1
|
Wu Y, Ma F, Tan S, Niu A, Chen Y, Liu Y, Qiu W, Wang G. The aprD-mutated strain modulates the development of Pseudomonas fragi population but has limited effects on the spoilage profiles of native residents. Food Microbiol 2025; 128:104708. [PMID: 39952743 DOI: 10.1016/j.fm.2024.104708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 02/17/2025]
Abstract
Extracellular enzymes produced by predominant bacteria exert important roles in inducing and accelerating spoilage, with their secretion regulated by specific genes. In Pseudomonas fragi, the aprD gene is a recognized regulator for secreting an alkaline extracellular protease. However, limited studies have focused on this gene in P. fragi population and its impact on meat microbial community structure and function. This study addressed this gap by monitoring the changes in biological properties of P. fragi populations and analyzing the discrepancies in spoilage phenotypes and microbial community structures of chilled chicken among groups differentiated by the initial prevalence of aprD-positive strains. The results showed that aprD-positive strains were disseminated in P. fragi populations, and its prevalence was associated with significant increases in swimming motility and biofilm formation capacities in specific groups. In situ contamination experiments revealed varying spoilage characteristics and community compositions among groups by day 3 of storage. Correlation analysis demonstrated a strong association between spoilage phenotypes and certain bacterial genera, such as Pseudomonadaceae_Pseudomonas and Carnobacterium. However, the microbial community structure and spoilage characteristics of samples from each group were not significantly different on the 5th day of storage. These findings suggest that even a small number of aprD mutants can significantly affect the assembly of the chilled meat microbial community. Nonetheless, the regulatory effect of aprD on spoilage at the strain and population levels of P. fragi is negligible in the context of complex natural microbiota. This work underscores the complex interactions between specific bacterial genes and the broader microbial ecology in refrigerated meat environments, providing deeper insights into the meat spoilage mechanisms.
Collapse
Affiliation(s)
- Yajie Wu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Fang Ma
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Song Tan
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Ajuan Niu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Yuping Chen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Yuxin Liu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Weifen Qiu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Guangyu Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China.
| |
Collapse
|
2
|
Wang Y, Li F, Wang X, Ma C. Integrating hypoxanthine and K value for reliable and rapid freshness assessment in marine fish. Food Chem 2025; 470:142630. [PMID: 39736177 DOI: 10.1016/j.foodchem.2024.142630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/10/2024] [Accepted: 12/21/2024] [Indexed: 01/01/2025]
Abstract
This study aimed to explore the relationship between hypoxanthine (Hx) levels and freshness indicators in three kinds of fish samples during storage for 7 days at 4 °C to determine the Hx levels indicating freshness. The total volatile basic nitrogen (TVBN) was tested using the semi-micro Kjeldahl method, and Hx level and K value were measured using high-performance liquid chromatography (HPLC). During storage, Hx levels, TVBN, and K values increased, and distinct patterns were observed between Hx and TVBN in three fish samples. The Hx level highly correlated with K value (Adj-R2 = 0.998, 0.986, and 0.986) when K value was below 40 %. A paper biosensor was applied for Hx determination, the color of which correlated well with the K value, offering an easy, rapid and visual tool for predicting fish freshness. Thus, Hx can be used to predict K value and indicate freshness in some application scenario prior to spoilage.
Collapse
Affiliation(s)
- Yilin Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Fengyi Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xiudan Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
3
|
Ren Y, Sun J, Mao X. Protein degradation mechanisms during refrigerated storage of gazami crab (Portunus trituberculatus) at endogenous and microbial-derived enzyme levels. Food Chem 2025; 469:142449. [PMID: 39708657 DOI: 10.1016/j.foodchem.2024.142449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
During storage, the proteins of gazami crab (Portunus trituberculatus) are prone to hydrolysis into amino acids and biogenic amines, in which enzymes play a critical role. However, studies exploring spoilage mechanisms from the perspective of enzymes are limited. This study identified 84 endogenous and 52 microbial-derived proteolytic enzymes and peptidases by proteomics and metagenomics. There are 7 endogenous amino acid deaminases, primarily degrade glutamate and aspartate. Additionally, 25 amino acid deaminases of microbial origin were identified, which mainly degrade serine. The formation of biogenic amines involved 14 enzymes, all of which were microbial in origin, primarily synthesizing putrescine from arginine. The main microbial contributors to these enzymes were Photobacterium, Vibrio, and Aliivibrio, accounting for 63.87 %, 15.51 %, and 8.69 % at the end of refrigeration, respectively. This study provides insights into the mechanisms of quality deterioration in gazami crab during refrigeration, from the perspectives of metabolic enzymes and microbial activity.
Collapse
Affiliation(s)
- Yanmei Ren
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| |
Collapse
|
4
|
Liu M, Mo Y, Dong Z, Yang H, Lin B, Li Y, Lou Y, Fu S. Antibacterial activity of zinc oxide nanoparticles against Shewanella putrefaciens and its application in preservation of large yellow croaker (Pseudosciaena crocea). Food Res Int 2025; 201:115642. [PMID: 39849782 DOI: 10.1016/j.foodres.2024.115642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/11/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Specific spoilage organisms (SSOs) are the key factors affecting the deterioration of large yellow croaker. This study investigated the antibacterial activity and mechanism of Zinc oxide nanoparticles (ZnO-NPs) against Shewanella putrefaciens. The effects of different concentrations of ZnO-NPs (0.5, 1, 2 mg/mL) combined with seawater slurry ice preservation on storage quality and microbial community of large yellow croaker were further investigated. The results showed that ZnO-NPs had a strong antibacterial effect on Shewanella putrefaciens, which destroyed the integrity of the cell membrane, resulting in nucleic acid leakage and increased electrical conductivity. In addition, ZnO-NPs could effectively inhibit the proliferation of microorganisms, slow down the rate of lipid oxidation, delay the rise of pH value and total volatile basic nitrogen, and maintain the color of fish. Among them, 2 mg/mL ZnO-NPs treatment showed the best preservation effect on large yellow croaker. High-throughput sequencing results showed that Pseudoalteromonas and Shewanella became the dominant spoilage bacteria with the extension of storage time. ZnO-NPs significantly reduced the relative abundance of dominant spoilage bacteria and changed the microbial composition of fish. Inhibition of the growth of SSOs was important for delaying spoilage and prolonging the shelf-life of large yellow croaker. Therefore, ZnO-NPs combined with seawater slurry ice preservation could be used as a new storage method, which provides a new idea for food quality and safety control.
Collapse
Affiliation(s)
- Mengqing Liu
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Yuhan Mo
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Zheyun Dong
- Zhejiang Yushan Supply Chain Management Co., Ltd., Ningbo 315100, China
| | - Huicheng Yang
- Zhejiang Marine Development Research Institute, Zhoushan 316021, China
| | - Bangchu Lin
- Zhejiang Yulin Technology Co., Ltd., Ningbo 315021, China
| | - Yongyong Li
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Yongjiang Lou
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Shiqian Fu
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China.
| |
Collapse
|
5
|
Nicosia C, Licciardello F. Study of the release kinetics of Ethyl Lauroyl Arginate from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) active films. Food Res Int 2025; 200:115345. [PMID: 39779157 DOI: 10.1016/j.foodres.2024.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 01/30/2025]
Abstract
This study investigates the underexplored area of the release mechanism and kinetics of the antimicrobial Ethyl Lauroyl Arginate (LAE®) from an innovative active packaging system based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). We evaluated the impact of food simulants and temperatures on LAE® release, diffusion, and partition coefficients. Mathematical modeling was used to elucidate LAE® release kinetics, offering understanding of the release behaviour in food matrices. Results highlighted that temperature notably affected LAE® release into simulant A (10% EtOH) unlike the release into simulant D1 (50% EtOH). Although the release was faster in the less polar simulant, a greater partition coefficient demonstrated greater LAE® retention within the polymer matrix at equilibrium. Weibull models ensured robust fits, suggesting their usefulness for future studies on LAE® release kinetic. Finally, the active films were validated in food, showing significant reduction in microbial counts. These findings contribute to the design of effective antimicrobial food packaging and the selection of suitable food applications.
Collapse
Affiliation(s)
- Carola Nicosia
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy.
| | - Fabio Licciardello
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; Interdepartmental Research Centre for the Improvement of Agro-Food Biological Resources (BIOGEST-SITEIA), University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| |
Collapse
|
6
|
Dai W, Liu S, Ding Y, Gu S, Zhou X, Ding Y. Insight into flavor changes in bighead carp (Aristichthys nobilis) fillets during storage based on enzymatic, microbial, and metabolism analysis. Food Chem 2024; 460:140505. [PMID: 39033638 DOI: 10.1016/j.foodchem.2024.140505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/23/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
The flavor alterations in bighead carp subjected to varying storage temperatures and the underlying metabolic mechanism were elucidated. Analysis of volatile flavor compounds, electronic nose, free amino acids, ATP-related compounds, and sensory evaluations uncovered a progressive flavor deterioration during storage, especially at 25 °C. Metabolomics-based flavor relating component profiling analysis showed that free fatty acids formed various fatty aldehydes including (E, E)-2,4-heptadienal and nonanal under lipoxygenase catalysis. Alcohol dehydrogenase and alcohol acyltransferases were intimately involved in alcohol and ester generation, while alkaline phosphatase, 5'-nucleotidase, and acid phosphatase were closely associated with IMP, Hx, and HxR conversion, respectively. Aeromonas, Serratia, Lactococcus, Pseudomonas, and Peptostreptococcus notably influenced flavor metabolism and enzyme activities. The metabolism disparities of valine, leucine, isoleucine, lysine, and α-linolenic acid could be the primary factors contributing to flavor metabolism distinctions. This study offers novel insights into the flavor change mechanisms and potential regulation strategies of bighead carp during storage.
