1
|
Kung C, Lin M, Chen B. Preparation of Collagen Peptide Nanoliposomes From Sturgeon Fish Cartilage and Explore Their Anti‐Osteoarthritis Effects in Rats. FOOD FRONTIERS 2025; 6:727-749. [DOI: 10.1002/fft2.539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
ABSTRACTThis study aims to extract pepsin soluble collagen (PSC) from sturgeon cartilage, hydrolyze to sturgeon cartilage collagen peptides (SCCP), and prepare SCCP nanoliposomes to explore the treatment effects of osteoarthritis (OA) in rats. PSC was extracted using 0.5 M acetic acid and pepsin (10%) and enzymatically hydrolyzed with 4.5% alcalase plus 4.5% flavourzyme to obtain SCCP. Amino acid analysis revealed the presence of glycine, proline, and hydroxyproline in high amounts, while SDS‐PAGE showed that the PSC belonged to type II collagen with molecular weight (MW) of SCCP being <2 kDa and MALDI‐TOF‐MS indicated the MW distribution to range from 302.594 to 683.050 Da with the peptide fragments <500 Da accounting for 89.71%. SCCP nanoliposomes composed of phosphatidylcholine, fatty acid sucrose ester, glycerol, and deionized water were prepared with size at 34.58 nm, polydispersity index at 0.19, zeta potential at ‐54.53 mV, and encapsulation efficiency at 88.14%. Tube feeding of SCCP/SCCP nanoliposomes into OA rats alleviated pain responses by joint damage through reduction in hind limb weight‐bearing difference, knee joint width difference, and levels of serum biomarkers including CTX‐II, TGF‐β1, PIICP, and COMP. Histopathologic images demonstrated the mitigation of joint damage symptoms in the tissue by reducing cartilage joint damage, inhibiting chondrocyte apoptosis, promoting chondrocyte regeneration, and reducing synovitis. Collectively, the high dose of SCCP nanoliposomes was the most effective in alleviating OA possessing a great potential to be developed into a health food or botanic drug for the treatment of joint‐related disease.
Collapse
Affiliation(s)
- Chia‐Chi Kung
- School of Medicine Fu Jen Catholic University Taipei
- Department of Anesthesia Fu Jen Catholic University Hospital Taipei
| | - Mei‐Zhen Lin
- Department of Food Science Fu Jen Catholic University Taipei
| | - Bing‐Huei Chen
- Department of Food Science Fu Jen Catholic University Taipei
- Department of Nutrition China Medical University Taichung
| |
Collapse
|
2
|
Mazloomi N, Safari B, Can Karaca A, Karimzadeh L, Moghadasi S, Ghanbari M, Assadpour E, Sarabandi K, Jafari SM. Loading bioactive peptides within different nanocarriers to enhance their functionality and bioavailability; in vitro and in vivo studies. Adv Colloid Interface Sci 2024; 334:103318. [PMID: 39433020 DOI: 10.1016/j.cis.2024.103318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
A hydrolyzed protein is a blend of peptides and amino acids which is the result of hydrolysis by enzymes, acids or alkalis. The Bioactive Peptides (BPs) show important biological roles including antioxidant, antimicrobial, anti-diabetic, anti-cancer, and anti-hypertensive effects, as well as positive effects on the immune, nervous, and digestive systems. Despite the benefits of BPs, challenges such as undesired organoleptic properties, solubility profile, chemical instability, and low bioavailability limit their use in functional food formulations and dietary supplements. Nanocarriers have emerged as a promising solution for overcoming these challenges by improving the stability, solubility, resistance to gastric digestion, and bioavailability, allowing for the targeted and controlled delivery, and reduction or masking of the undesirable flavor of BPs. This study reviews the recent scientific accomplishments concerning the loading of BPs into various nanocarriers including lipid, carbohydrate and protein based-nanocarriers. A special emphasis is given to their application in food formulations in accordance to the challenges associated with their use.
Collapse
Affiliation(s)
- Narges Mazloomi
- Department of Nutritional Sciences, School of Health, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Barbod Safari
- School of Literature and Humanities, Kharazmi University, Tehran, Iran
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Laleh Karimzadeh
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Food and Drug Administration, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shokufeh Moghadasi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Masoud Ghanbari
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Food and Drug Administration, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elham Assadpour
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Food Industry Research Co., Gorgan, Iran
| | - Khashayar Sarabandi
- Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
3
|
Akbarbaglu Z, Mirzapour-Kouhdasht A, Ayaseh A, Ghanbarzadeh B, Oz F, Sarabandi K. Controlled release and biological properties of prochitosomes loaded with Arthrospira derived peptides: Membrane stability, chemical, morphological and structural monitoring. Int J Biol Macromol 2024; 281:136608. [PMID: 39414193 DOI: 10.1016/j.ijbiomac.2024.136608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
In this study, the effects of chitosan-coating on maintaining the integrity and stability of the membrane, structural, and morphological changes, and the release of loaded peptides inside nanoliposomes during various in vitro release, thermal, freeze-thaw, shear, and dehydration (spray-drying) tensions were evaluated. Among different peptidic fractions (100, 30, and 10 kDa), the Arthrospira derived PF-30 kDa showed a higher nutritional and biological value. PF-30kDa was loaded successfully (EE ~ 90 %) inside nanoliposomes (NLs) and its stabilization was done with chitosan coating (0.1-0.8 %). Nanochitosomes (NCs-0.4 %) had more structural stability (size, EE, and biological activity) at different temperatures, freeze-thaw tension, and digestive system. The placement of peptides in the vesicle structure was confirmed by FTIR analysis. Also, the changes in the morphological states, agglomeration, or destruction of the liposome membrane (SEM, AFM, and TEM) were evaluated before and after the tensions. Membrane coating led to the transformation of freeze-dried liposomes (FD-NLs) from thin, porous, and fragile layers to thick plates, rough and resistant structures (FD-NCs). These characteristics led to maintaining physical stability, homogeneity, zeta potential, and EE of nanoparticles (freeze and spray-dried) after reconstitution. The results of this study will effectively contribute to the production of solidified delivery systems with long-term durability, bioavailability, and biological activity of loaded nutrients and drugs.
