1
|
Xu Y, Wang S, Xin L, Zhang L, Liu H. Interfacial mechanisms, environmental influences, and applications of polysaccharide-based emulsions: A review. Int J Biol Macromol 2025; 293:139420. [PMID: 39746414 DOI: 10.1016/j.ijbiomac.2024.139420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/30/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
To develop stable polysaccharide-based emulsions, many studies have focused on the interfacial behavior of adsorbed polysaccharides. This review first discussed the mechanism of polysaccharides self-assembly at the oil-water interface. It can be concluded that polysaccharides can form a thick and strong interfacial membrane that stabilizes emulsions through steric hindrance and electrostatic interactions. In particular, we also investigated the influence of various conditions (i.e., mechanical stress, heating, pH, enzymatic treatment, and ionic strength) on the architecture and properties of polysaccharide-based emulsions. Additionally, the interactions of polysaccharides with other molecules in the emulsion system were summarized, revealing that co-adsorption further changes their properties. Furthermore, current approaches for monitoring the behavior of adsorbed polysaccharides at the oil/water interface were reviewed, highlighting their advantages and limitations. Lastly, we emphasized the potential of polysaccharides for producing environmental-friendly emulsions in the food industry.
Collapse
Affiliation(s)
- Yan Xu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
| | - Liwen Xin
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Lanxin Zhang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| |
Collapse
|
2
|
Grachev V, Lombardo S, Bartic C, Thielemans W. Thermodynamics of interactions between cellulose nanocrystals and monovalent counterions. Carbohydr Polym 2024; 333:121949. [PMID: 38494215 DOI: 10.1016/j.carbpol.2024.121949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/16/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
Alkali and quaternary ammonium cations interact with negatively charged cellulose nanocrystals (CNCs) bearing sulfated or carboxylated functional groups. As these are some of the most commonly occurring cations CNC encounter in applications, the thermodynamic parameters of these CNC-counterion interactions were evaluated with isothermal titration calorimetry (ITC). Whereas the adsorption of monovalent counterions onto CNCs was thermodynamically favourable at all evaluated conditions as indicated by a negative Gibbs free energy, the enthalpic and entropic contributions to the CNC-ion interactions were found to be strongly dependent on the hydration characteristics of the counterion and could be correlated with the potential barrier to water exchange of the respective ions. The adsorption of chaotropic cations onto the surface was exothermic, while the interactions with kosmotropic cations were endothermic and completely entropy-driven. The interactions of CNCs with more bulky quaternary ammonium counterions were more complex, and the mechanism of interaction shifted from electrostatic interactions with surface charged groups of CNCs towards adsorption of alkyl chains onto the CNC hydrophobic planes when the alkyl chain length increased.
Collapse
Affiliation(s)
- Vladimir Grachev
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Salvatore Lombardo
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Carmen Bartic
- Laboratory for Soft Matter Physics and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D box 2416, 3001 Leuven, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium.
| |
Collapse
|
3
|
Huang L, Xu C, Gao W, Rojas OJ, Jiao W, Guo S, Li J. Formulation and stabilization of high internal phase emulsions via mechanical cellulose nanofibrils/ethyl lauroyl arginate complexes. Carbohydr Polym 2024; 324:121541. [PMID: 37985062 DOI: 10.1016/j.carbpol.2023.121541] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Motivated by the quest for biocompatibility, we report on oil-in-water (O/W), high-internal-phase Pickering emulsions stabilized via complexes of mechanical cellulose nanofibrils (CNF) and food-grade cationic surfactant ethyl lauroyl arginate (LAE). The complexation of oppositely charged CNF and LAE can be held together by electrostatic interaction. Their effect on suspensions electrostatic stabilization, heteroaggregation state, and emulsifying ability was studied and related to properties of resultant interfacial tension between oil and water and 3D printing of emulsions. The Pickering system with adjustable droplet diameter and stability against creaming and oiling-off during storage was achieved resting with LAE loading. Complexes formed by LAE adjustment act as Pickering stabilizers and three-dimensional networks in emulsion system, forming a scaffold with elastoplastic rheological properties that flows above critical stress while, without any additional treatment, exhibiting the required self-standing properties for 3D printing. By understanding the properties of CNF/LAE behavior in bulk and on interfaces, printing edible functional foods of CNF/LAE-based emulgel inks has been demonstrated to enable regulation of oil release.