Collapse
Affiliation(s)
- Wangli Dai
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yicheng Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Saiqi Gu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| |
Collapse
|
7
|
Liu S, Zhang L, Guo Y, Wang M, Cai H, Hong P, Zhong S, Lin J. Study on quality characteristics, shelf-life prediction and frying mass transfer of breaded tilapia nuggets. Heliyon 2024; 10:e36528. [PMID: 39263184 PMCID: PMC11387244 DOI: 10.1016/j.heliyon.2024.e36528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 09/13/2024] Open
Abstract
Deep-fried breaded tilapia nuggets (DFBTNs) have good market prospects as a tilapia deep-processed product. In this study, we used pre-optimized DFBTNs to simulate the mass change from storage to consumption and investigated the changes in storage shelf-life and frying mass transfer kinetics of DFBTNs. Microbial growth trend and shelf-life prediction models at different storage temperatures were developed using a modified Gompertz equation. The R2 of the fitted equations were all greater than 0.98, and the predicted shelf-life of the products was close to the actual measurement time. The ability of the electronic nose and tongue to differentiate between odor and taste can be used as a secondary indicator to determine whether a product is spoiled or not. During the reheating process of deep-frying, the batter shell moisture decreased (18.69 %→6.89 %), and the oil content increased (2.76 %→27.35 %). The mass transfer coefficient k fitted by Fick's second law for moisture evaporation was 0.0086, and the mass transfer coefficient k fitted by the first-order kinetic equation for oil absorption was 0.1137. This study is informative for storing and consuming DFBTNs, which can provide a basis for the deep processing and high-value utilization of tilapia.
Collapse
Affiliation(s)
- Shouchun Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524004, China
| | - Luyao Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524004, China
| | - Yongjia Guo
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
| | - Minjie Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
| | - Hongying Cai
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524004, China
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524004, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
| | - Jiayong Lin
- Gaozhou Natural Aquatic Products Co., Ltd, Maoming, 525200, China
| |
Collapse
|
8
|
Xiao N, Zhou X, Zhang Y, Liu T, Jiang Y, Ullah S, Wang J, Feng F, Zhao M. Effects of antibacterial peptides from Brevibacillus texasporus on growth performance, meat quality and gut health of cultured largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2024; 152:109792. [PMID: 39084277 DOI: 10.1016/j.fsi.2024.109792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
The aim of this study was to investigate the effects of antibacterial peptides from Brevibacillus texasporus (BT) on the growth performance, meat quality and gut health of cultured largemouth bass (Micropterus salmoides). Largemouth bass (36.17 ± 1.52 g) were divided into 2 groups and each group was fed with diets supplemented with or without 200 ppm of BT peptides for 130 days. The results showed that BT peptides had no significant influences on growth performance and body indexes, but significantly enhanced total antioxidant capacity and lysozyme content in the serum. Moreover, digestive enzymes activities and intestinal villous height were also prominently increased. From meat quality aspect, no significant differences were found in nutritional components, amino acid composition, fatty acid composition and texture property, except the values of hardness, gumminess and γ-linolenic acid (C18:3n6) were remarkably increased after BT peptides intervention. Finally, the results of gut microbiota and short chain fatty acids revealed that BT peptides significantly decreased the relative abundances of harmful bacteria such as genus Acinetobacter and Pseudomonas, and increased the production of short chain fatty acids. In conclusion, this study confirmed that BT peptides could be used to improve the health of largemouth bass, which provided novel insights into the application of antimicrobial peptides in aquacultures.
Collapse
Affiliation(s)
- Nanhai Xiao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiuzhen Zhou
- College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, 315100, China
| | - Yi Zhang
- College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, 315100, China
| | - Tao Liu
- Xianghu Laboratory, Hangzhou, 311231, China
| | - Yiwei Jiang
- Ningbo Mingyi Biotechnology Co., Ltd, Ningbo, 315000, China
| | - Sami Ullah
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo, 315000, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Chen G, Wang Y, Li Y, Zhang J, Huo Y, Ge W, Yang H. A combined approach of lauroyl arginine ethyl ester hydrochloride and kojic acid in mitigating fresh-cut potato deterioration. Food Chem 2024; 450:139392. [PMID: 38640546 DOI: 10.1016/j.foodchem.2024.139392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
The combinational effects of kojic acid and lauroyl arginine ethyl ester hydrochloride (ELAH) on fresh-cut potatoes were investigated. Kojic acid of 0.6% (w/w) effectively inhibited the browning of fresh-cut potatoes and displayed antimicrobial capacity. The color difference value of samples was decreased from 175 to 26 by kojic acid. In contrast, ELAH could not effectively bind with the active sites of tyrosinase and catechol oxidase at molecular level. Although 0.5% (w/w) of ELAH prominently inhibited the microbial growth, it promoted the browning of samples. However, combining kojic acid and ELAH effectively inhibited the browning of samples and microbial growth during the storage and the color difference value of samples was decreased to 52. This amount of kojic acid inhibited enzyme activities toward phenolic compounds. The results indicated that combination of kojic acid and ELAH could provide a potential strategy to extend the shelf life of fresh-cut products.
Collapse
Affiliation(s)
- Gang Chen
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Yuhui Wang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Yongxin Li
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Jiaojiao Zhang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Yanrong Huo
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Wanying Ge
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Huqing Yang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China.
| |
Collapse
|
10
|
Sheng X, Yan L, Peng L, Zhao L, Dai F, Chen F, Wang L, Chen Y, Ye M, Wang J, Zhang J, Raghavan V. Effect of plasma-activated lactic acid on microbiota composition and quality of puffer fish ( Takifugu obscurus) fillets during chilled storage. Food Chem X 2024; 21:101129. [PMID: 38298353 PMCID: PMC10828650 DOI: 10.1016/j.fochx.2024.101129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Fresh puffer fish (Takifugu obscurus) are susceptible to microbial contamination and have a very short shelf-life of chilled storage. Hence, this study aimed to evaluate the effects of plasma-activated lactic acid (PALA) on microbiota composition and quality attributes of puffer fish fillets during chilled storage. The results showed that PALA treatment effectively reduced the growth of bacteria and attenuated changes in physicochemical indicators (total volatile basic nitrogen, pH value, K value, and biogenic amines) of puffer fish fillets. Additionally, insignificant changes were observed in lipid oxidation during the first 8 days (p > 0.05). Illumina-MiSeq high-throughput sequencing revealed that PALA effectively inhibited the growth of Pseudomonas in puffer fish fillets and maintained the diverse characteristics of the microbial community. In combination with sensory analysis, PALA extended the shelf life of puffer fish fillets for 4 days, suggesting that PALA could be considered a potential fish fillet preservation method.
Collapse
Affiliation(s)
- Xiaowei Sheng
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Longfei Yan
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Sericulture & Agri-Food Research Institute Guangdong Academy of Agriculture Science, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lanqing Peng
- Guangdong Supply and Marketing Green Agricultural Products Production and Supply Base Operation Co., Ltd, Huizhou 516100, China
| | - Luling Zhao
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fanwei Dai
- Sericulture & Agri-Food Research Institute Guangdong Academy of Agriculture Science, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Feiping Chen
- Sericulture & Agri-Food Research Institute Guangdong Academy of Agriculture Science, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Ling Wang
- Sericulture & Agri-Food Research Institute Guangdong Academy of Agriculture Science, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yulong Chen
- Sericulture & Agri-Food Research Institute Guangdong Academy of Agriculture Science, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mingqiang Ye
- Sericulture & Agri-Food Research Institute Guangdong Academy of Agriculture Science, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jianhao Zhang
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
| |
Collapse
|
11
|
Liang Q, Hu X, Zhong B, Huang X, Wang H, Yu C, Tu Z, Li J. Regulating effects of low salt dry-curing pre-treatment on microbiota, biochemical changes and flavour precursors of grass carp ( Ctenopharyngodon idella) fillets during storage at 4 °C. Food Chem X 2024; 21:101188. [PMID: 38434696 PMCID: PMC10904891 DOI: 10.1016/j.fochx.2024.101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Low salt dry-curing (LSD), as a healthier pre-treatment for the preservation of fishery products, is a potential technique substitute for excessively salty curing. The regulatory effects of 2 % and 3 % LSD on the quality evolution through an intrinsic correlation between microbiota succession and flavour precursors of refrigerated grass carp fillets were investigated in this study. The results showed that the LSD pre-treatment was effective in promoting proteolysis, free amino acid and fatty acid metabolism with the microbiota succession and quality evolution. Compared with unpre-treated samples, the 3 % LSD pre-treatment effectively extended the shelf life by 10 days within the acceptable quality attributes. Not only did the LSD pre-treatment lead to catalytic microbiota succession and inhibitive spoilage substance production but it also improved the flavour precursors, which are taste-active amino acids and polyunsaturated fatty acids (PUFAs). Moreover, considerable correlations between quality attributes, taste-active amino acids, PUFAs and microbiota were obtained.