Collapse
Affiliation(s)
- Zahra Akbarbaglu
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Armin Mirzapour-Kouhdasht
- Department of Chemical Sciences, SSPC, Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy, Limerick V94 T9PX, Ireland; Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Ali Ayaseh
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran.
| | - Babak Ghanbarzadeh
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum 25240, Türkiye
| | - Khashayar Sarabandi
- Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| |
Collapse
|
4
|
Brilian AI, Lee SH, Setiawati A, Kim CH, Ryu SR, Chong HJ, Jo Y, Jeong H, Ju BG, Kwon OS, Tae G, Shin K. Topical Nanoliposomal Collagen Delivery for Targeted Fibril Formation by Electrical Stimulation. Adv Healthc Mater 2024; 13:e2400693. [PMID: 38795005 DOI: 10.1002/adhm.202400693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Indexed: 05/27/2024]
Abstract
Collagen is a complex, large protein molecule that presents a challenge in delivering it to the skin due to its size and intricate structure. However, conventional collagen delivery methods are either invasive or may affect the protein's structural integrity. This study introduces a novel approach involving the encapsulation of collagen monomers within zwitterionic nanoliposomes, termed Lip-Cols, and the controlled formation of collagen fibrils through electric fields (EF) stimulation. The results reveal the self-assembly process of Lip-Cols through electroporation and a pH gradient change uniquely triggered by EF, leading to the alignment and aggregation of Lip-Cols on the electrode interface. Notably, Lip-Cols exhibit the capability to direct the orientation of collagen fibrils within human dermal fibroblasts. In conjunction with EF, Lip-Cols can deliver collagen into the dermal layer and increase the collagen amount in the skin. The findings provide novel insights into the directed formation of collagen fibrils via electrical stimulation and the potential of Lip-Cols as a non-invasive drug delivery system for anti-aging applications.
Collapse
Affiliation(s)
- Albertus Ivan Brilian
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Sang Ho Lee
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Agustina Setiawati
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
- Faculty of Pharmacy, Sanata Dharma University, Paingan, Maguwoharjo, Depok, Sleman, Yogyakarta, 55284, Indonesia
| | - Chang Ho Kim
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Soo Ryeon Ryu
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Hyo-Jin Chong
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Yejin Jo
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Hayan Jeong
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Bong-Gun Ju
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Oh-Sun Kwon
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Kwanwoo Shin
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| |
Collapse
|
5
|
Lee MS, Bui HTD, Kim SJ, Lee JB, Yoo HS. Liposome-assisted penetration and antiaging effects of collagen in a 3D skin model. J Cosmet Dermatol 2024; 23:236-243. [PMID: 37415450 DOI: 10.1111/jocd.15912] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Collagen is a major component of the extracellular matrix that supports the epidermal layers of the skin; thus, many strategies have been made to enhance the topical delivery of collagen for antiaging purposes. In addition, our previous study indicated that liposome can help the penetration of active ingredients into the skin. AIMS To produce stable collagen-encapsulated liposomes to improve the topical delivery of collagen. METHODS Collagen-encapsulated liposomes were fabricated using high-pressure homogenization method. The colloidal stability and adhesion ability were confirmed using dynamic light scattering, and spectrofluorophotometer, respectively. Keratinocyte differentiations of 3D skin before and after treatment with collagen-encapsulated liposomes were confirmed by real-time PCR. RESULTS In comparison with native collagen, collagen-encapsulated liposomes enhanced collagen retention in artificial membranes by twofold, even after repeated washings with water. In addition, real-time PCR results indicated that 3D skin treated with collagen-encapsulated liposomes exhibited higher levels of collagen, keratin, and involucrin, even after ethanol treatment. CONCLUSION Liposomes could serve as efficient delivery vehicles for collagen, thereby enhancing its antiaging effects.
Collapse
Affiliation(s)
- Mi So Lee
- Department of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Hoai-Thuong Duc Bui
- Department of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Su Ji Kim
- Innovation Lab., Cosmax R&I Center, Seongnam-si, Republic of Korea
| | - Jun Bae Lee
- Innovation Lab., Cosmax R&I Center, Seongnam-si, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
6
|
Mittal A, Singh A, Hong H, Benjakul S. Chitooligosaccharide-catechin conjugate loaded liposome using different stabilising agents: characteristics, stability, and bioactivities. J Microencapsul 2023; 40:385-401. [PMID: 37130079 DOI: 10.1080/02652048.2023.2209658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
AIM To determine the optimum condition for preparing chitooligosaccharide-catechin conjugate (COS-CAT) liposomes using different stabilising agents. METHODS COS-CAT liposomes (0.1-1%, w/v) were prepared using soy phosphatidylcholine (SPC) (50-200 mM) and glycerol or cholesterol (25-100 mg). Encapsulation efficiency (EE), loading capacity (LC), physicochemical characteristics, FTIR spectra, thermal stability, and structure of COS-CAT liposomes were assessed. RESULTS COS-CAT loaded liposome stabilised by cholesterol (COS-CAT-CHO) showed higher stability as shown by the highest EE (76.81%) and LC (4.57%) and the lowest zeta potential (ZP) (-76.51 mV), polydispersity index (PDI) (0.2674) and releasing efficiency (RE) (53.54%) (p < 0.05). COS-CAT-CHO showed the highest retention and relative remaining bioactivities of COS-CAT under various conditions (p < 0.05). FTIR spectra revealed the interaction between the choline group of SPC and -OH groups of COS-CAT. Phase transition temperature of COS-CAT-CHO was shifted to 184 °C, which was higher than others (p < 0.05). CONCLUSION SPC and cholesterol-based liposome could be used as a promising vesicle for maintaining bioactivities of COS-CAT.
Collapse
Affiliation(s)
- Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Hat Yai, Thailand
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Hat Yai, Thailand
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Hat Yai, Thailand
| |
Collapse
|
7
|
Li M, Li M, Li X, Shao W, Pei X, Dong R, Ren H, Jia L, Li S, Ma W, Zeng Y, Liu Y, Sun H, Yu P. Preparation, Characterization and ex vivo Skin Permeability Evaluation of Type I Collagen-Loaded Liposomes. Int J Nanomedicine 2023; 18:1853-1871. [PMID: 37057190 PMCID: PMC10086223 DOI: 10.2147/ijn.s404494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/14/2023] [Indexed: 04/08/2023] Open
Abstract
Purpose In the present study, we prepared collagen liposomes with the addition of polyol, which is expected to not only increase the solubility of collagen but also improve skin penetration. Methods Collagen liposomes were prepared by the film dispersion method, and their characteristics, integrity and biosafety were evaluated by Fourier transform infrared spectroscopy (FTIR), UV-VIS spectroscopy, polyacrylamide gel electrophoresis (SDS-PAGE), dynamic light scattering (DLS) and transmission electron microscope (TEM). The transdermal absorption of collagen and collagen liposomes were tested by an ex vivo horizontal Valia-Chien diffusion cell system. Results We first demonstrated that collagen extracted from bovine Achilles tendon was type I collagen. The results of DLS measurement and TEM observation showed that the collagen liposomes were spherical in shape with average diameter (75.34±0.93 nm) and maintained high stability at low temperature (4°C) for at least 42 days without toxicity. The encapsulation rate of collagen liposomes was 57.80 ± 0.51%, and SDS-PAGE analysis showed that collagen was intact in liposomes. Finally, permeability studies indicated that the collagen-loaded liposomes more easily penetrated the skin compared to collagen itself. Conclusion This study proposed a new method to improve the bioavailability and permeability of bovine type I collagen, which improves the applicability of collagen in biomedicine, cosmeceuticals and pharmaceutical industries.