Collapse
Affiliation(s)
- Luyao Huang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chuan Xu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenhua Gao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Wenjuan Jiao
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Shasha Guo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jun Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
4
|
Mahawar MK, Bharimalla AK, Arputharaj A, Palkar J, Dhakane-Lad J, Jalgaonkar K, Vigneshwaran N. Response surface optimization of process parameters for preparation of cellulose nanocrystal stabilized nanosulphur suspension. Sci Rep 2023; 13:20678. [PMID: 38001094 PMCID: PMC10673880 DOI: 10.1038/s41598-023-47164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
This study employed response surface methodology (RSM) to optimize various parameters involved in the synthesis of nanosulphur (NS) stabilized by cellulose nanocrystals (CNCs). The elemental sulphur (ES) mixed with CNCs was processed in a high-pressure homogenizer to make a stable formulation of CNC-stabilized NS (CNC-NS). RSM was adopted to formulate the experiments using Box-Behnken design (BBD) by considering three independent variables i.e., ES (5, 10, 15 g), CNCs (25, 50, 75 ml), and the number of passes (NP) in the high-pressure homogenizer (1, 2, 3). For the prepared suspensions (CNC-NS), the range of the responses viz. settling time (0.84-20.60 min), particle size (500.41-1432.62 nm), viscosity (29.20-420.60 cP), and surface tension (60.35-73.61 N/m) were observed. The numerical optimization technique was followed by keeping the independent and dependent factors in the range yielded in the optimized solution viz. 46 ml (CNCs), 8 g (ES), and 2 (NP). It was interpreted from the findings that the stability of the suspension had a positive correlation with the amount of CNC while the increasing proportion of ES resulted in reduced stability. The quadratic model was fitted adequately to all the responses as justified with the higher coefficient of determination (R2 ≥ 0.88). The characterization performed by X-ray diffraction (XRD), zeta potential, Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR) revealed better-stabilizing properties of the optimized CNCs-ES suspension. The study confirmed that CNCs have the potential to be utilized as a stabilizing agent in synthesizing stable nanosulphur formulation by high-pressure homogenization.
Collapse
Affiliation(s)
- Manoj Kumar Mahawar
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India.
| | | | - A Arputharaj
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Jagdish Palkar
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Jyoti Dhakane-Lad
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Kirti Jalgaonkar
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - N Vigneshwaran
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| |
Collapse
|
5
|
Ji C, Wang Y. Nanocellulose-stabilized Pickering emulsions: Fabrication, stabilization, and food applications. Adv Colloid Interface Sci 2023; 318:102970. [PMID: 37523998 DOI: 10.1016/j.cis.2023.102970] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Pickering emulsions have been widely studied due to their good stability and potential applications. Nanocellulose including cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs), and bacterial cellulose nanofibrils (BCNFs) has emerged as sustainable stabilizers/emulsifiers in food-related Pickering emulsions due to their favorable properties such as renewability, low toxicity, amphiphilicity, biocompatibility, and high aspect ratio. Nanocellulose can be widely obtained from different sources and extraction methods and can effectively stabilize Pickering emulsions via the irreversible adsorption onto oil-water interface. The synergistic effects of nanocellulose and other substances can further enhance the interfacial networks. The nanocellulose-based Pickering emulsions have potential food-related applications in delivery systems, food packaging materials, and fat substitutes. Nanocellulose-based Pickering emulsions as 3D printing inks exhibit good injectable and gelling properties and are promising to print spatial architectures. In the future, the utilization of biomass waste and the development of "green" and facile extraction methods for nanocellulose production deserve more attention. The stability of nanocellulose-based Pickering emulsions in multi-component food systems and at various conditions is an utmost challenge. Moreover, the case-by-case studies on the potential safety issues of nanocellulose-based Pickering emulsions need to be carried out with the standardized assessment procedures. In this review, we highlight key fundamental work and recent reports on nanocellulose-based Pickering emulsion systems. The sources and extraction of nanocellulose and the fabrication of nanocellulose-based Pickering emulsions are briefly summarized. Furthermore, the synergistic stability and food-related applications of nanocellulose-stabilized Pickering emulsions are spotlighted.