Collapse
Affiliation(s)
- Qingxi Liang
- National R&D Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xiangfei Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Bizhen Zhong
- National R&D Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
- College of Health, Jiangxi Normal University, Nanchang 330022, China
| | - Xiaoliang Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Chengwei Yu
- College of Health, Jiangxi Normal University, Nanchang 330022, China
| | - Zongcai Tu
- National R&D Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Health, Jiangxi Normal University, Nanchang 330022, China
| | - Jinlin Li
- National R&D Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
- College of Health, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
12
|
Ding Y, Liao Y, Xia J, Xu D, Li M, Yang H, Lin H, Benjakul S, Zhang B. Changes in the Physicochemical Properties and Microbial Communities of Air-Fried Hairtail Fillets during Storage. Foods 2024; 13:786. [PMID: 38472899 DOI: 10.3390/foods13050786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 03/14/2024] Open
Abstract
This study assessed the physicochemical properties of air-fried hairtail fillets (190 °C, 24 min) under different storage temperatures (4, 25, and 35 °C). The findings revealed a gradual decline in sensory scores across all samples during storage, accompanied by a corresponding decrease in thiobarbituric acid reactive substances (TBARS) and total viable count over time. Lower storage temperatures exhibited an effective capacity to delay lipid oxidation and microbiological growth in air-fried hairtail fillets. Subsequently, alterations in the microbiota composition of air-fried hairtail fillets during cold storage were examined. Throughout the storage duration, Achromobacter, Escherichia-Shigella, and Pseudomonas emerged as the three dominant genera in the air-fried hairtail samples. Additionally, Pearson correlation analysis demonstrated that among the most prevalent microbial genera in air-fried hairtail samples, Achromobacter and Psychrobacter exhibited positive correlations with the L* value, a* value, and sensory scores. Conversely, they displayed negative correlations with pH, b* value, and TBARS. Notably, air-fried samples stored at 4 °C exhibited prolonged freshness compared with those stored at 25 °C and 35 °C, suggesting that 4 °C is an optimal storage temperature. This study offers valuable insights into alterations in the physicochemical properties and microbial distribution in air-fried hairtail fillets during storage, facilitating the improvement of meat quality by adjusting microbial communities in air-fried hairtail fillets.
Collapse
Affiliation(s)
- Yixuan Ding
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yueqin Liao
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jiangyue Xia
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Disha Xu
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Menghua Li
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Hongli Yang
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Huimin Lin
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Bin Zhang
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- Pisa Marine Graduate School, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
13
|
Lan W, Shao Z, Lang A, Xie J. Effects of slightly acidic electrolyzed water combined with ԑ-polylysine-chitooligosaccharide Maillard reaction products treatment on the quality of vacuum packaged sea bass (Lateolabrax japonicas). Int J Biol Macromol 2024; 260:129554. [PMID: 38246458 DOI: 10.1016/j.ijbiomac.2024.129554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
In this study, a new natural preservative, ε-polylysine (ε-PL) and chitooligosaccharides (COS) Maillard reaction products (LC-MRPs), was prepared by Maillard reaction. The preservation effect of LC-MRPs combined with slightly acidic electrolyzed water (SAEW) pretreatment (SM) on vacuum-packed sea bass during refrigerated storage was evaluated. The results showed that after 16 days, SM treatment could effectively inhibit the microbial growth and prevent water migration in sea bass. In addition, the highest water holding capacity (69.79 %) and the best sensory characteristics, the lowest malonaldehyde (MDA) (58.96 nmol/g), trimethylamine (TMA) (3.35 mg/100 g), total volatile basic nitrogen (TVB-N) (16.93 mg N/100 g), myofibril fragmentation index (MFI) (92.2 %) and TCA-soluble peptides (2.16 μmol tyrosine/g meat) were related to SM group. Combined with sensory analysis, we can conclude that the combined treatment of SAEW and LC-MRPs could prolong the shelf-life of sea bass for another 11 days compared with the DW group. Results disclosed that the composite treatment of SAEW and LC-MRPs is a promising technology to improve the shelf-life of vacuum-packed sea bass during refrigerated storage.
Collapse
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Zhe Shao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ai Lang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
14
|
Huang Y, Nie Y, Zhou F, Li B, Luo Q, Zhang B, Zeng Q, Huang Y. Effects of collagen-based coating with chitosan and ε-polylysine on sensory, texture, and biochemical changes of refrigerated Nemipterus virgatus fillets. Food Sci Nutr 2024; 12:2145-2152. [PMID: 38455186 PMCID: PMC10916661 DOI: 10.1002/fsn3.3916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 03/09/2024] Open
Abstract
In order to evaluate the effects of chitosan, ε-polylysine, and collagen on the preservation properties of refrigerated Nemipterus virgatus, samples were tested with different treatments for 10 days, namely chitosan, ε-polylysine and collagen (CH + ε-PL + CA), chitosan and ε-polylysine (CH + ε-PL), chitosan and collagen (CH + CA), ε-polylysine and collagen (ε-PL + CA), and the uncoated sample (CK). The results demonstrated that the bio-coating exhibited better preservation effects. The CH + ε-PL + CA, CH + ε-PL, CH + CA, ε-PL + CA treatments could significantly inhibit bacterial growth and retard the increase of total volatile base nitrogen (TVB-N), 2-thiobarbituric acid (TBA), K-value, and total viable counts (TVC) in N. virgatus fillets. The pH of all samples decreased and reached its lowest value on day 6, then increased significantly at the end of the experiment (p < .05). Water-holding capacity (WHC) of all the groups decreased continuously throughout storage, and CK reached 66.03% on day 6, which is significantly lower than CH + ε-PL + CA, CH + ε-PL, CH + CA, and ε-PL + CA (p < .05). On the contrary, the sensory scores of CH + ε-PL + CA, CH + ε-PL, CH + CA, and ε-PL + CA were significantly higher than the control, and the score of CH + ε-PL + CA (p < .05) was the best among all the groups. In terms of texture, CH + PL + CA also showed less cell shrinkage and tighter muscle fiber arrangement compared to other treatments. To sum up, the CH + PL + CA bio-coating proved to be a promising method for maintaining the storage quality of N. virgatus under refrigerated storage conditions.
Collapse
Affiliation(s)
- Yongping Huang
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| | - Ying Nie
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| | - Fei Zhou
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| | - Biansheng Li
- College of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
| | - Qiulan Luo
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| | - Bin Zhang
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| | - Qinpei Zeng
- Guangdong Wuqiong Food Group Co., LTDChaozhouChina
| | - Yisheng Huang
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| |
Collapse
|
15
|
Ying X, Li T, Deng S, Brennan C, Benjakul S, Liu H, Wang F, Xie X, Liu D, Li J, Xiao G, Ma L. Advancements in nonthermal physical field technologies for prefabricated aquatic food: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13290. [PMID: 38284591 DOI: 10.1111/1541-4337.13290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024]
Abstract
Aquatic foods are nutritious, enjoyable, and highly favored by consumers. In recent years, young consumers have shown a preference for prefabricated food due to its convenience, nutritional value, safety, and increasing market share. However, aquatic foods are prone to microbial spoilage due to their high moisture content, protein content, and unsaturated fatty acids. Furthermore, traditional processing methods of aquatic foods can lead to issues such as protein denaturation, lipid peroxidation, and other food safety and nutritional health problems. Therefore, there is a growing interest in exploring new technologies that can achieve a balance between antimicrobial efficiency and food quality. This review examines the mechanisms of cold plasma, high-pressure processing, photodynamic inactivation, pulsed electric field treatment, and ultraviolet irradiation. It also summarizes the research progress in nonthermal physical field technologies and their application combined with other technologies in prefabricated aquatic food. Additionally, the review discusses the current trends and developments in the field of prefabricated aquatic foods. The aim of this paper is to provide a theoretical basis for the development of new technologies and their implementation in the industrial production of prefabricated aquatic food.