Collapse
Affiliation(s)
- Mingyuan Li
- College of Biotechnology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Science & Technology, Tianjin, 300457, People’s Republic of China
| | - Meng Li
- College of Biotechnology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Science & Technology, Tianjin, 300457, People’s Republic of China
| | - Xinyi Li
- College of Biotechnology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Science & Technology, Tianjin, 300457, People’s Republic of China
| | - Wanhui Shao
- College of Biotechnology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Science & Technology, Tianjin, 300457, People’s Republic of China
| | - Xiujuan Pei
- Tianjin Shiji Kangtai Biomedical Engineering Co.,Ltd, Tianjin, 300462, People’s Republic of China
| | - Ruyue Dong
- College of Biotechnology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Science & Technology, Tianjin, 300457, People’s Republic of China
| | - Hongmeng Ren
- College of Biotechnology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Science & Technology, Tianjin, 300457, People’s Republic of China
| | - Lin Jia
- College of Biotechnology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Science & Technology, Tianjin, 300457, People’s Republic of China
| | - Shiqin Li
- College of Biotechnology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Science & Technology, Tianjin, 300457, People’s Republic of China
| | - Wenlin Ma
- College of Biotechnology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Science & Technology, Tianjin, 300457, People’s Republic of China
| | - Yi Zeng
- College of Biotechnology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Science & Technology, Tianjin, 300457, People’s Republic of China
| | - Yun Liu
- College of Biotechnology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Science & Technology, Tianjin, 300457, People’s Republic of China
| | - Hua Sun
- College of Biotechnology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Science & Technology, Tianjin, 300457, People’s Republic of China
- Correspondence: Hua Sun; Peng Yu, Email ;
| | - Peng Yu
- College of Biotechnology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Science & Technology, Tianjin, 300457, People’s Republic of China
| |
Collapse
|
8
|
Gunasekaran K, Vasamsetti BMK, Thangavelu P, Natesan K, Mujyambere B, Sundaram V, Jayaraj R, Kim YJ, Samiappan S, Choi JW. Cytotoxic Effects of Nanoliposomal Cisplatin and Diallyl Disulfide on Breast Cancer and Lung Cancer Cell Lines. Biomedicines 2023; 11:biomedicines11041021. [PMID: 37189638 DOI: 10.3390/biomedicines11041021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Dual drug delivery has become the choice of interest nowadays due to its increased therapeutic efficacy in targeting the tumor site precisely. As quoted in recent literature, it has been known to treat several cancers with an acute course of action. Even so, its use is restricted due to the drug’s low pharmacological activity, which leads to poor bioavailability and increases first-pass metabolism. To overcome these issues, a drug delivery system using nanomaterials which would not only encapsulate the drugs of interest but also carry them to the target site of action is needed. Given all these attributes, we have formulated dual drug-loaded nanoliposomes with cisplatin (cis-diamminedichloroplatinum(II) (CDDP)), an effective anti-cancer drug, and diallyl disulfide (DADS), an organosulfur compound derived from garlic. The CDDP and DADS-loaded nanoliposomes (Lipo-CDDP/DADS) exhibited better physical characteristics such as size, zeta potential, polydispersity index, spherical shape, optimal stability, and satisfactory encapsulation percentage. The in vitro anti-cancer activity against MDA-MB-231 and A549 cell lines revealed that Lipo-CDDP/DADS showed significant efficacy against the cancer cell lines, depicted through cell nucleus staining. We conclude that Lipo-CDDP/DADS hold exceptional pharmacological properties with better anti-cancer activity and would serve as a promising formulation to treat various cancers.
Collapse
|
9
|
Effect of Liposomal Encapsulation and Ultrasonication on Debittering of Protein Hydrolysate and Plastein from Salmon Frame. Foods 2023; 12:foods12040761. [PMID: 36832836 PMCID: PMC9955801 DOI: 10.3390/foods12040761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The impacts of liposomal encapsulation on the bitterness of salmon frame protein hydrolysate (SFPH) and salmon frame protein plastein (SFPP) with the aid of ultrasound (20% amplitude, 750 W) for different time intervals (30, 60 and 120 s) were investigated. Liposomes loaded with 1% protein hydrolysate (L-PH1) and 1% plastein (L-PT1) showed the highest encapsulation efficiency and the least bitterness (p < 0.05). Ultrasonication for longer times reduced encapsulation efficiency (EE) and increased bitterness of both L-PH1 and L-PT1 along with a reduction in particle size. When comparing between L-PH1 and L-PT1, the latter showed less bitterness due to the lower bitterness in nature and higher entrapment of plastein in the liposomes. In vitro release studies also showed the delayed release of peptides from L-PT1 in comparison to the control plastein hydrolysate. Therefore, encapsulation of liposomes with 1% plastein could be an efficient delivery system for improving the sensory characteristics by lowering the bitterness of protein hydrolysates.
