this gene could cause a significant decrease (P < 0.0001) of total isoflavone content, suggesting GmIE3-1 is a positive regulator for isoflavones. The present study demonstrated that the BSA-seq approach combined with WGCNA, VIGS and hairy root transformation can efficiently identify isoflavone candidate genes in soybean natural population.
Collapse
Affiliation(s)
- Muhammad Azam
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Shengrui Zhang
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yuanyuan Huai
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Ahmed M Abdelghany
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
- Crop Science Department, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt
| | - Abdulwahab S Shaibu
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
- Department of Agronomy, Bayero University, Kano, Nigeria
| | - Jie Qi
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yue Feng
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yitian Liu
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jing Li
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Lijuan Qiu
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Bin Li
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China.
| | - Junming Sun
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
15
|
The Current Developments in Medicinal Plant Genomics Enabled the Diversification of Secondary Metabolites' Biosynthesis. Int J Mol Sci 2022; 23:ijms232415932. [PMID: 36555572 PMCID: PMC9781956 DOI: 10.3390/ijms232415932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Medicinal plants produce important substrates for their adaptation and defenses against environmental factors and, at the same time, are used for traditional medicine and industrial additives. Plants have relatively little in the way of secondary metabolites via biosynthesis. Recently, the whole-genome sequencing of medicinal plants and the identification of secondary metabolite production were revolutionized by the rapid development and cheap cost of sequencing technology. Advances in functional genomics, such as transcriptomics, proteomics, and metabolomics, pave the way for discoveries in secondary metabolites and related key genes. The multi-omics approaches can offer tremendous insight into the variety, distribution, and development of biosynthetic gene clusters (BGCs). Although many reviews have reported on the plant and medicinal plant genome, chemistry, and pharmacology, there is no review giving a comprehensive report about the medicinal plant genome and multi-omics approaches to study the biosynthesis pathway of secondary metabolites. Here, we introduce the medicinal plant genome and the application of multi-omics tools for identifying genes related to the biosynthesis pathway of secondary metabolites. Moreover, we explore comparative genomics and polyploidy for gene family analysis in medicinal plants. This study promotes medicinal plant genomics, which contributes to the biosynthesis and screening of plant substrates and plant-based drugs and prompts the research efficiency of traditional medicine.
Collapse
|
16
|
Advances in Metabolomics-Driven Diagnostic Breeding and Crop Improvement. Metabolites 2022; 12:metabo12060511. [PMID: 35736444 PMCID: PMC9228725 DOI: 10.3390/metabo12060511] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Climate change continues to threaten global crop output by reducing annual productivity. As a result, global food security is now considered as one of the most important challenges facing humanity. To address this challenge, modern crop breeding approaches are required to create plants that can cope with increased abiotic/biotic stress. Metabolomics is rapidly gaining traction in plant breeding by predicting the metabolic marker for plant performance under a stressful environment and has emerged as a powerful tool for guiding crop improvement. The advent of more sensitive, automated, and high-throughput analytical tools combined with advanced bioinformatics and other omics techniques has laid the foundation to broadly characterize the genetic traits for crop improvement. Progress in metabolomics allows scientists to rapidly map specific metabolites to the genes that encode their metabolic pathways and offer plant scientists an excellent opportunity to fully explore and rationally harness the wealth of metabolites that plants biosynthesize. Here, we outline the current application of advanced metabolomics tools integrated with other OMICS techniques that can be used to: dissect the details of plant genotype–metabolite–phenotype interactions facilitating metabolomics-assisted plant breeding for probing the stress-responsive metabolic markers, explore the hidden metabolic networks associated with abiotic/biotic stress resistance, facilitate screening and selection of climate-smart crops at the metabolite level, and enable accurate risk-assessment and characterization of gene edited/transgenic plants to assist the regulatory process. The basic concept behind metabolic editing is to identify specific genes that govern the crucial metabolic pathways followed by the editing of one or more genes associated with those pathways. Thus, metabolomics provides a superb platform for not only rapid assessment and commercialization of future genome-edited crops, but also for accelerated metabolomics-assisted plant breeding. Furthermore, metabolomics can be a useful tool to expedite the crop research if integrated with speed breeding in future.