Collapse
Affiliation(s)
- Xiaoguo Ying
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Taiyu Li
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Shanggui Deng
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Charles Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, Australia
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand
| | - Huifan Liu
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Feng Wang
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xi Xie
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Dongjie Liu
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jun Li
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gengsheng Xiao
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lukai Ma
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
16
|
Wu Y, Wu Q, Lin H, Pang J, Zhou X, Zhang B. Effects of cold atmospheric plasma pre-treatment on maintaining the quality of ready-to-eat drunken red shrimp ( Solenocera crassicornis) stored at chilled conditions. Food Chem X 2023; 20:100934. [PMID: 38144752 PMCID: PMC10740073 DOI: 10.1016/j.fochx.2023.100934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/20/2023] [Accepted: 10/08/2023] [Indexed: 12/26/2023] Open
Abstract
This present study investigated the effect of cold atmospheric plasma (CAP) pre-treatment on the quality of ready-to-eat drunken red shrimp (Solenocera crassicornis) during chilled storage. The shrimp were pre-treated with the CAP at 40 kV and 36 kH for 100 s in a plasma generating equipment before the drunken treatment and compared with an untreated control sample. The results showed that the CAP pre-treatment significantly inhibited the total viable count (TVC) values, total volatile basic nitrogen (TVB-N) content, and polyphenol oxidase (PPO) activity of the drunken shrimp compared to the control treatment. Furthermore, the CAP pre-treatment also significantly maintained the myofibrillar protein (MP) content, texture properties, and a more stable histological structure of muscle fibers compared to the control. High-throughput sequencing results confirmed that the CAP pre-treatment significantly reduced the diversity and abundance of several bacteria in the shrimp. Gas chromatography-ion mobility spectrometry (GC-IMS) analysis detected that the CAP pre-treatment effectively maintained the stability of volatile organic compounds (VOCs). These findings provide valuable theoretical support for the processing and storage of drunken shrimp.
Collapse
Key Words
- Chilled storage
- Cold atmospheric plasma
- Coomassie brilliant blue G-250, PubChem CID: 6324599
- DL-3,4-dihydroxyphenylalanine, PubChem CID: 836
- Ethanol, PubChem CID: 702
- Glutaraldehyde solution, PubChem CID: 3485
- Hydrochloric acid, PubChem CID: 313
- Maleic acid, PubChem CID: 444266
- MgO, PubChem CID: 14792
- Microbiological analysis
- Nitrogen gas, PubChem CID: 947
- Phosphate buffer solution, PubChem CID: 62657
- Red shrimp
- Trichloroacetic acid, PubChem CID: 6421
- Volatile organic compounds
Collapse
Affiliation(s)
- Yingru Wu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, PR China
| | - Qiongjing Wu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, PR China
- Pisa Marine Graduate School, Zhejiang Ocean University, PR China
| | - Huimin Lin
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, PR China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, PR China
| | | | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, PR China
- Pisa Marine Graduate School, Zhejiang Ocean University, PR China
| |
Collapse
|
17
|
Shang X, Wei Y, Guo X, Lei Y, Deng X, Zhang J. Dynamic Changes of the Microbial Community and Volatile Organic Compounds of the Northern Pike ( Esox lucius) during Storage. Foods 2023; 12:2479. [PMID: 37444217 DOI: 10.3390/foods12132479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, the quality (sensory evaluation, microbial enumerate, color, tvb-n (total volatile basic nitrogen), tca-soluble peptide (trichloroacetic acid-soluble peptide), muscle glucose, lactate, total sugar, Bas (Biogenic amines), VOCs (volatile organic compounds) and the microbial dynamic structure in samples stored at 4 °C were evaluated, and the relationship between VOCs and the diversity structure of microorganisms was also discussed. It was determined by sensory evaluation that the shelf life of samples was around 8 days. Protein and sugar were detected in large quantities by microorganisms in the later stage. At the same time, this also caused a large amount of Bas (biogenic amines) (tyramine, cadaverine, and putrescine). According to high-throughput amplicon sequencing, the initial microbiota of samples was mainly composed of Pseudomonas, Acinetobacter, Planifilum, Vagococcus, Hafnia, Mycobacterium, Thauera, and Yersinia. Among them, Pseudomonas was the most advantageous taxon of samples at the end of the shelf life. The minor fraction of the microbial consortium consisting of Vagococcus, Acinetobacter and Myroides was detected. The substances 3-methyl-1-butanol, ethyl acetate, and acetone were the main volatile components. The glucose, lactic acid, and total sugar were negatively correlated with Yersinia, Hafnia-Obesumbacterium, Thauera, Mycobacterium, and Planifilum; the proportion of these microorganisms was relatively high in the early stage. TVB-N and TCA-soluble peptides were positively correlated with Pseudomonas, Shewanella, Brochothrix, Vagococcus, Myroides, and Acinetobacter, and these microorganisms increased greatly in the later stage. The substance 3-methyl-1-butanol was positively correlated with Pseudomonas and negatively correlated with Mycobacterium. Ethyl acetate was associated with Hafnia-Obesumbacterium, Thauera, and Yersinia. Acetone was positively correlated with Acinetobacter.
Collapse
Affiliation(s)
- Xuejiao Shang
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs (Provincial and Ministerial Cooperation), School of Food Science and Technology Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China
| | - Yabo Wei
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs (Provincial and Ministerial Cooperation), School of Food Science and Technology Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China
| | - Xin Guo
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs (Provincial and Ministerial Cooperation), School of Food Science and Technology Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China
| | - Yongdong Lei
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs (Provincial and Ministerial Cooperation), School of Food Science and Technology Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China
| | - Xiaorong Deng
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs (Provincial and Ministerial Cooperation), School of Food Science and Technology Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs (Provincial and Ministerial Cooperation), School of Food Science and Technology Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China
| |
Collapse
|
18
|
Lan W, Zhang B, Liu L, Pu T, Zhou Y, Xie J. Slightly acidic electrolyzed water-slurry ice: shelf-life extension and quality maintenance of mackerel (Pneumatophorus japonicus) during chilled storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3787-3798. [PMID: 36224103 DOI: 10.1002/jsfa.12269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Different ice treatments were applied for the preservation of mackerel (Pneumatophorus japonicus). The quality changes of samples treated with flake ice (Control), slurry ice (SI) and slightly acidic electrolyzed water-slurry ice (SAEW-SI) in microbiological, physicochemical, protein characteristic, and sensory evaluation were investigated during chilled storage. RESULTS SAEW-SI showed a significant advantage for the inhibition of microbial growth, which could extend the shelf-life for another 144 h at least, compared with Control group. SAEW-SI treatment also showed a strong inhibition for the increase in pH, total volatile basic nitrogen (TVB-N), K-value, histamine and metmyoglobin (MetMb) content. Results of texture profile analysis (TPA) and water holding capacity (WHC) indicated that SAEW-SI can obviously suppress the decrease of hardness value, and have a better protective effect on muscle structure compared to flake ice and SI (P < 0.05). During the whole experiment, the highest sensory scores and a* were obtained in the SAEW-SI group, which indicated that SAEW-SI treatment could maintain better sensory characteristics. According to the results of thiobarbituric acid reactive substances (TBARS) and fluorescence spectroscopy analysis, SAEW-SI treatment could effectively retard protein degradation and lipid oxidation compared with Control and SI group. In maintaining the quality of mackerel, SAEW-SI shows a better effect than SI due to the synergistic effect of fence factors. CONCLUSION The results demonstrated that the shelf-life of mackerel could be extended and the quality of mackerel could be maintained effectively with SAEW-SI treatment during chilled storage. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| | - Bingjie Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Lin Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Tianting Pu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yuxiao Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| |
Collapse
|
19
|
Zhang L, Yu D, Xu Y, Jiang Q, Yu D, Xia W. The inhibition mechanism of nanoparticles-loading bilayer film on texture deterioration of refrigerated carp fillets from the perspective of protein changes and exudates. Food Chem 2023; 424:136440. [PMID: 37244181 DOI: 10.1016/j.foodchem.2023.136440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Herein, the protective pattern of bilayer film on the texture stability of fillets was discussed in terms of endogenous enzyme activity, as well as protein oxidation and degradation. The texture properties of fillets wrapped with nanoparticles (NPs) bilayer film were greatly improved. NPs film delayed protein oxidation by inhibiting the formation of disulfide bond and carbonyl group as evidenced by the increase of α-helix ratio (43.02%) and the decrease of random coil ratio (15.87%). The protein degradation degree of fillets treated with NPs film was lower than that of control group, specifically with a more regular protein structure. The exudates accelerated the degradation of protein, while NPs film effectively absorbed exudates to delay protein degradation. Overall, the active agents in the film were released into the fillets to play an antioxidant and antibacterial roles, and the inner layer of film could absorb exudates, thus maintaining the texture characteristics of fillets.