Collapse
|
10
|
Chen M, Chen C, Zhang Y, Jiang H, Fang Y, Huang G. Effects of Iron-Peptides Chelate Nanoliposomes on Iron Supplementation in Rats. Biol Trace Elem Res 2022:10.1007/s12011-022-03539-2. [PMID: 36567423 DOI: 10.1007/s12011-022-03539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022]
Abstract
The objective of this study was to investigate the effects of iron nanoliposomes on iron supplementation and toxicity in SD rats induced by a low-iron diet. The size and infrared spectroscopy of a liposomal oral delivery system were investigated. The particle size of nanoliposomes embedded with chelates was increased. Infrared spectra proved that peptides-iron and blank nanoliposomes were bonded by interaction forces, including the fracture of hydrogen bonds, C = C bonds, hydrophobic interaction, and C-N bonds. We found that iron supplementation chelates had a certain protective effect on viscera after being embedded by nanoliposomes. After 10 days of treatment, the concentration of hemoglobin could be gradually increased. Nanoliposome encapsulated peptides-iron has a better effect than other groups. At the same time, SOD, MDA, and CAT reached normal levels after 20 days. Histological results showed that the sections of the nanoliposomes groups were clearer than those of the other groups. There was a little inflammation in the liver without obvious pathological changes, which also proved that the iron chelates embedded by nanoliposomes had no obvious side effects on iron supplementation in rats. Nanoliposome encapsulated peptides-iron has a small side effect and a significant curative effect of iron supplementation. It maybe has a good application prospect in the clinical medical field.
Collapse
Affiliation(s)
- Mengqian Chen
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Cen Chen
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Yuhang Zhang
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Han Jiang
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - YiZhou Fang
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Guangrong Huang
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
11
|
Gu J, Li M, Nawaz MA, Stockmann R, Buckow R, Suleria HAR. In Vitro Digestion and Colonic Fermentation of UHT Treated Faba Protein Emulsions: Effects of Enzymatic Hydrolysis and Thermal Processing on Proteins and Phenolics. Nutrients 2022; 15:89. [PMID: 36615747 PMCID: PMC9824445 DOI: 10.3390/nu15010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Faba bean (Vicia faba L.) protein is a new plant protein alternative source with high nutrient content especially protein and phenolic compounds. The present study investigated physicochemical properties, phenolic content, antioxidant potential, and short chain fatty acids (SCFAs) production during in vitro digestion and colonic fermentation of faba bean hydrolysates and oil-in-water (O/W) emulsions. Results indicate that the enzymic hydrolysates of faba proteins exhibited higher protein solubility, increased electronegativity, and decreased surface hydrophobicity than native faba protein. O/W emulsions showed improved colloidal stability for the faba protein hydrolysates after ultra-high temperature processing (UHT). Furthermore, UHT processing preserved total phenolic content, DPPH and ABTS radical scavenging abilities while decreasing total flavonoid content and ferric reducing power. Besides, the release of phenolic compounds in faba bean hydrolysates (FBH) and emulsions (FBE) improved after intestinal digestion by 0.44 mg GAE/g and 0.55 mg GAE/g, respectively. For colonic fermentation, FBH demonstrated an approximately 10 mg TE/g higher ABTS value than FBE (106.45 mg TE/g). Total SCFAs production of both FBH and FBE was only 0.03 mM. The treatment of FBH with 30 min enzymatic hydrolysis displayed relatively higher antioxidant capacities and SCFAs production, indicating its potential to bring more benefits to gut health. Overall, this study showed that enzymic hydrolysis of faba proteins not only improved the colloidal emulsion stability, but also released antioxidant capacity during in vitro digestibility and colonic fermentation. Colonic fermentation metabolites (SCFAs) were related to the degree of hydrolysis for both FBH and FBE. Additional studies are required to further elucidate and differentiate the role of phenolics during faba protein processing and digestion stages in comparison to contributions of peptides, amino acids and microelements to digestion rates, antioxidant capacities and colonial SCFA production.
Collapse
Affiliation(s)
- Jingyu Gu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Minhao Li
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Malik Adil Nawaz
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Werribee, VIC 3030, Australia
| | - Regine Stockmann
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Werribee, VIC 3030, Australia
| | - Roman Buckow
- Centre for Advanced Food Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW 2006, Australia
| | - Hafiz A. R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
12
|
Luo Y, Wang F, Yuan X, Wang K, Sun Q, Wang H, Pu C, Tang W. Walnut peptide loaded proliposomes with hydroxyapatite as a carrier: Fabrication, environmental stability, and in vitro digestion attribute. Food Res Int 2022; 162:112057. [PMID: 36461317 DOI: 10.1016/j.foodres.2022.112057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
To explore the feasibility of hydroxyapatite (HAP) as the carrier for proliposomes and improve the stability of walnut peptides (WPs), WPs-loaded proliposomes (WPs-PROLIPs) with hydroxyapatite (HAP) as the carrier were fabricated, and the physicochemical properties, environmental stability as well as in vitro simulated digestion release performance of the proliposomes were investigated. The proliposomes with HAP possessed smaller particle sizes and higher encapsulation efficiencies than those without HAP. FTIR analysis revealed that hydrogen bonds formed between HAP and phospholipids in the proliposomes. The inclusion of HAP in WPs-PROLIPs led to the improvement of the thermal degradation stability and environmental stabilities of the system. HAP also induced the conversion of free water into bound water in the proliposomes, as evaluated by LF NMR. In addition, proliposomal encapsulation did not affect the antioxidant activity of WPs-PROLIPs and the lateral order of the liposome membrane. Finally, in vitro digestion showed that the addition of HAP endowed the proliposomes with a retarded free fatty acid release effect, which was dependent on the weight ratio of phospholipids to HAP. These results offer opportunities for the use of HAP as a feasible carrier and lyoprotectant for proliposomes encapsulating biopeptides.
Collapse
Affiliation(s)
- Yongxue Luo
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Fuli Wang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinyu Yuan
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Kexin Wang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingjie Sun
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Hongcai Wang
- Shandong Yuwang Ecological Food Industry Co, Ltd, Dezhou 251200, China
| | - Chuanfen Pu
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Wenting Tang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
13
|
Stability of Non-Ionic Surfactant Vesicles Loaded with Rifamycin S. Pharmaceutics 2022; 14:pharmaceutics14122626. [PMID: 36559121 PMCID: PMC9785864 DOI: 10.3390/pharmaceutics14122626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
These days, the eradication of bacterial infections is more difficult due to the mechanism of resistance that bacteria have developed towards traditional antibiotics. One of the medical strategies used against bacteria is the therapy with drug delivery systems. Non-ionic vesicles are nanomaterials with good characteristics for encapsulating drugs, due to their bioavailability and biodegradability, which allow the drugs to reach the specific target and reduce their side effects. In this work, the antibiotic Rifamycin S was encapsulated. The rifamycin antibiotics family has been widely used against Mycobacterium tuberculosis, but recent studies have also shown that rifamycin S and rifampicin derivatives have bactericidal activity against Staphylococcus epidermidis and Staphylococcus aureus. In this work, a strain of S. aureus was selected to study the antimicrobial activity through Minimum Inhibitory Concentration (MIC) assay. Three formulations of niosomes were prepared using the thin film hydration method by varying the composition of the aqueous phase, which included MilliQ water, glycerol solution, or PEG400 solution. Niosomes with a rifamycin S concentration of 0.13 μg/g were satisfactorily prepared. Nanovesicles with larger size and higher encapsulation efficiency (EE) were obtained when using glycerol and PEG400 in the aqueous media. Our results showed that niosomes consisting of an aqueous glycerol solution have higher stability and EE across a diversity of temperatures and pHs, and a lower MIC of rifamycin S against S. aureus.