Collapse
Affiliation(s)
- Chuye Ji
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
6
|
Jiang W, Xiang W, Xu L, Yuan D, Gao Z, Hu B, Li Y, Wu Y. Fabrication, characterization, and emulsifying properties of hexadecyltrimethylammonium bromide complexed alginate microgel. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
7
|
Teo SH, Chee CY, Fahmi MZ, Wibawa Sakti SC, Lee HV. Review of Functional Aspects of Nanocellulose-Based Pickering Emulsifier for Non-Toxic Application and Its Colloid Stabilization Mechanism. Molecules 2022; 27:7170. [PMID: 36363998 PMCID: PMC9657650 DOI: 10.3390/molecules27217170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 07/27/2023] Open
Abstract
In the past few years, the research on particle-stabilized emulsion (Pickering emulsion) has mainly focused on the usage of inorganic particles with well-defined shapes, narrow size distributions, and chemical tunability of the surfaces such as silica, alumina, and clay. However, the presence of incompatibility of some inorganic particles that are non-safe to humans and the ecosystem and their poor sustainability has led to a shift towards the development of materials of biological origin. For this reason, nano-dimensional cellulose (nanocellulose) derived from natural plants is suitable for use as a Pickering material for liquid interface stabilization for various non-toxic product formulations (e.g., the food and beverage, cosmetic, personal care, hygiene, pharmaceutical, and biomedical fields). However, the current understanding of nanocellulose-stabilized Pickering emulsion still lacks consistency in terms of the structural, self-assembly, and physio-chemical properties of nanocellulose towards the stabilization between liquid and oil interfaces. Thus, this review aims to provide a comprehensive study of the behavior of nanocellulose-based particles and their ability as a Pickering functionality to stabilize emulsion droplets. Extensive discussion on the characteristics of nanocelluloses, morphology, and preparation methods that can potentially be applied as Pickering emulsifiers in a different range of emulsions is provided. Nanocellulose's surface modification for the purpose of altering its characteristics and provoking multifunctional roles for high-grade non-toxic applications is discussed. Subsequently, the water-oil stabilization mechanism and the criteria for effective emulsion stabilization are summarized in this review. Lastly, we discuss the toxicity profile and risk assessment guidelines for the whole life cycle of nanocellulose from the fresh feedstock to the end-life of the product.
Collapse
Affiliation(s)
- Shao Hui Teo
- Nanotechnology & Catalysis Research Center (NANOCAT), Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ching Yern Chee
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Mochamad Zakki Fahmi
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya 60115, Indonesia
| | - Satya Candra Wibawa Sakti
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya 60115, Indonesia
| | - Hwei Voon Lee
- Nanotechnology & Catalysis Research Center (NANOCAT), Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya 60115, Indonesia
| |
Collapse
|
8
|
Xia C, Han L, Zhang C, Xu M, Liu Z, Chen Y, Zhu Y, Yu M, Wu W, Yin S, Huang J, Zheng Z, Zhang R. Preparation and optimization of Pickering emulsion stabilized by alginate-lysozyme nanoparticles for β-carotene encapsulation. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Pickering emulsions synergistically stabilized by cellulose nanocrystals and peanut protein isolate. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Effect of soybean protein isolate-pectin composite nanoparticles and hydroxypropyl methyl cellulose on the formation, stabilization and lipidolysis of food-grade emulsions. Food Chem 2022; 389:133102. [DOI: 10.1016/j.foodchem.2022.133102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022]
|
11
|
Wang H, Zhang M, Hu J, Du H, Xu T, Si C. Sustainable preparation of surface functionalized cellulose nanocrystals and their application for Pickering emulsions. Carbohydr Polym 2022; 297:120062. [DOI: 10.1016/j.carbpol.2022.120062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 12/14/2022]
|
12
|
Klojdová I, Stathopoulos C. The Potential Application of Pickering Multiple Emulsions in Food. Foods 2022; 11:foods11111558. [PMID: 35681307 PMCID: PMC9180460 DOI: 10.3390/foods11111558] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Emulsions stabilized by adsorbed particles—Pickering particles (PPs) instead of surfactants and emulsifiers are called Pickering emulsions. Here, we review the possible uses of Pickering multiple emulsions (PMEs) in the food industry. Food-grade PMEs are very complex systems with high potential for application in food technology. They can be prepared by traditional two-step emulsification processes but also using complex techniques, e.g., microfluidic devices. Compared to those stabilized with an emulsifier, PMEs provide more benefits such as lower susceptibility to coalescence, possible encapsulation of functional compounds in PMEs or even PPs with controlled release, etc. Additionally, the PPs can be made from food-grade by-products. Naturally, w/o/w emulsions in the Pickering form can also provide benefits such as fat reduction by partial replacement of fat phase with internal water phase and encapsulation of sensitive compounds in the internal water phase. A possible advanced type of PMEs may be stabilized by Janus particles, which can change their physicochemical properties and control properties of the whole emulsion systems. These emulsions have big potential as biosensors. In this paper, recent advances in the application of PPs in food emulsions are highlighted with emphasis on the potential application in food-grade PMEs.