Collapse
Affiliation(s)
- Liming Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yanshun Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dongxing Yu
- SoHao Fd-Tech Co., Ltd., QingDao, ShanDong 266700, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
20
|
Zhao N, Zhang X, Zhang Z, Guo X, Ma R, Meng Y, Li Y. Effects of ellagic acid and ε-polylysine hydrochloride on the content of biogenic amines, volatile compounds and quality of salmon slices during chilled storage. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2023. [DOI: 10.1515/ijfe-2022-0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Abstract
This study aimed to investigate effects of ellagic acid (EA) and ε-polylysine hydrochloride (ε-PL) on biogenic amines (BAs), volatile compounds and quality of salmon slices stored at 4 °C. The results showed that EA and ε-PL attenuated the production of BAs, retarded the increase of TVC, TVB-N and TBARS. Additionally, water mobility, texture properties of salmon slices were also stabilized by the EA and ε-PL. Volatile compounds including aldehydes, alcohols and hydrocarbons were identified and spoilage-related compounds reduced by the EA and ε-PL, which was related to the inhibition of bacterial, TVB-N and TBA growth by EA and ε-PL. The content of phencthylamine, putrescine, cadaverine, histamine and tyramine in EA-s-PL groups reduced by 46.53%, 54.1%, 26.42%, 31.98% and 45.37% compared to the control group at the end of storage, respectively. Therefore, EA and ε-PL can be applied for inhibiting the increase of BAs and delaying quality deterioration of salmon slices.
Collapse
Affiliation(s)
- Nan Zhao
- College of Food Science and Technology , Bohai University, Food Safety Key Laboratory of Liaoning Province, National & Local Joint Engineering Research Center for Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products , Jinzhou 121013 , China
| | - Xinyuan Zhang
- College of Food Science and Technology , Bohai University, Food Safety Key Laboratory of Liaoning Province, National & Local Joint Engineering Research Center for Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products , Jinzhou 121013 , China
| | - Zian Zhang
- College of Food Science and Technology , Bohai University, Food Safety Key Laboratory of Liaoning Province, National & Local Joint Engineering Research Center for Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products , Jinzhou 121013 , China
| | - Xiaohua Guo
- Shandong Meijia Group Co., Ltd , Rizhao , Shandong 276815 , China
| | - Rui Ma
- Qinghai University , Xining 810016 , China
| | | | - Yingchang Li
- College of Food Science and Technology , Bohai University, Food Safety Key Laboratory of Liaoning Province, National & Local Joint Engineering Research Center for Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products , Jinzhou 121013 , China
| |
Collapse
|
21
|
Li L, Liu D, Li X, Zhang B, Li C, Xiao Z, Liu M, Fang F, Deng N, Wang J. The dynamic changes of microbial diversity and biogenic amines in different parts of bighead carp (Aristichthys nobilis) head during storage at -2℃. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
22
|
Walayat N, Tang W, Wang X, Yi M, Guo L, Ding Y, Liu J, Ahmad I, Ranjha MMAN. Quality evaluation of frozen and chilled fish: A review. EFOOD 2023. [DOI: 10.1002/efd2.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Affiliation(s)
- Noman Walayat
- College of Food Science and Technology Zhejiang University of Technology Hangzhou China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province Hangzhou China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou China
| | - Wei Tang
- College of Food Science and Technology Zhejiang University of Technology Hangzhou China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province Hangzhou China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou China
| | | | - Minghua Yi
- Department of Health and Tourism Hangzhou Wanxiang Polytechnic Hangzhou China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Yuting Ding
- College of Food Science and Technology Zhejiang University of Technology Hangzhou China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province Hangzhou China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou China
| | - Jianhua Liu
- College of Food Science and Technology Zhejiang University of Technology Hangzhou China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province Hangzhou China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou China
| | - Ishtiaq Ahmad
- College of Food Science and Technology Zhejiang University of Technology Hangzhou China
| | | |
Collapse
|
23
|
Lang A, Lan W, Gu Y, Wang Z, Xie J. Effects of ε-polylysine and chitooligosaccharide Maillard reaction products on quality of refrigerated sea bass fillets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:152-163. [PMID: 35848059 DOI: 10.1002/jsfa.12125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/06/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The Maillard reaction is a promising and safe method for obtaining chitooligosaccharide conjugates with proteins or peptides as food preservatives. This study aims to investigate the moisture state, physicochemical properties, and shelf-life of sea bass fillets treated with ε-polylysine (ε-PL) and chitooligosaccharides (COS), which are Maillard reaction products (LC-MRPs), during refrigerated storage. RESULTS The results of microbiological analysis and confocal laser scanning microscope (CLSM) revealed that LC-MRPs could retard microbial growth effectively. Compared with control, other treated groups could strongly retard the increase in the thiobarbituric acid (TBA) value, the K-value and the total volatile basic nitrogen (TVB-N) value, and also inhibited the softening of texture and the accumulation of biogenic amines in fish. The results of low-field nuclear magnetic resonance (LF-NMR) and magnetic resonance imaging (MRI) indicate that LC-MRPs could delay the water migration of fillets and increase water holding capacity (WHC). Through sensory evaluation, the application of LC-MRPs increased the shelf-life of refrigerated sea bass fillets for another 9 days. CONCLUSION Maillard reaction products derived from chitooligosaccharides and ε-polylysine have strong potential for preserving sea bass. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ai Lang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Yongji Gu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhicheng Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
24
|
Zou S, Ni M, Liu M, Xu Q, Zhou D, Gu Z, Yuan J. Starvation alters gut microbiome and mitigates off-flavors in largemouth bass (Micropterus salmoides). Folia Microbiol (Praha) 2023:10.1007/s12223-022-01027-7. [PMID: 36637769 DOI: 10.1007/s12223-022-01027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 12/09/2022] [Indexed: 01/14/2023]
Abstract
The present study aimed to investigate the response of intestinal microbiota during 3 weeks' starvation of largemouth bass (Micropterus salmoides), an economically important freshwater fish, using 16S rRNA gene amplicon sequencing and PICRUSt2 predictive functional profiling. Overall, the microbiota was mainly represented by Mycoplasma, Pseudomonas, Acinetobacter, and Microbacterium in the initial group. This pattern contrasted with that of Cetobacterium and Aeromonas, which were major representative genera in the starved group. Significant differences in the richness and composition of intestinal microbial community induced by starvation were observed. Notably, earthy-musty off-flavor compounds (geosmin and 2-methylisoborneol) were significantly decreased during starvation, which were significantly correlated with the abundance of certain actinobacterial taxa, namely, Microbacterium and Nocardioides. Additionally, the functional pathways involved in synthesis of off-flavor compounds, protein digestion, fatty acid degradation, and biosynthesis of cofactors greatly decreased with starvation, indicating that microbiota modulated the specific metabolic pathway to adapt to food deprivation. These results emphasize that starvation can modulate diversity, community structure, and functions of the intestinal microbiota and mitigate the off-flavors, which has important implications for strategies to eliminate off-flavor odorants through the application of probiotics to manipulate the gut microbiome and ultimately enhance flesh quality of freshwater fish.
Collapse
Affiliation(s)
- Songbao Zou
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, Zhejiang, China
| | - Meng Ni
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, Zhejiang, China
| | - Mei Liu
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, Zhejiang, China
| | - Qing Xu
- College of Life Science, Huzhou University, Huzhou, 313000, Zhejiang, China
| | - Dan Zhou
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, Zhejiang, China
| | - Zhimin Gu
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, Zhejiang, China
| | - Julin Yuan
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, Zhejiang, China.
| |
Collapse
|
25
|
Ma Y, Ma Y, Chi L, Wang S, Zhang D, Xiang Q. Lauric arginate ethyl ester: An update on the antimicrobial potential and application in the food systems. Front Microbiol 2023; 14:1125808. [PMID: 36910208 PMCID: PMC9995605 DOI: 10.3389/fmicb.2023.1125808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Lauric arginate ethyl ester (LAE), a cationic surfactant with low toxicity, displays excellent antimicrobial activity against a broad range of microorganisms. LAE has been approved as generally recognized as safe (GRAS) for widespread application in certain foods at a maximum concentration of 200 ppm. In this context, extensive research has been carried out on the application of LAE in food preservation for improving the microbiological safety and quality characteristics of various food products. This study aims to present a general review of recent research progress on the antimicrobial efficacy of LAE and its application in the food industry. It covers the physicochemical properties, antimicrobial efficacy of LAE, and the underlying mechanism of its action. This review also summarizes the application of LAE in various foods products as well as its influence on the nutritional and sensory properties of such foods. Additionally, the main factors influencing the antimicrobial efficacy of LAE are reviewed in this work, and combination strategies are provided to enhance the antimicrobial potency of LAE. Finally, the concluding remarks and possible recommendations for the future research are also presented in this review. In summary, LAE has the great potential application in the food industry. Overall, the present review intends to improve the application of LAE in food preservation.