Collapse
|
14
|
Encapsulation of Bioactive Compounds for Food and Agricultural Applications. Polymers (Basel) 2022; 14:polym14194194. [PMID: 36236142 PMCID: PMC9571964 DOI: 10.3390/polym14194194] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 02/06/2023] Open
Abstract
This review presents an updated scenario of findings and evolutions of encapsulation of bioactive compounds for food and agricultural applications. Many polymers have been reported as encapsulated agents, such as sodium alginate, gum Arabic, chitosan, cellulose and carboxymethylcellulose, pectin, Shellac, xanthan gum, zein, pullulan, maltodextrin, whey protein, galactomannan, modified starch, polycaprolactone, and sodium caseinate. The main encapsulation methods investigated in the study include both physical and chemical ones, such as freeze-drying, spray-drying, extrusion, coacervation, complexation, and supercritical anti-solvent drying. Consequently, in the food area, bioactive peptides, vitamins, essential oils, caffeine, plant extracts, fatty acids, flavonoids, carotenoids, and terpenes are the main compounds encapsulated. In the agricultural area, essential oils, lipids, phytotoxins, medicines, vaccines, hemoglobin, and microbial metabolites are the main compounds encapsulated. Most scientific investigations have one or more objectives, such as to improve the stability of formulated systems, increase the release time, retain and protect active properties, reduce lipid oxidation, maintain organoleptic properties, and present bioactivities even in extreme thermal, radiation, and pH conditions. Considering the increasing worldwide interest for biomolecules in modern and sustainable agriculture, encapsulation can be efficient for the formulation of biofungicides, biopesticides, bioherbicides, and biofertilizers. With this review, it is inferred that the current scenario indicates evolutions in the production methods by increasing the scales and the techno-economic feasibilities. The Technology Readiness Level (TRL) for most of the encapsulation methods is going beyond TRL 6, in which the knowledge gathered allows for having a functional prototype or a representative model of the encapsulation technologies presented in this review.
Collapse
|
15
|
Rajasekaran B, Singh A, Zhang B, Hong H, Benjakul S. Changes in emulsifying and physical properties of shrimp oil/soybean oil‐in‐water emulsion stabilized by fish myofibrillar protein during the storage. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202200068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bharathipriya Rajasekaran
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University
| | - Bin Zhang
- College of Food Science and Pharmacy Zhejiang Ocean University
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University
| |
Collapse
|
16
|
Kuedo Z, Chotphruethipong L, Raju N, Reudhabibadh R, Benjakul S, Chonpathompikunlert P, Klaypradit W, Hutamekalin P. Oral Administration of Ethanolic Extract of Shrimp Shells-Loaded Liposome Protects against Aβ-Induced Memory Impairment in Rats. Foods 2022; 11:foods11172673. [PMID: 36076858 PMCID: PMC9455250 DOI: 10.3390/foods11172673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease is characterized by a progressive loss of memory and cognition. Accumulation of amyloid-beta (Aβ) in the brain is a well-known pathological hallmark of the disease. In this study, the ethanolic extract of white shrimp (Litopenaous vannamei) shells and the ethanolic extract-loaded liposome were tested for the neuroprotective effects on Aβ1-42-induced memory impairment in rats. The commercial astaxanthin was used as a control. Treatment with the ethanolic extract of shrimp shells (EESS) at the dose of 100 mg/kg BW showed no protective effect in Aβ-treated rats. However, treatment with an EESS-loaded liposome at the dose of 100 mg/kg BW significantly improved memory ability in Morris water maze and object recognition tests. The beneficial effect of the EESS-loaded liposome was ensured by the increase of the memory-related proteins including BDNF/TrkB and pre- and post-synaptic protein markers GAP-43 and PSD-95 as well as pErk1/2/Erk1/2 in the cortex and hippocampus. These findings indicated the neuroprotective effects of the EESS-loaded liposome on Aβ-induced memory impairment in rats. It produced beneficial effects on learning behavior probably through the function of BDNF/TrkB/pErk1/2/Erk1/2 signaling pathway and subsequently the upregulation of synaptic proteins. The present study provided evidence that the neuroprotective property of the ESSE-loaded liposome could be a promising strategy for AD protection.