Collapse
|
17
|
Yu C, Wang Q, Zhang S, Zeng H, Chen W, Chen W, Lou H, Yu W, Wu J. Effects of Strigolactone on Torreya grandis Gene Expression and Soil Microbial Community Structure Under Simulated Nitrogen Deposition. FRONTIERS IN PLANT SCIENCE 2022; 13:908129. [PMID: 35720604 PMCID: PMC9201785 DOI: 10.3389/fpls.2022.908129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen enters the terrestrial ecosystem through deposition. High nitrogen levels can affect physical and chemical properties of soil and inhibit normal growth and reproduction of forest plants. Nitrogen modulates the composition of soil microorganisms. Strigolactones inhibits plant branching, promotes root growth, nutrient absorption, and promotes arbuscular fungal mycelia branching. Plants are subjected to increasing atmospheric nitrogen deposition. Therefore, it is imperative to explore the relationship between strigolactone and nitrogen deposition of plants and abundance of soil microorganisms. In the present study, the effects of strigolactone on genetic responses and soil microorganisms of Torreya grandis, under simulated nitrogen deposition were explored using high-throughput sequencing techniques. T. grandis is a subtropical economic tree species in China. A total of 4,008 differentially expressed genes were identified in additional N deposition and GR24 treatment. These genes were associated with multiple GO terms and metabolic pathways. GO enrichment analysis showed that several DEGs were associated with enrichment of the transporter activity term. Both additional nitrogen deposition and GR24 treatment modulated the content of nutrient elements. The content of K reduced in leaves after additional N deposition treatment. The content of P increased in leaves after GR24 treatment. A total of 20 families and 29 DEGs associated with transporters were identified. These transporters may be regulated by transcription factors. A total of 1,402,819 clean reads and 1,778 amplicon sequence variants (ASVs) were generated through Bacterial 16S rRNA sequencing. Random forest classification revealed that Legionella, Lacunisphaera, Klebsiella, Bryobacter, and Janthinobacterium were significantly enriched in the soil in the additional N deposition group and the GR24 treatment group. Co-occurrence network analysis showed significant differences in composition of soil microbial community under different treatments. These results indicate a relationship between N deposition and strigolactones effect. The results provide new insights on the role of strigolactones in plants and composition of soil microorganisms under nitrogen deposition.
Collapse
Affiliation(s)
- Chenliang Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Qi Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Shouke Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Hao Zeng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Weijie Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Wenchao Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
- NFGA Engineering Research Center for Torreya grandis ‘Merrillii’, Zhejiang A&F University, Hangzhou, China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
- NFGA Engineering Research Center for Torreya grandis ‘Merrillii’, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
18
|
Tiozon RJN, Sartagoda KJD, Serrano LMN, Fernie AR, Sreenivasulu N. Metabolomics based inferences to unravel phenolic compound diversity in cereals and its implications for human gut health. Trends Food Sci Technol 2022; 127:14-25. [PMID: 36090468 PMCID: PMC9449372 DOI: 10.1016/j.tifs.2022.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
Background Scope and approach Key findings and conclusion Phenolic compounds are critical in avoiding metabolic disorders associated with oxidative stress. Breeding cereal crops to enrich phenolic compounds in grains contributes to personalized nutrition. A diet rich in cereal phenolics likely to increase human gut health, thereby lowering the risk of non-communicable illness.