Collapse
Affiliation(s)
- Yunfang Ma
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Yanqing Ma
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Lei Chi
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Shaodan Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Dianhe Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| |
Collapse
|
26
|
Li Y, Zhao N, Li Y, Zhang D, Sun T, Li J. Dynamics and diversity of microbial community in salmon slices during refrigerated storage and identification of biogenic amine-producing bacteria. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Effects of Modified Atmosphere Packaging with Varied CO 2 and O 2 Concentrations on the Texture, Protein, and Odor Characteristics of Salmon during Cold Storage. Foods 2022; 11:foods11223560. [PMID: 36429151 PMCID: PMC9689085 DOI: 10.3390/foods11223560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
The effect of gas ratio on the growth of bacteria has been well demonstrated, but some adverse effects of modified atmosphere packaging (MAP) on seafoods have also been found. To provide a better understanding of the effects of CO2 and O2 concentrations (CO2 from 40% to 100% and O2 from 0% to 30%) in MAP on the texture and protein contents and odor characteristics of salmon during cold storage, the physiochemical, microbial, and odor indicators were compared with those without treatment (CK). Generally, MAP treatments hindered the increase of microbial counts, total volatile basic nitrogen, and TCA-soluble peptides, and decreased the water-holding capacity, hardness, springiness, and sarcoplasmic and myofibrillar protein contents. The results also indicated that 60%CO2/10%O2/30%N2 was optimal and decreased the total mesophilic bacterial counts by 2.8 log cfu/g in comparison with CK on day 12. In agreement, the concentration of CO2 of 60% showed the lowest myofibrillar protein degradation, and less subsequent loss of hardness. The electronic nose characteristics analysis indicated that 60%CO2/20%O2/20%N2 and 60%CO2/10%O2/30%N2 had the best effect to maintain the original odor profiles of salmon. The correlation analysis demonstrated that microbial growth had a strong relationship with myofibrillar and sarcoplasmic protein content. It can be concluded that 60%CO2/10%O2/30%N2 displayed the best effect to achieve the goal of preventing protein degradation and odor changes in salmon fillets.
Collapse
|
28
|
Chen J, Tang H, Zhang M, Sang S, Jia L, Ou C. Exploration of the roles of microbiota on biogenic amines formation during traditional fermentation of Scomber japonicus. Front Microbiol 2022; 13:1030789. [PMID: 36406411 PMCID: PMC9667087 DOI: 10.3389/fmicb.2022.1030789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/10/2022] [Indexed: 09/11/2024] Open
Abstract
The influence of microbiota composition and metabolisms on the safety and quality of fermented fish products is attracting increasing attention. In this study, the total viable count (TVC), pH, total volatile base nitrogen (TVB-N) as well as biogenic amines (BAs) of traditional fermented Scomber japonicus (zaoyu) were quantitatively determined. To comprehend microbial community variation and predict their functions during fermentation, 16S rRNA-based high-throughput sequencing (HTS) and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) were employed, respectively. The fresh samples stored without fermentation were used as controls. TVC and TVB-N values increased rapidly, and the content of BAs exceeded the permissible limit on day 2 in the controls, indicating serious spoilage of the fish. In contrast, a slower increase in TVC and TVB-N was observed and the content of BAs was within the acceptable limit throughout the fermentation of zaoyu. Significant differences in microbiota composition were observed between zaoyu and the controls. The bacterial community composition of zaoyu was relatively simple and Lactobacillus was identified as the dominant microbial group. The accumulation of histamine was inhibited in zaoyu, which was positively correlated with the relative abundance of Vibrio, Enterobacter, Macrococcus, Weissella, et al. based on Redundancy analysis (RDA), while Lactobacillus showed a positive correlation with tyramine, cadaverine, and putrescine. Functional predictions, based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, revealed that the relative abundance of metabolic function exhibited a decreasing trend with prolonged fermentation time and the abundance of metabolism-related genes was relatively stable in the later stage of fermentation. Those metabolisms related to the formation of BAs like histidine metabolism and arginine metabolism were inhibited in zaoyu. This study has accompanied microbiota analysis and functional metabolism with the accumulation of BAs to trace their correspondences, clarifying the roles of microorganisms in the inhibition of BAs during fermentation of Scomber japonicus.
Collapse
Affiliation(s)
- Jingyi Chen
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Haiqing Tang
- Faculty of Food Science, Zhejiang Pharmaceutical University, Ningbo, China
| | - Mengsi Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Shangyuan Sang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Lingling Jia
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Changrong Ou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| |
Collapse
|
29
|
The effects of ozonated slurry ice treatment on microbial, physicochemical, and quality of large yellow croaker (Pseudosciaena crocea) during cold-chain circulation. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Huang Q, Jiao X, Yan B, Zhang N, Huang J, Zhao J, Zhang H, Chen W, Fan D. Changes in physicochemical properties of silver carp (Hypophthalmichthys molitrix) surimi during chilled storage: The roles of spoilage bacteria. Food Chem 2022; 387:132847. [DOI: 10.1016/j.foodchem.2022.132847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/26/2022] [Accepted: 03/27/2022] [Indexed: 11/04/2022]
|
31
|
Dai W, Yan C, Ding Y, Wang W, Gu S, Xu Z, Zhou X, Ding Y. Effect of a chitosan coating incorporating epigallocatechin gallate on the quality and shelf life of bighead carp (Aristichthys nobilis) fillets during chilled storage. Int J Biol Macromol 2022; 219:1272-1283. [PMID: 36058394 DOI: 10.1016/j.ijbiomac.2022.08.180] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/05/2022] [Accepted: 08/26/2022] [Indexed: 11/05/2022]
Abstract
The objective of this study was to investigate the potential application of chitosan coatings incorporating epigallocatechin gallate (EGCG) for preserving fillets of bighead carp during chilled storage. The fillets were coated with acetic acid and glycerol, chitosan, and chitosan-EGCG, respectively, and the changes in their physicochemical, microbiological, and sensory characteristics during storage at 4 °C were determined. Notably, total volatile basic nitrogen, thiobarbituric-acid-reactive substances, and K value of chitosan-EGCG coated fillets sampled on day 15 were 48.04 %, 60.19 %, and 32.91 % lower than untreated fillets, respectively. Microbial enumeration suggested that the inclusion of EGCG significantly improved the inhibitory effect of pure chitosan coating on the proliferation of microorganisms. Furthermore, the chitosan-EGCG coated fillets also performed the best in terms of color, texture, and sensory analysis, and extended the shelf-life of the fillets for at least 6 days. A principal component analysis further confirmed the preserving effect of the chitosan-EGCG coating. Mantel test results suggested that the fillets' organoleptic characteristics strongly correlated with physicochemical and microbiological indicators. Overall, this work provides an effective protocol for food quality control and the extension of shelf life during chilled storage, and it clarifies the relationships between organoleptic characteristics and physicochemical and microbiological indexes.
Collapse
Affiliation(s)
- Wangli Dai
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Chen Yan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Yicheng Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Wenjie Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Saiqi Gu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Zheng Xu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China..
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
32
|
Chen Y, Chen H, Gong F, Yang F, Jiang Q, Xu Y, Xia W. A comparison of eating safety and quality of live and dead freshwater crayfish (Procambarus clarkii) at different stages. Food Res Int 2022; 159:111630. [DOI: 10.1016/j.foodres.2022.111630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/04/2022]
|
33
|
Zhou M, Ling Y, Chen F, Wang C, Qiao Y, Xiong G, Wang L, Wu W, Shi L, Ding A. Effect of High Hydrostatic Pressure Combined with Sous-Vide Treatment on the Quality of Largemouth Bass during Storage. Foods 2022; 11:1931. [PMID: 35804747 PMCID: PMC9266213 DOI: 10.3390/foods11131931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
In order to estimate the effects of high hydrostatic pressure treatment at 400 MPa for 0 min and 10 min (HHP-0, HHP-10) and high hydrostatic pressure in combination with sous-vide treatment (HHP-0+SV, HHP-10+SV) on the quality of largemouth bass stored at 4 °C for 30 days, the physicochemical changes were evaluated by microbiological determinations, pH, sensory evaluation and texture analysis, and the flavour changes were analysed by solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) and amino acid automatic analyser. The results show that HHP-0+SV and HHP-10+SV treatment effectively inhibited microbiological growth and attenuated physiochemical changes (pH, sensory evaluation, flesh and texture) of largemouth bass fillets. HHP+SV treatment prolonged the storage period of largemouth bass fillets for 24 days. The content of total free amino acids in control (CK) samples was high, but HHP+SV treatment caused the loss of free amino acid content. Especially when stored for 30 days, the total free amino acid content of HHP-0+SV and HHP-10+SV was only 14.67 mg/100 g and 18.98 mg/100 g, respectively. In addition, a total of 43 volatile compounds were detected and elucidated, among which hexanal, heptaldehyde, octanal and nonanal showed a decreasing tendency in HHP groups and an increasing trend in HHP+SV groups throughout the storage.
Collapse
Affiliation(s)
- Mingzhu Zhou
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (M.Z.); (Y.L.); (F.C.); (G.X.); (L.W.); (W.W.); (L.S.); (A.D.)
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China;
| | - Yuzhao Ling
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (M.Z.); (Y.L.); (F.C.); (G.X.); (L.W.); (W.W.); (L.S.); (A.D.)
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fangxue Chen
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (M.Z.); (Y.L.); (F.C.); (G.X.); (L.W.); (W.W.); (L.S.); (A.D.)