Collapse
Affiliation(s)
- Zulkiflee Kuedo
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Lalita Chotphruethipong
- Department of Food Science, Faculty of Science, Burapha University, Mueang Chonburi, Chonburi 20131, Thailand
| | - Navaneethan Raju
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | | | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Pennapa Chonpathompikunlert
- Expert Center of Innovative Health Food and Biodiversity Research Centre, Thailand Institute of Scientific and Technological Research, Khlong Luang, Pathum Thani 12120, Thailand
| | - Wanwimol Klaypradit
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Pilaiwanwadee Hutamekalin
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Correspondence: ; Tel.: +66-74-288-207
| |
Collapse
|
17
|
Yi X, Gao X, Zhang X, Xia G, Shen X. Preparation of liposomes by glycolipids/phospholipids as wall materials: studies on stability and digestibility. Food Chem 2022; 402:134328. [DOI: 10.1016/j.foodchem.2022.134328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
|
18
|
Shen L, Lv X, Yang X, Deng S, Liu L, Zhou J, Zhu Y, Ma H. Bufotenines-loaded liposome exerts anti-inflammatory, analgesic effects and reduce gastrointestinal toxicity through altering lipid and bufotenines metabolism. Biomed Pharmacother 2022; 153:113492. [DOI: 10.1016/j.biopha.2022.113492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022] Open
|
19
|
Li W, Chountoulesi M, Antoniadi L, Angelis A, Lei J, Halabalaki M, Demetzos C, Mitakou S, Skaltsounis LA, Wang C. Development and physicochemical characterization of nanoliposomes with incorporated oleocanthal, oleacein, oleuropein and hydroxytyrosol. Food Chem 2022; 384:132470. [DOI: 10.1016/j.foodchem.2022.132470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/12/2022] [Accepted: 02/12/2022] [Indexed: 12/11/2022]
|
20
|
Chen C, Sun-Waterhouse D, Zhao J, Zhang Y, Waterhouse GI, Lin L, Zhao M, Sun W. Method for loading liposomes with soybean protein isolate hydrolysate influences the antioxidant efficiency of liposomal systems: Adding after liposomes formation or before lipid film hydration. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Ma Y, Xu J, Jiang S, Zeng M. Effect of chitosan coating on the properties of nanoliposomes loaded with oyster protein hydrolysates: Stability during spray-drying and freeze-drying. Food Chem 2022; 385:132603. [DOI: 10.1016/j.foodchem.2022.132603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/26/2022] [Accepted: 02/27/2022] [Indexed: 01/22/2023]
|
22
|
Zhou L, Kodidela S, Godse S, Thomas-Gooch S, Kumar A, Raji B, Zhi K, Kochat H, Kumar S. Targeted Drug Delivery to the Central Nervous System Using Extracellular Vesicles. Pharmaceuticals (Basel) 2022; 15:358. [PMID: 35337155 PMCID: PMC8950604 DOI: 10.3390/ph15030358] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
The blood brain barrier (BBB) maintains the homeostasis of the central nervous system (CNS) and protects the brain from toxic substances present in the circulating blood. However, the impermeability of the BBB to drugs is a hurdle for CNS drug development, which hinders the distribution of the most therapeutic molecules into the brain. Therefore, scientists have been striving to develop safe and effective technologies to advance drug penetration into the CNS with higher targeting properties and lower off-targeting side effects. This review will discuss the limitation of artificial nanomedicine in CNS drug delivery and the use of natural extracellular vesicles (EVs), as therapeutic vehicles to achieve targeted delivery to the CNS. Information on clinical trials regarding CNS targeted drug delivery using EVs is very limited. Thus, this review will also briefly highlight the recent clinical studies on targeted drug delivery in the peripheral nervous system to shed light on potential strategies for CNS drug delivery. Different technologies engaged in pre- and post-isolation have been implemented to further utilize and optimize the natural property of EVs. EVs from various sources have also been applied in the engineering of EVs for CNS targeted drug delivery in vitro and in vivo. Here, the future feasibility of those studies in clinic will be discussed.
Collapse
Affiliation(s)
- Lina Zhou
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| | - Sandip Godse
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| | - Stacey Thomas-Gooch
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| | - Asit Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| | - Babatunde Raji
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, 208 South Dudley Street, Memphis, TN 38163, USA; (B.R.); (K.Z.); (H.K.)
| | - Kaining Zhi
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, 208 South Dudley Street, Memphis, TN 38163, USA; (B.R.); (K.Z.); (H.K.)
| | - Harry Kochat
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, 208 South Dudley Street, Memphis, TN 38163, USA; (B.R.); (K.Z.); (H.K.)
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| |
Collapse
|
23
|
Interaction of DPPC liposomes with cholesterol and food protein during in vitro digestion using Dynamic Light Scattering and FTIR spectroscopy analysis. Food Chem 2021; 375:131893. [PMID: 34954575 DOI: 10.1016/j.foodchem.2021.131893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 01/28/2023]
Abstract
The influence of cholesterol (CHO), bovine serum albumin (BSA) and lactoferrin (LF), on the phase transition temperature (Tm) and structure of DPPC liposomes during in vitro digestion was investigated using Dynamic Laser Scattering (DLS) and Fourier Transform Infrared Spectroscopy technologies (FTIR). CHO enhanced bilayers thickness and acyl chain order, especially in DPPC:CHO of 6:1, with the average size increase to 1.77 ± 0.20 μm and broaden of phase transition (Tm 45.8 °C). Protein critically impacted on the liposomal structure through formation of hydrogen bonds between in DPPC and protein. Liposomal size and Tm were significantly changed after simulated gastric digestion, whereas the pancreatic incubation can broaden transition phase and weaken functional groups of liposomes. Our data provided a better understanding on structure changes of CHO-containing membrane and protein addition by revealing Tm and chemical bonds details, and added to current knowledge for evaluating the different component on liposomal digestibility in food area.
Collapse
|
24
|
Engineering of Liposome Structure to Enhance Physicochemical Properties of Spirulina plantensis Protein Hydrolysate: Stability during Spray-Drying. Antioxidants (Basel) 2021; 10:antiox10121953. [PMID: 34943056 PMCID: PMC8749985 DOI: 10.3390/antiox10121953] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Encapsulating hydrolysates in liposomes can be an effective way to improve their stability and bioactivity. In this study, Spirulina hydrolysate was successfully encapsulated into nanoliposomes composed of different stabilizers (cholesterol or γ-oryzanol), and the synthesized liposomes were finally coated with chitosan biopolymer. The synthesized formulations were fully characterized and their antioxidant activity evaluated using different methods. Then, stabilization of coated nanoliposomes (chitosomes) by spray-drying within the maltodextrin matrix was investigated. A small mean diameter and homogeneous size distribution with high encapsulation efficiency were found in all the formulations, while liposomes stabilized with γ-oryzanol and coated with chitosan showed the highest physical stability over time and preserved approximately 90% of their initial antioxidant capacity. Spray-dried powder could preserve all characteristics of peptide-loaded chitosomes. Thus, spray-dried hydrolysate-containing chitosomes could be considered as a functional food ingredient for the human diet.