Collapse
Affiliation(s)
- Rhowell Jr. N. Tiozon
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños, 4030, Philippines
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Kristel June D. Sartagoda
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños, 4030, Philippines
| | - Luster May N. Serrano
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños, 4030, Philippines
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Nese Sreenivasulu
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños, 4030, Philippines
- Corresponding author.
| |
Collapse
|
19
|
da Silva RF, Carneiro CN, do C. de Sousa CB, J. V. Gomez F, Espino M, Boiteux J, de los Á. Fernández M, Silva MF, de S. Dias F. Sustainable extraction bioactive compounds procedures in medicinal plants based on the principles of green analytical chemistry: A review. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Nazir MM, Li Q, Noman M, Ulhassan Z, Ali S, Ahmed T, Zeng F, Zhang G. Calcium Oxide Nanoparticles Have the Role of Alleviating Arsenic Toxicity of Barley. FRONTIERS IN PLANT SCIENCE 2022; 13:843795. [PMID: 35360316 PMCID: PMC8963479 DOI: 10.3389/fpls.2022.843795] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/14/2022] [Indexed: 05/11/2023]
Abstract
Arsenic (As) contamination in agricultural soils has become a great threat to the sustainable development of agriculture and food safety. Although a lot of approaches have been proposed for dealing with soil As contamination, they are not practical in crop production due to high cost, time-taking, or operational complexity. The rapid development of nanotechnology appears to provide a novel solution to soil As contamination. This study investigated the roles of calcium oxide nanoparticles (CaO NPs) in alleviating As toxicity in two barley genotypes (LJZ and Pu-9) differing in As tolerance. The exposure of barley seedlings to As stress showed a significant reduction in plant growth, calcium and chlorophyll content (SPAD value), fluorescence efficiency (Fv/m), and a dramatic increase in the contents of reactive oxygen species (ROS), malondialdehyde (MDA) and As, with LJZ being more affected than Pu-9. The exogenous supply of CaO NPs notably alleviated the toxic effect caused by As in the two barley genotypes. Moreover, the expression of As transporter genes, that is, HvPHT1;1, HvPHT1;3, HvPHT1;4 and HvPHT1;6, was dramatically enhanced when barley seedlings were exposed to As stress and significantly reduced in the treatment of CaO NPs addition. It may be concluded that the roles of CaO NPs in alleviating As toxicity could be attributed to its enhancement of Ca uptake, ROS scavenging ability, and reduction of As uptake and transportation from roots to shoots.
Collapse
Affiliation(s)
- Muhammad Mudassir Nazir
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qi Li
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Noman
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zaid Ulhassan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fanrong Zeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- School of Agriculture, Yangtze University, Jinzhou, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- *Correspondence: Guoping Zhang,
| |
Collapse
|
21
|
Zhang P, Lu S, Liu Z, Zheng T, Dong T, Jin H, Jia H, Fang J. Transcriptomic and Metabolomic Profiling Reveals the Effect of LED Light Quality on Fruit Ripening and Anthocyanin Accumulation in Cabernet Sauvignon Grape. Front Nutr 2022; 8:790697. [PMID: 34970581 PMCID: PMC8713590 DOI: 10.3389/fnut.2021.790697] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Different light qualities have various impacts on the formation of fruit quality. The present study explored the influence of different visible light spectra (red, green, blue, and white) on the formation of quality traits and their metabolic pathways in grape berries. We found that blue light and red light had different effects on the berries. Compared with white light, blue light significantly increased the anthocyanins (malvidin-3-O-glucoside and peonidin-3-O-glucoside), volatile substances (alcohols and phenols), and soluble sugars (glucose and fructose), reduced the organic acids (citric acid and malic acid), whereas red light achieved the opposite effect. Transcriptomics and metabolomics analyses revealed that 2707, 2547, 2145, and 2583 differentially expressed genes (DEGs) and (221, 19), (254, 22), (189, 17), and (234, 80) significantly changed metabolites (SCMs) were filtered in the dark vs. blue light, green light, red light, and white light, respectively. According to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, most of the DEGs identified were involved in photosynthesis and biosynthesis of flavonoids and flavonols. Using weighted gene co-expression network analysis (WGCNA) of 23410 highly expressed genes, two modules significantly related to anthocyanins and soluble sugars were screened out. The anthocyanins accumulation is significantly associated with increased expression of transcription factors (VvHY5, VvMYB90, VvMYB86) and anthocyanin structural genes (VvC4H, Vv4CL, VvCHS3, VvCHI1, VvCHI2, VvDFR), while significantly negatively correlated with VvPIF4. VvISA1, VvISA2, VvAMY1, VvCWINV, VvβGLU12, and VvFK12 were all related to starch and sucrose metabolism. These findings help elucidate the characteristics of different light qualities on the formation of plant traits and can inform the use of supplemental light in the field and after harvest to improve the overall quality of fruit.