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China;
| | - Chao Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China;
| | - Yu Qiao
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (M.Z.); (Y.L.); (F.C.); (G.X.); (L.W.); (W.W.); (L.S.); (A.D.)
| | - Guangquan Xiong
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (M.Z.); (Y.L.); (F.C.); (G.X.); (L.W.); (W.W.); (L.S.); (A.D.)
| | - Lan Wang
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (M.Z.); (Y.L.); (F.C.); (G.X.); (L.W.); (W.W.); (L.S.); (A.D.)
| | - Wenjin Wu
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (M.Z.); (Y.L.); (F.C.); (G.X.); (L.W.); (W.W.); (L.S.); (A.D.)
| | - Liu Shi
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (M.Z.); (Y.L.); (F.C.); (G.X.); (L.W.); (W.W.); (L.S.); (A.D.)
| | - Anzi Ding
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (M.Z.); (Y.L.); (F.C.); (G.X.); (L.W.); (W.W.); (L.S.); (A.D.)
| |
Collapse
|
34
|
Lan W, Zhao X, Wang M, Xie J. Effects of chitosan and apple polyphenol coating on quality and microbial composition of large yellow croaker (Pseudosciaena crocea) during ice storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3099-3106. [PMID: 34778959 DOI: 10.1002/jsfa.11651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Large yellow croaker (Pseudosciaena crocea) has important commercial value because of its high nutritional value and delicious taste. However, large yellow croaker is readily affected by microorganisms during storage, which causes the corruption of muscle tissue. Both chitosan (CS) and apple polyphenols (APs) are bio-preservatives, which can effectively inhibit the growth of microorganisms and improve the quality of large yellow croaker. The effects of 10.0 and 20.0 g L-1 CS combined with 1.0 g L-1 AP coating on the quality and microbial composition of large yellow croaker during ice storage were investigated respectively. RESULTS CS + AP coating restrained the increase of total volatile basic nitrogen (TVB-N) and biogenic amines, slowed down the rise of K-value and retarded the growth of microorganisms. The bacteriostatic effect was positively correlated with the concentration of CS. Through the analysis of high-throughput sequencing (HTS), the microbial diversity was changed respectively. The proportion of Shewanella was significantly decreased by CS + AP coating treatment and Pseudomonas was the dominant microorganism in spoiled samples. Compared with the shelf-life of the control group (8 days), 20.0 g L-1 CS combined with 1.0 g L-1 AP coating treatment could extend the shelf-life of large yellow croaker for another 8 days. CONCLUSIONS CS combined with AP coating may be considered a promising method to delay the biochemical changes of ice stored large yellow croaker and extend its shelf life. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Ocean University, Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| | - Xinyu Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Meng Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Ocean University, Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| |
Collapse
|
35
|
In Vitro Antibacterial Mechanism of High-Voltage Electrostatic Field against Acinetobacter johnsonii. Foods 2022; 11:foods11070955. [PMID: 35407042 PMCID: PMC8997369 DOI: 10.3390/foods11070955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022] Open
Abstract
This study aimed to investigate the antibacterial properties and mechanisms of a high-voltage static electric field (HVEF) in Acinetobacter johnsonii, which were assessed from the perspective of biochemical properties and stress-related genes. The time/voltage-kill assays and growth curves showed that an HVEF decreased the number of bacteria and OD600 values. In addition, HVEF treatment caused the leakage of cell contents (nucleic acids and proteins), increased the electrical conductivity and amounts of reactive oxygen substances (ROS) (16.88 fold), and decreased the activity of Na+ K+-ATPase in A. johnsonii. Moreover, the changes in the expression levels of genes involved in oxidative stress and DNA damage in the treated A. johnsonii cells suggested that HVEF treatment could induce oxidative stress and DNA sub-damage. This study will provide useful information for the development and application of an HVEF in food safety.
Collapse
|
36
|
Effects of sorbitol, vacuum packaging and SVC treatment on the microbiota changes and quality of Russian sturgeon (Acipenser gueldenstaedti). Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
37
|
Efficacy of freeze-chilled storage combined with tea polyphenol for controlling melanosis, quality deterioration, and spoilage bacterial growth of Pacific white shrimp (Litopenaeus vannamei). Food Chem 2022; 370:130924. [PMID: 34555773 DOI: 10.1016/j.foodchem.2021.130924] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/08/2021] [Accepted: 08/18/2021] [Indexed: 11/23/2022]
Abstract
This study aimed to investigate melanosis, quality attributes, and bacterial growth of freeze-chilled Pacific white shrimp (Litopenaeus vannamei) during 6 days of chilled storage, as well as the preservative effects of tea polyphenol on shrimp. The results showed that freeze-chilled storage retarded the growth of bacteria and the accumulation of putrescine in shrimp. The growth of spoilage bacteria Photobacterium and Shewanella were inhibited. However, freeze-chilled storage aggravated melanosis and lipid oxidation. The total volatile basic nitrogen (TVB-N) slightly accumulated in the thawed shrimp. The incorporation of tea polyphenol preserved freeze-chilled shrimp. Melanosis and lipid oxidation of shrimp were alleviated. The accumulation of biogenic amines, TVB-N, hypoxanthine riboside, and hypoxanthine were retarded. Meanwhile, the growth of spoilage bacteria Pseudoalteromonas, Photobacterium, Psychrobacter, and Carnobacterium were inhibited. Based on sensory analysis, the shelf-life of chilled, freeze-chilled, and freeze-chilled tea polyphenol shrimp were 4 days, 3 days, and 6 days, respectively.
Collapse
|
38
|
Anagnostopoulos DA, Parlapani FF, Boziaris IS. The evolution of knowledge on seafood spoilage microbiota from the 20th to the 21st century: Have we finished or just begun? Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Lan W, Sun Y, Feng H, Xie J. Effects of slightly acidic electrolyzed water pretreatment combined with compound bio‐preservatives on quality and microbiota changes of refrigerated obscure pufferfish (
Takifugu obscurus
). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University Shanghai China
| | - Yuqing Sun
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Haojie Feng
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Jing Xie
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University Shanghai China
| |
Collapse
|
40
|
Zhao Y, Lan W, Shen J, Xu Z, Xie J. Combining ozone and slurry ice treatment to prolong the shelf-life and quality of large yellow croaker (Pseudosciaena crocea). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112615] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Tian L, Luo T, Zhuang S, Li Y, Hong H, Shu R, Tan Y, Luo Y. The changes in physicochemical properties and microbiota composition of grass carp (
Ctenopharyngodon idellus
) under different aquaculture modes during 4°C storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li Tian
- Beijing Laboratory for Food Quality and Safety College of Food Science and Nutritional Engineering China Agricultural University Beijing China
| | - Tao Luo
- Beijing Laboratory for Food Quality and Safety College of Food Science and Nutritional Engineering China Agricultural University Beijing China
| | - Shuai Zhuang
- Beijing Laboratory for Food Quality and Safety College of Food Science and Nutritional Engineering China Agricultural University Beijing China
| | - Yan Li
- Beijing Laboratory for Food Quality and Safety College of Food Science and Nutritional Engineering China Agricultural University Beijing China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety College of Food Science and Nutritional Engineering China Agricultural University Beijing China
| | - Rui Shu
- Guangzhou Guanxing Agricultural Science and Technology Company Ltd. Guangzhou China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety College of Food Science and Nutritional Engineering China Agricultural University Beijing China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety College of Food Science and Nutritional Engineering China Agricultural University Beijing China
- National Research and Development center for Freshwater Fish Processing Jiangxi Normal University Nanchang Jiangxi China
| |
Collapse
|
42
|
Liu Z, Liu Q, Wei S, Sun Q, Xia Q, Zhang D, Shi W, Ji H, Liu S. Quality and volatile compound analysis of shrimp heads during different temperature storage. Food Chem X 2021; 12:100156. [PMID: 34825167 PMCID: PMC8603020 DOI: 10.1016/j.fochx.2021.100156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022] Open
Abstract
This study aimed to investigate volatile compounds and quality traits of shrimp heads stored at 20 °C, 4 °C, -3 °C, and -18 °C. With increased storage time, sensory scores gradually decreased, while pH and TVB-N content showed a gradually increase trend. L* showed a decreasing and then increasing tendency. The radar chart and principal component analysis showed variation changes. Three compounds including 2-decanone, dimethyl disulphide and dimethyl tetrasulphide, four compounds including 2-pentanone, 3-methyl-1-butanol, 2-methylbutyric acid, and 2,3,5-trimethylpyrazine, and 3-methylbutyraldehyde were the characteristic volatiles for the samples stored at 20 °C, 4 °C, and -3 °C, respectively. Twenty-five volatile compounds were key volatile compounds, among which nine were potential classification compounds with high variable importance in projection values. Trimethylamine and 2-nonanol were selected as potential markers of spoilage. The study provides the theoretical basis for quality and volatile compound investigations for shrimp heads with further high-quality utilization.