Collapse
|
25
|
Tagrida M, Prodpran T, Zhang B, Aluko RE, Benjakul S. Liposomes loaded with betel leaf (Piper betle L.) ethanolic extract prepared by thin film hydration and ethanol injection methods: Characteristics and antioxidant activities. J Food Biochem 2021; 45:e14012. [PMID: 34800041 DOI: 10.1111/jfbc.14012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 01/07/2023]
Abstract
Betel leaf ethanolic extract (BLEE), which was dechlorophyllized by sedimentation process was loaded in liposomes at 1 and 2% (w/v) concentrations using two different methods, namely thin film hydration (TF) and ethanol injection (EI) methods. Liposomes loaded with 1% BLEE and prepared by TF method (BLEE/L-T1) had the smallest particle size and paler color than BLEE/L-E1, BLEE/L-E2, and BLEE/L-T2 (p < .05). BLEE/L-T1 also showed strong stability as judged by its lowest zeta potential and polydispersity index. The highest encapsulation efficiency (EE) and lowest releasing efficiency (RE) were also found with BLEE/L-T1. No significant difference (p > .05) in the antioxidant activities was detected between the BLEE-loaded liposomes and BLEE solutions, indicating that encapsulation had no adverse effect on BLEE antioxidant potency. BLEE/L-T1 showed higher antioxidant stability than unencapsulated BLEE at the equivalent amount based on EE (BLEE/U-T1) during in vitro gastrointestinal tract digestion system. Therefore, BLEE/L-T1 could be an efficient delivery system for improving stability of antioxidant activities of BLEE. PRACTICAL APPLICATIONS: Despite the many benefits of betel leaf ethanolic extract, it still has some distinctive odor and slightly greenish color as well as instability induced by environment factors, which can limit applications in foods. Encapsulation of the betel extract in liposomes can be a good approach to mask its undesirable color and odor and to augment its antioxidant stability. Liposomal technology can be used to load betel leaf extract. However, different methods have been implemented to prepare liposomes that exhibit varying encapsulation efficacy as well as bioactivities. Thin film hydration method was shown to yield the liposome with better physical characteristics, higher encapsulation efficiency, slower release, and higher antioxidant stability than the ethanol injection method. Therefore, the thin film hydration method could be adopted to prepare stable liposomes loaded with betel leaf extract that possess antioxidant activity suitable for food applications.
Collapse
Affiliation(s)
- Mohamed Tagrida
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Thummanoon Prodpran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Bin Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
26
|
Mittal A, Singh A, Benjakul S. Preparation and characterisation of liposome loaded with chitosan-epigallocatechin gallate conjugate. J Microencapsul 2021; 38:533-545. [PMID: 34612769 DOI: 10.1080/02652048.2021.1990425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Liposomes (LS) were prepared using chitosan-epigallocatechin gallate (CE) conjugate (0.1 and 0.5%, w/v) and soy phosphatidylcholine (SPC)/cholesterol as a lipid phase (LP) (30 and 60 µmol mL-1). The encapsulation efficiency (EE), particle diameter, zeta potential, and polydispersity index of LS were observed. The highest EE (76.96%) was found when LS was prepared using 0.5% (w/v) of CE conjugate and 60 µmol mL-1 of LP (CELP-60-0.5) (p < 0.05). FTIR analysis showed the interaction between choline present in SPC and OH-groups of CE conjugate. The phase transition temperature of CELP-60-0.5 was 134.67 °C, higher than other samples (p < 0.05). CELP-60-0.5 showed inhibitory action against Gram-positive and Gram-negative bacteria. Higher retention of antioxidant and antimicrobial activities of CELP-60-0.5 was observed than unencapsulated CE conjugate sample when stored for 28 days at 30 °C (p < 0.05). LS might be used as an efficient vesicle for maintaining bioactivities of CE conjugate, plausibly when used as a preservative in foods.
Collapse
Affiliation(s)
- Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
27
|
Improved skin permeability and whitening effect of catechin-loaded transfersomes through topical delivery. Int J Pharm 2021; 607:121030. [PMID: 34438007 DOI: 10.1016/j.ijpharm.2021.121030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022]
Abstract
The aim of the study was to prepare catechin-loaded transfersomes to enhance drug permeability through topical administration for the skin protection against ultraviolet radiation induced photo-damage. The results showed that the catechin-loaded transfersomes were monodispersed with polydispersity index (PDI) < 0.2, <200 nm in particle size and with high encapsulation efficiency (E.E.%) greater than 85%. The in vitro skin permeation test indicated that the catechin-loaded transfersomes enhanced the skin permeability by 85% compared to the catechin aqueous solution. Similarly, the in-vivo skin whitening study demonstrated that F5 transfersome formulation was effective in tyrosinase inhibition and had good biocompatibility to the guinea pig skin. Finally, the stability study showed that both physicochemical properties and E.E.% of the F5 transferosome formulation were fairly stable after 3 months storage. Therefore, topical administration of catechin-loaded transfersomes could be considered as a potential strategy for the treatment of UV-induced oxidative damage to the skin.
Collapse
|
28
|
Wijayanti I, Singh A, Prodpran T, Sookchoo P, Benjakul S. Effect of Asian Sea Bass (Lates calcarifer) Bio-calcium in Combination with Different Calcium Salts on Gel Properties of Threadfin Bream Surimi. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1975004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ima Wijayanti
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
- Department of Fisheries Products Technology, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Indonesia
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Thummanoon Prodpran
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Pornsatit Sookchoo
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
29
|
Post-Processing Techniques for the Improvement of Liposome Stability. Pharmaceutics 2021; 13:pharmaceutics13071023. [PMID: 34371715 PMCID: PMC8309137 DOI: 10.3390/pharmaceutics13071023] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Liposomes have been utilized as a drug delivery system to increase the bioavailability of drugs and to control the rate of drug release at the target site of action. However, the occurrence of self-aggregation, coalescence, flocculation and the precipitation of aqueous liposomes during formulation or storage can cause degradation of the vesicle structure, leading to the decomposition of liposomes. To increase the stability of liposomes, post-processing techniques have been applied as an additional process to liposomes after formulation to remove water and generate dry liposome particles with a higher stability and greater accessibility for drug administration in comparison with aqueous liposomes. This review covers the effect of these techniques including freeze drying, spray drying and spray freeze drying on the stability, physicochemical properties and drug encapsulation efficiency of dry liposomes. The parameters affecting the properties of liposomes during the drying process are also highlighted in this review. In addition, the impact of using a protective agent to overcome such limitations of each process is thoroughly discussed through various studies.