Collapse
|
13
|
Li S, Jiao B, Meng S, Fu W, Faisal S, Li X, Liu H, Wang Q. Edible mayonnaise-like Pickering emulsion stabilized by pea protein isolate microgels: Effect of food ingredients in commercial mayonnaise recipe. Food Chem 2021; 376:131866. [PMID: 34974399 DOI: 10.1016/j.foodchem.2021.131866] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 12/12/2021] [Indexed: 11/30/2022]
Abstract
Particle stabilized O/W Pickering emulsion has great potential for making egg-free mayonnaise. In this study, we fabricated pea protein isolate (PPI) microgels by gel-breaking method and applied in mayonnaise-like Pickering emulsion. The effects of acetic acid (pH), sodium chloride (NaCl), and sucrose, which are typically used in commercial mayonnaise were studied. The minimum droplet size (47.0 μm) was found below isoelectric point. The NaCl decreased ζ-potential to almost 0 and risen droplet size to 75.9 μm. The sucrose enhanced the emulsion's viscosity while lowering thixotropic recovery rate. Based on droplet size, viscosity, thixotropic recovery, and microstructure; 350 mmol NaCl and 4 wt% sucrose was finally used to make egg-free mayonnaise-like Pickering emulsion, and showed similar properties compared with commercial mayonnaise, and the thixotropy recovery rate was near 100%. A plant-scale test further confirmed the feasibility. The results showed the PPI microgels had a strong application prospect to form egg-free mayonnaise.
Collapse
Affiliation(s)
- Sisheng Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Science/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Bo Jiao
- Institute of Food Science and Technology, Chinese Academy of Agriculture Science/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Shi Meng
- Institute of Food Science and Technology, Chinese Academy of Agriculture Science/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Nestle R&D (China) Limited, Beijing 100015, China.
| | - Weiming Fu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Science/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Shah Faisal
- Institute of Food Science and Technology, Chinese Academy of Agriculture Science/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Xiaomin Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Hongzhi Liu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Science/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Science/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
14
|
Recent development in food emulsion stabilized by plant-based cellulose nanoparticles. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101512] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Tang M, Zhu Z, Yang K, Yang P, Dong Y, Wu Y, Chen M, Zhou X. Cellulose nanocrystals concentration and oil-water ratio for solid-liquid controllable emulsion polymerization. Int J Biol Macromol 2021; 191:414-421. [PMID: 34562534 DOI: 10.1016/j.ijbiomac.2021.09.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/17/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022]
Abstract
Stabilities of cellulose Pickering emulsions are of great importance to utilize them effectively, but influenced by their complex compositions, such as, colloidal particles, oil phases and water phases. In this work, solid-liquid controllable polymerization products could obtain by adjusting cellulose nanocrystals (CNCs) concentration and vinyl acetate (VAc)-water ratio. The emulsions in zone Ӏ (w/o) and II (o/w) of the three-phase diagram were selected for researching. The polymerization emulsions in zone II illustrated the o/w ratio played a more important role than CNCs concentration in the storage stability and practicality of the polymerized emulsion; The polymer in zone Ӏ showed a large number of porous structures. This is an innovative method that different forms of target products are obtained through the guidance of three-phase diagram, which not only broadens the application field, but also applies to other Pickering emulsion systems.