Collapse
Affiliation(s)
- Zhenyang Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Qiumei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Qiuyu Xia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Di Zhang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hongwu Ji
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
43
|
Li B, Wang X, Gao X, Ma X, Zhang L, Mei J, Xie J. Shelf-Life Extension of Large Yellow Croaker ( Larimichthys crocea) Using Active Coatings Containing Lemon Verbena ( Lippa citriodora Kunth.) Essential Oil. Front Nutr 2021; 8:678643. [PMID: 34355009 PMCID: PMC8329554 DOI: 10.3389/fnut.2021.678643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Active coating could improve the fish quality and extend the shelf life. This study investigates the effect of locust bean gum (LBG) and sodium alginate (SA) active coatings containing lemon verbena (Lippa citriodora Kunth.) essential oil (LVEO) emulsions on microbiological, physicochemical and organoleptic evaluation of large yellow croaker (Larimichthys crocea) samples during refrigerated storage at 4°C. Results showed that LBG-SA coatings incorporated with 0.30 or 0.60% LVEO emulsions significantly inhibited the growth of mesophile bacteria, Pseudomonas spp., H2S-producing bacteria, lactic acid bacteria (LAB) and psychrophilic bacteria, and reduce the productions of trimethylamine (TMA), total volatile basic nitrogen (TVB-N) and ATP-related compounds. Further, the LVEO treatments also retarded the water migration and maintained the organoleptic evaluation results of large yellow croaker during storage at 4°C. In conclusion, the LBG-SA active coatings incorporated with LVEO emulsions maintained the quality and extended the shelf life of large yellow croaker during refrigerated storage.
Collapse
Affiliation(s)
- Bo Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China.,School of Health and Social Care, Shanghai Urban Construction Vocational College, Shanghai, China
| | - Xuesong Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Xin Gao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China.,School of Health and Social Care, Shanghai Urban Construction Vocational College, Shanghai, China
| | - Xuan Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Leilei Zhang
- Shanghai Guo Qi Testing Services Technology Co., Ltd., Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| |
Collapse
|
44
|
Liu W, Wang Q, Mei J, Xie J. Shelf-Life Extension of Refrigerated Turbot ( Scophthalmus maximus) by Using Weakly Acidic Electrolyzed Water and Active Coatings Containing Daphnetin Emulsions. Front Nutr 2021; 8:696212. [PMID: 34336910 PMCID: PMC8319538 DOI: 10.3389/fnut.2021.696212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/16/2021] [Indexed: 02/01/2023] Open
Abstract
This research was to investigate the effect of weakly acidic electrolytic water (WAEW) treatments combining with the locust bean gum (LBG) and sodium alginate (SA) active coatings, containing daphnetin emulsions on microbiological, physicochemical, and sensory changes of turbot (Scophthalmus maximus) during refrigerated storage at 4°C for 24 days. Results showed that WAEW, together with LBG-SA coatings containing daphnetin emulsions treatments, could significantly lower the total viable count (TVC), H2S-producing bacteria, pseudomonas spp., and psychrotrophic bacteria counts, and inhibit the productions of off-flavor compounds, including the total volatile basic nitrogen (TVB-N), inosine (HxR), and hypoxanthine (Hx). Furthermore, the treatments also prevented textural deterioration, delayed water migration, and had higher organoleptic evaluation results. Therefore, WAEW, together with LBG-SA coatings, containing daphnetin emulsions treatments, had the potential to improve the quality of turbot during refrigerated storage.
Collapse
Affiliation(s)
- Wenru Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Center for Food Science and Engineering, National Experimental Teaching Demonstration, Shanghai Ocean University, Shanghai, China.,Center of Aquatic Product Processing and Preservation, Shanghai Engineering Research, Shanghai Ocean University, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
| | - Qi Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Center for Food Science and Engineering, National Experimental Teaching Demonstration, Shanghai Ocean University, Shanghai, China.,Center of Aquatic Product Processing and Preservation, Shanghai Engineering Research, Shanghai Ocean University, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Center for Food Science and Engineering, National Experimental Teaching Demonstration, Shanghai Ocean University, Shanghai, China.,Center of Aquatic Product Processing and Preservation, Shanghai Engineering Research, Shanghai Ocean University, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Center for Food Science and Engineering, National Experimental Teaching Demonstration, Shanghai Ocean University, Shanghai, China.,Center of Aquatic Product Processing and Preservation, Shanghai Engineering Research, Shanghai Ocean University, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
45
|
Li Y, Cui L, Du F, Han X, Li J. Impacts of ε‐polylysine hydrochloride with thymol on biogenic amines formation and biochemical changes of squid (
Illex
argentinus
). J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yingchang Li
- College of Food Science and Technology Bohai University Jinzhou China
- Food Safety Key Lab of Liaoning Province Bohai University Jinzhou China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou China
| | - Lei Cui
- College of Food Science and Technology Bohai University Jinzhou China
- Food Safety Key Lab of Liaoning Province Bohai University Jinzhou China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou China
| | - Fengxia Du
- College of Food Science and Technology Bohai University Jinzhou China
- Food Safety Key Lab of Liaoning Province Bohai University Jinzhou China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou China
| | - Xiao Han
- College of Food Science and Technology Bohai University Jinzhou China
- Food Safety Key Lab of Liaoning Province Bohai University Jinzhou China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou China
| | - Jianrong Li
- College of Food Science and Technology Bohai University Jinzhou China
- Food Safety Key Lab of Liaoning Province Bohai University Jinzhou China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou China
| |
Collapse
|
46
|
Cen S, Fang Q, Tong L, Yang W, Zhang J, Lou Q, Huang T. Effects of chitosan-sodium alginate-nisin preservatives on the quality and spoilage microbiota of Penaeus vannamei shrimp during cold storage. Int J Food Microbiol 2021; 349:109227. [PMID: 34022613 DOI: 10.1016/j.ijfoodmicro.2021.109227] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 04/05/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022]
Abstract
The present work mainly investigated the effects of prepared chitosan‑sodium alginate-nisin (CS-SA-N) preservatives on the quality and bacterial phase of Penaeus vannamei shrimp during cold storage. Results showed that CS-SA-N preservatives treated samples had the lower pH, total volatile basic nitrogen (TVB-N), total viable count (TVC), and freeness (K) values than those of untreated ones during cold storage. The sensory evaluation results indicated that CS-SA-N preservatives treated shrimps had the higher comprehensive scores than those of untreated ones during whole storage. Microbial community of all samples was dominated by Proteobacteria. The initial predominant bacteria of fresh shrimps were Sphingomonas, Carnobacterium and Psychrobacter. Psychrobacter, Pseudomonas, and Shewanella, Acinetobacter and Vibrio were the predominant bacteria of untreated samples. CS-SA-N preservatives significantly decreased predominant microbial numbers by inhibiting the growth of Psychrobacter, Vibrio, Acinetobacter and Carnobacterium during cold storage. Therefore, the CS-SA-N preservatives could be used to prolong the shelf life of shrimp and guarantee its quality.
Collapse
Affiliation(s)
- Shijie Cen
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Qi Fang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Lu Tong
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Wenge Yang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Jinjie Zhang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang 315800, China.
| | - Qiaoming Lou
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Tao Huang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang 315800, China.
| |
Collapse
|
47
|
Li D, Prinyawiwatkul W, Tan Y, Luo Y, Hong H. Asian carp: A threat to American lakes, a feast on Chinese tables. Compr Rev Food Sci Food Saf 2021; 20:2968-2990. [PMID: 33836118 DOI: 10.1111/1541-4337.12747] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022]
Abstract
Asian carp, which are widely distributed in Asia and Europe, are nutritious and popular with consumers. In China, Asian carp is a tasty dish and has been consumed for thousands of years. However, they are considered aggressive invasive species that threaten rivers, lakes, and indigenous species in the United States. Asian carp have proliferated greatly in the water basin of the Mississippi River and its tributaries, and they have caused severe ecological problems over the past 20 years. In recent years, several state governments along the Mississippi River have implemented assistance programs to eliminate invasive Asian carp, but these did not alleviate the threat. We conducted a survey to understand consumers' attitudes toward Asian carp in the United States, and related reports were reviewed to explore the possibility of Asian carp as food fish on American tables. Emphasis is placed on the farming history, functional characteristics, consumption preferences, and successful utilization methods for Asian carp in China. In addition, suggestions and possible utilization methods were proposed to improve the negative impression of Asian carp in the United States. Further research is needed to take full advantage of this huge excellent source of food or health supplements. This review provides ideas and directions for the use of Asian carp in the United States. We believe that through effective cooperation between China and the United States, the negative aspects of Asian carp in the United States could be diminished, and a mutually beneficial situation could be achieved.
Collapse
Affiliation(s)
- Dapeng Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,College of Engineering, China Agricultural University, Beijing, China
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences, Louisiana State University, Agricultural Center, Baton Rouge, Louisiana, USA
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
48
|
Zhuang S, Hong H, Zhang L, Luo Y. Spoilage‐related microbiota in fish and crustaceans during storage: Research progress and future trends. Compr Rev Food Sci Food Saf 2020; 20:252-288. [DOI: 10.1111/1541-4337.12659] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Shuai Zhuang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering China Agricultural University Beijing China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering China Agricultural University Beijing China
| | - Longteng Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering China Agricultural University Beijing China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering China Agricultural University Beijing China
| |
Collapse
|