Collapse
|
30
|
Chotphruethipong L, Hutamekalin P, Sukketsiri W, Benjakul S. Effects of sonication and ultrasound on properties and bioactivities of liposomes loaded with hydrolyzed collagen from defatted sea bass skin conjugated with epigallocatechin gallate. J Food Biochem 2021; 45:e13809. [PMID: 34145603 DOI: 10.1111/jfbc.13809] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022]
Abstract
Hydrolyzed collagen (HC) from defatted sea bass skin conjugated with 3% epigallocatechin gallate (EGCG) was prepared and the resulting HC-EGCG conjugate at various levels (0.25%-2%, w/v) was loaded into liposome. The obtained liposomes were subjected to sonication (S). Liposome loaded with 1% conjugate showed the highest encapsulation efficiency (EE) (p < .05). When the ultrasound-assisted process (UAP) at different amplitudes (20% and 40%) and times (2, 5, 10, and 15 min) were implemented, the highest EE of conjugate-loaded liposome was found at 20% amplitude for 2 min (p < .05). When S-liposome and UAP-liposome were lyophilized, decreasing EE of both samples was observed (p < .05). Lyophilized UAP-liposome had higher stability than lyophilized S-liposome during storage at 25℃ for 28 days. Additionally, antioxidant activity in the gastrointestinal track model system (GIMs) and digest obtained from GIMs were higher for UAP-liposome (p < .05). Therefore, liposome can be used for the delivery of conjugate. PRACTICAL APPLICATIONS: HC from defatted sea bass skin is considered to possess several bioactivities, especially skin nourishment and bone strengthening. Nevertheless, antioxidant activity, related to the treatment of several ailments, is still low for HC. Thus, grafting of HC with polyphenol such as EGCG via free radical method can be used for the enhancement of the antioxidant activity of HC. Although the resulting conjugate has augmented activity, it is unstable during storage and in the gastrointestinal digestion system. Liposome is a promising means to stabilize the conjugate under harsh condition, especially with the aid of the UAP. Thus, liposome loaded with conjugate having the reduced size has higher antioxidant activity with increased stability, which can have a wider range of applications.
Collapse
Affiliation(s)
- Lalita Chotphruethipong
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Pilaiwanwadee Hutamekalin
- Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Wanida Sukketsiri
- Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
31
|
Han SB, Won B, Yang SC, Kim DH. Asterias pectinifera derived collagen peptide-encapsulating elastic nanoliposomes for the cosmetic application. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
32
|
Ajeeshkumar KK, Aneesh PA, Raju N, Suseela M, Ravishankar CN, Benjakul S. Advancements in liposome technology: Preparation techniques and applications in food, functional foods, and bioactive delivery: A review. Compr Rev Food Sci Food Saf 2021; 20:1280-1306. [PMID: 33665991 DOI: 10.1111/1541-4337.12725] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/28/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Liposomes play a significant role in encapsulation of various bioactive compounds (BACs), including functional food ingredients to improve the stability of core. This technology can be used for promoting an effective application in functional food and nutraceuticals. Incorporation of traditional and emerging methods for the developments of liposome for loading BACs resulted in viable and stable liposome formulations for industrial applications. Thus, the advance technologies such as supercritical fluidic methods, microfluidization, ultrasonication with traditional methods are revisited. Liposomes loaded with plant and animal BACs have been introduced for functional food and nutraceutical applications. In general, application of liposome systems improves stability, delivery, and bioavailability of BACs in functional food systems and nutraceuticals. This review covers the current techniques and methodologies developed and practiced in liposomal preparation and application in functional foods.
Collapse
Affiliation(s)
| | | | - Navaneethan Raju
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Mathew Suseela
- ICAR - Central Institute of Fisheries Technology, Cochin, Kerala, 682029, India
| | | | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
33
|
Mittal A, Singh A, Benjakul S. Use of nanoliposome loaded with chitosan‐epigallocatechin gallate conjugate for shelf‐life extension of refrigerated Asian sea bass (
Lates calcarifer
) slices. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation (ICE‐SSI) Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla90110Thailand
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation (ICE‐SSI) Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla90110Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE‐SSI) Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla90110Thailand
| |
Collapse
|
34
|
Amigo L, Hernández-Ledesma B. Current Evidence on the Bioavailability of Food Bioactive Peptides. Molecules 2020; 25:E4479. [PMID: 33003506 PMCID: PMC7582556 DOI: 10.3390/molecules25194479] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022] Open
Abstract
Food protein-derived bioactive peptides are recognized as valuable ingredients of functional foods and/or nutraceuticals to promote health and reduce the risk of chronic diseases. However, although peptides have been demonstrated to exert multiple benefits by biochemical assays, cell culture, and animal models, the ability to translate the new findings into practical or commercial uses remains delayed. This fact is mainly due to the lack of correlation of in vitro findings with in vivo functions of peptides because of their low bioavailability. Once ingested, peptides need to resist the action of digestive enzymes during their transit through the gastrointestinal tract and cross the intestinal epithelial barrier to reach the target organs in an intact and active form to exert their health-promoting properties. Thus, for a better understanding of the in vivo physiological effects of food bioactive peptides, extensive research studies on their gastrointestinal stability and transport are needed. This review summarizes the most current evidence on those factors affecting the digestive and absorptive processes of food bioactive peptides, the recently designed models mimicking the gastrointestinal environment, as well as the novel strategies developed and currently applied to enhance the absorption and bioavailability of peptides.
Collapse
Affiliation(s)
| | - Blanca Hernández-Ledesma
- Department of Bioactivity and Food Analysis, Institute of Research in Food Sciences (CIAL, CSIC-UAM, CEI-UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain;
| |
Collapse
|
35
|
Sionkowska A, Adamiak K, Musiał K, Gadomska M. Collagen Based Materials in Cosmetic Applications: A Review. MATERIALS 2020; 13:ma13194217. [PMID: 32977407 PMCID: PMC7578929 DOI: 10.3390/ma13194217] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022]
Abstract
This review provides a report on properties and recent advances in the application of collagen in cosmetics. Collagen is a structural protein found in animal organisms where it provides for the fundamental structural support. Most commonly it is extracted from mammalian and fish skin. Collagen has attracted significant academic interest as well as the attention of the cosmetic industry due to its interesting properties that include being a natural humectant and moisturizer for the skin. This review paper covers the biosynthesis of collagen, the sources of collagen used in the cosmetic industry, and the role played by this protein in cosmetics. Future aspects regarding applications of collagen-based materials in cosmetics have also been mentioned.
Collapse
Affiliation(s)
- Alina Sionkowska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 street, 87-100 Torun, Poland; (K.A.); (K.M.); (M.G.)
- Correspondence: ; Tel.: +48-56-611-4547
| | - Katarzyna Adamiak
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 street, 87-100 Torun, Poland; (K.A.); (K.M.); (M.G.)
- WellU sp.z.o.o, Wielkopolska 280 street, 81-531 Gdynia, Poland
| | - Katarzyna Musiał
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 street, 87-100 Torun, Poland; (K.A.); (K.M.); (M.G.)
| | - Magdalena Gadomska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 street, 87-100 Torun, Poland; (K.A.); (K.M.); (M.G.)
| |
Collapse
|