Collapse
Affiliation(s)
- Miao Tang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Ziqi Zhu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Kai Yang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Pei Yang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Yue Dong
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Yakun Wu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Minzhi Chen
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China.
| | - Xiaoyan Zhou
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China.
| |
Collapse
|
16
|
Rigg A, Champagne P, Cunningham MF. Polysaccharide-Based Nanoparticles as Pickering Emulsifiers in Emulsion Formulations and Heterogenous Polymerization Systems. Macromol Rapid Commun 2021; 43:e2100493. [PMID: 34841604 DOI: 10.1002/marc.202100493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/27/2021] [Indexed: 12/20/2022]
Abstract
Bio-based Pickering emulsifiers are a nontoxic alternative to surfactants in emulsion formulations and heterogenous polymerizations. Recent demand for biocompatible and sustainable formulations has accelerated academic interest in polysaccharide-based nanoparticles as Pickering emulsifiers. Despite the environmental advantages, the inherent hydrophilicity of polysaccharides and their nanoparticles limits efficiency and application range. Modification of the polysaccharide surface is often required in the development of ultrastable, functional, and water-in-oil (W/O) systems. Complex surface modification calls into question the sustainability of polysaccharide-based nanoparticles and is identified as a significant barrier to commercialization. This review summarizes the use of nanocelluloses, -starches, and -chitins as Pickering emulsifiers, highlights trends and best practices in surface modification, and provides recommendations to expedite commercialization.
Collapse
Affiliation(s)
- Amanda Rigg
- Department of Chemical Engineering, 19 Division Street, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Pascale Champagne
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, ON, K7L 3N6, Canada.,Institut National de la Recherche Scientifique (INRS), 490 rue de la Couronne, Quebec City, Quebec, G1K 9A9, Canada
| | - Michael F Cunningham
- Department of Chemical Engineering, 19 Division Street, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Chemistry, 90 Bader Lane, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
17
|
Pang B, Liu H, Zhang K. Recent progress on Pickering emulsions stabilized by polysaccharides-based micro/nanoparticles. Adv Colloid Interface Sci 2021; 296:102522. [PMID: 34534752 DOI: 10.1016/j.cis.2021.102522] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/16/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023]
Abstract
Pickering emulsions stabilized by micro/nanoparticles have attracted considerable attention owing to their great potential in various applications ranging from cosmetic and food industries to catalysis, tissue engineering and drug delivery. There is a growing demand to design "green" micro/nanoparticles for constructing stable Pickering emulsions. Micro/nanoparticles derived from the naturally occurring polysaccharides including cellulose, chitin, chitosan and starch are capable of assembling at oil/water interfaces and are promising green candidates because of their excellent biodegradability and renewability. The physicochemical properties of the micro/nanoparticles, which are determined by the fabricating approaches and/or post-modification methods, have a significant effect on the characteristics of the final Pickering emulsions and their applications. Herein, recent advances on Pickering emulsions stabilized by polysaccharides-based micro/nanoparticles and the construction of functional materials including porous foams, microcapsules and latex particles from these emulsions as templates, are reviewed. In particular, the effects of micro/nanoparticles properties on the characteristics of the Pickering emulsions and their applications are discussed. Furthermore, the obstacles that hinder the practical applications of polysaccharides-based micro/nanoparticles and Pickering emulsions as well as the prospects for the future development, are discussed.
Collapse
|
18
|
Bai L, Huan S, Rojas OJ, McClements DJ. Recent Innovations in Emulsion Science and Technology for Food Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8944-8963. [PMID: 33982568 DOI: 10.1021/acs.jafc.1c01877] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Emulsion technology has been used for decades in the food industry to create a diverse range of products, including homogenized milk, creams, dips, dressings, sauces, desserts, and toppings. Recently, however, there have been important advances in emulsion science that are leading to new approaches to improving food quality and functionality. This article provides an overview of a number of these advanced emulsion technologies, including Pickering emulsions, high internal phase emulsions (HIPEs), nanoemulsions, and multiple emulsions. Pickering emulsions are stabilized by particle-based emulsifiers, which may be synthetic or natural, rather than conventional molecular emulsifiers. HIPEs are emulsions where the concentration of the disperse phase exceeds the close packing limit (usually >74%), which leads to novel textural properties and high resistance to gravitational separation. Nanoemulsions contain very small droplets (typically d < 200 nm), which leads to useful functional attributes, such as high optical clarity, resistance to gravitational separation and aggregation, rapid digestion, and high bioavailability. Multiple emulsions contain droplets that have smaller immiscible droplets inside them, which can be used for reduced-calorie, encapsulation, and delivery purposes. This new generation of advanced emulsions may lead to food and beverage products with improved quality, health, and sustainability.