Collapse
Affiliation(s)
- Peian Zhang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Suwen Lu
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Zhongjie Liu
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Ting Zheng
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Tianyu Dong
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Huanchun Jin
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Haifeng Jia
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Jingggui Fang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
22
|
Sharma A, Bhattacharyya D, Sharma S, Chauhan RS. Transcriptome profiling reveal key hub genes in co-expression networks involved in Iridoid glycosides biosynthetic machinery in Picrorhiza kurroa. Genomics 2021; 113:3381-3394. [PMID: 34332040 DOI: 10.1016/j.ygeno.2021.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
Picrorhiza kurroa is a medicinal herb rich in hepatoprotective iridoid glycosides, picroside-I (P-I) and picroside-II (P-II). The biosynthetic machinery of picrosides is poorly understood, therefore, 'no-direction' gene co-expression networks were used to extract linked/closed and separated interactions in terpenoid glycosides-specific sub-networks. Transcriptomes generated from different organs, varying for P-I and P-II contents such as shoots grown at 15 and 25 °C and nursery-grown shoots, stolons, and roots resulted in 47,726, 44,958, 40,117, 66,979, and 55,578 annotated transcripts, respectively. Occurrence of 2810 ± 136 nodes and 15,626 ± 696 edges in these networks indicated intense, co-expressed, closed loop interactions. Either deregulation/inhibition of abscisic acid (ABA) biosynthesis/signaling or constitutive degradation of ABA resulted in organ-specific accumulation of P-I and P-II. Biosynthesis, condensation and glucosylation of isoprene units may occur in shoots, roots or stolons; but addition of phenylpropanoid moiety and further modification/s of the iridoid backbone occurs mainly inside vacuoles in roots.
Collapse
Affiliation(s)
- Ashish Sharma
- Department of Biotechnology, School of Engineering & Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh 201310, India
| | - Dipto Bhattacharyya
- Department of Biotechnology, School of Engineering & Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh 201310, India
| | - Shilpa Sharma
- Department of Biotechnology, School of Engineering & Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh 201310, India
| | - Rajinder Singh Chauhan
- Department of Biotechnology, School of Engineering & Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh 201310, India.
| |
Collapse
|
23
|
Ambra R, Pastore G, Lucchetti S. The Role of Bioactive Phenolic Compounds on the Impact of Beer on Health. Molecules 2021; 26:486. [PMID: 33477637 PMCID: PMC7831491 DOI: 10.3390/molecules26020486] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022] Open
Abstract
This review reports recent knowledge on the role of ingredients (barley, hop and yeasts), including genetic factors, on the final yield of phenolic compounds in beer, and how these molecules generally affect resulting beer attributes, focusing mainly on new attempts at the enrichment of beer phenols, with fruits or cereals other than barley. An entire section is dedicated to health-related effects, analyzing the degree up to which studies, investigating phenols-related health effects of beer, have appropriately considered the contribution of alcohol (pure or spirits) intake. For such purpose, we searched Scopus.com for any kind of experimental model (in vitro, animal, human observational or intervention) using beer and considering phenols. Overall, data reported so far support the existence of the somehow additive or synergistic effects of phenols and ethanol present in beer. However, findings are inconclusive and thus deserve further animal and human studies.
Collapse
Affiliation(s)
- Roberto Ambra
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, 00178 Rome, Italy; (G.P.); (S.L.)
| | | | | |
Collapse
|