Collapse
Affiliation(s)
- Long Bai
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Siqi Huan
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Orlando J Rojas
- Bioproducts Institute, Departments of Chemical & Biological Engineering, Chemistry, and Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Post Office Box 16300, FI-00076 Aalto, Espoo, Finland
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
19
|
Li Z, Zhang Y, Anankanbil S, Guo Z. Applications of nanocellulosic products in food: Manufacturing processes, structural features and multifaceted functionalities. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Li Q, Wu Y, Fang R, Lei C, Li Y, Li B, Pei Y, Luo X, ShilinLiu. Application of Nanocellulose as particle stabilizer in food Pickering emulsion: Scope, Merits and challenges. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Li Q, Wu Y, Shabbir M, Pei Y, Liang H, Li J, Chen Y, Li Y, Li B, Luo X, Liu S. Coalescence behavior of eco-friendly Pickering-MIPES and HIPEs stabilized by using bacterial cellulose nanofibrils. Food Chem 2021; 349:129163. [PMID: 33550021 DOI: 10.1016/j.foodchem.2021.129163] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/12/2020] [Accepted: 01/19/2021] [Indexed: 02/02/2023]
Abstract
O/W Pickering emulsions containing oil phase with different volume fractions (50-75 v%) were facilely prepared by using bacterial cellulose nanofibrils (BCNFs) alone. The effect of oil phase volume, storage time on the surface coverage, and coalescence rate of the Pickering-MIPEs and HIPEs (medium internal phase emulsions/high internal phase emulsions) were investigated. The Pickering-MIPEs/HIPEs exhibited excellent physical stability and low coalescence rate with droplet size varying from 32 to 91 μm. The increasing of particle contents could obviously decrease the droplet size and enhance the stability of the emulsions by strengthening the network structure and increasing the steric hindrance. The result of rheology analysis confirmed the formation of a three-dimensional network, endowing the exceptional stability of the emulsions. The emulsions revealed superb stability against a wide temperature (4-50 °C) range and salt condition (0-100 mM). This novel eco-friendly Pickering-MIPEs and HIPEs would provide great opportunities for their effective utilization in green-labelled food industry.
Collapse
Affiliation(s)
- Qi Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuehan Wu
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mohd Shabbir
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Ying Pei
- School of Materials and Engineering, Zhengzhou University, No. 100. Science Avenue, Zhengzhou City, Henan 450001, China
| | - Hongshan Liang
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jing Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yijie Chen
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yan Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bin Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaogang Luo
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China; School of Materials and Engineering, Zhengzhou University, No. 100. Science Avenue, Zhengzhou City, Henan 450001, China.
| | - Shilin Liu
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; School of Materials and Engineering, Zhengzhou University, No. 100. Science Avenue, Zhengzhou City, Henan 450001, China.
| |
Collapse
|
22
|
Zhang Y, Lu H, Wang B, Wang N, Liu D. pH-Responsive Non-Pickering Emulsion Stabilized by Dynamic Covalent Bond Surfactants and Nano-SiO 2 Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15230-15239. [PMID: 33296216 DOI: 10.1021/acs.langmuir.0c02422] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel stimulus-responsive non-Pickering emulsion stabilized by nano-SiO2 particles was prepared in our recent study. 4-formylbenzoic acid and hexylamine through a dynamic covalent bond form a surface-active substance, which was confirmed by Fourier transform infrared (FTIR) and 1H NMR. Through optimization experiments, it was proved that a stable emulsion can be formed by low surfactant concentration (below cmc) and low nano-SiO2 particle concentration (0.5 wt %). In this emulsion, nano-SiO2 particles are not located at the interface of oil-water but dispersed in the continuous phase of the emulsion, which is different from the Pickering emulsion. The negatively charged nano-SiO2 particles and anionic surfactants repel each other, thereby synergistically stabilizing the emulsion so that the concentrations of surfactants and nanoparticles required to stabilize the emulsion are reduced. In addition, the system can also control the formation and fracture of dynamic covalent bonds by changing pH, thereby controlling the stability and demulsification of the emulsion. At the same time, this non-Pickering emulsion could be used as a microreactor for chemical synthesis and still had a high yield after three cycles. This study provides a new application direction for this environmentally friendly emulsion.
Collapse
Affiliation(s)
- Ying Zhang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Hongsheng Lu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, P. R. China
| | - Baogang Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, P. R. China
| | - Na Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, P. R. China
| | - Dongfang Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- College of Science, Xihua University, Chengdu 610039, P. R. China
| |
Collapse
|