1
|
Liu D, Janssen AEM, Smeets PAM, Stieger M. Impact of mechanical and bolus properties on static and dynamic in vitro gastric protein digestion of plant-based meat analogues. Food Res Int 2025; 209:116290. [PMID: 40253146 DOI: 10.1016/j.foodres.2025.116290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/17/2025] [Accepted: 03/13/2025] [Indexed: 04/21/2025]
Abstract
Increased food hardness can reduce proteolysis during gastric digestion, but can also lead to smaller bolus particles during mastication, which can enhance proteolysis. The joint influence of mechanical and bolus properties on gastric motility and protein digestion is underexplored. This study investigated the impact of mechanical and bolus properties on static and dynamic in vitro gastric protein digestion of plant-based meat analogues (PBMA). Two commercial PBMA patties (Beyond Meat, THIS) were masticated and subjected to static (INFOGEST) and dynamic gastric-emptying-mimicking digestion (NERDT). THIS patties had higher Young's modulus than Beyond Meat patties and broke down into smaller particles during mastication. During static digestion, THIS patties had lower free amino group concentrations than Beyond Meat patties, probably due to the higher Young's modulus. In contrast, during dynamic digestion, THIS patties showed more free amino groups in emptied liquid and faster gastric emptying than Beyond Meat patties. To further explore the effect of bolus particle size, three model PBMA patties differing only in bolus particle size were digested using static and dynamic models. During dynamic digestion, patties with small bolus particles (<0.18 mm2) exhibited more free amino groups than patties with large bolus particles (0.59-0.68 mm2). The enhanced digestion was attributed to lower intragastric pH and faster gastric emptying of smaller bolus particles. We conclude that bolus particle size primarily impacts dynamic gastric protein digestion of PBMA patties. Future studies should use dynamic gastric-motility-mimicking models when studying properties sensitive to gastric emptying, and include mastication and bolus characterization before in vitro digestion.
Collapse
Affiliation(s)
- Dan Liu
- Division of Human Nutrition & Health, Wageningen University & Research, Wageningen, The Netherlands.
| | - Anja E M Janssen
- Laboratory of Food Process Engineering, Wageningen University & Research, Wageningen, The Netherlands
| | - Paul A M Smeets
- Division of Human Nutrition & Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Markus Stieger
- Division of Human Nutrition & Health, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
2
|
Yang Q, Li-Sha YJ, Chen HQ. Composite cold-set gels of kidney bean protein isolate and basil seed gum induced by glucono-δ-lactone and sodium citrate: Preparation, gel properties and protection on astaxanthin. Int J Biol Macromol 2025; 309:143036. [PMID: 40216142 DOI: 10.1016/j.ijbiomac.2025.143036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/26/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
In this study, kidney bean protein isolate (KPI) and basil seed gum (BSG) thermal aggregates were prepared to form cold-set gels (KB) by adding sodium citrate (SC) and glucono-δ-lactone (GDL). The structure and gel properties of the cold-set gels were investigated. Results showed that the gels added with SC had higher water holding capacity and lower gel strength than GDL-induced gels. While the cold-set gels induced by GDL with the addition of SC (KB-GDL/SC) possessed compact gel network with higher viscoelasticity. Compared with KPI cold-set gels, the KB cold-set gels exhibited higher gel strength and greater capacity to capture water due to the filling and cross-linking effect of BSG, and its high hydrophilicity and changes on the KPI molecular structures. Moreover, the KB-GDL/SC presented a lower syneresis rate of 28.2 % than other gels after freeze-thaw treatment. Meanwhile, KB-GDL/SC showed better protection on astaxanthin under ultraviolet light or during heat treatment. All the KB cold-set gels controlled the release of astaxanthin during simulated digestion. Particularly for KB-SC, the loaded astaxanthin had the highest bioaccesssbility (24.5 %) after in vitro digestion. This study may provide unique insights for development of novel cold-set gels and related functional foods.
Collapse
Affiliation(s)
- Qin Yang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China
| | - Yi-Jing Li-Sha
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China
| | - Han-Qing Chen
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China.
| |
Collapse
|
3
|
Zhang Y, Liu J, Zheng Z, Cao S, Wang X, Guo W, Yan Z, Zhang R, Liu X. Ultrasound-mediated soybean-egg white protein acid-induced emulsion gels: A multi-design approach integrating techno-functional properties, digestibility, and nutritional value. Food Chem 2025; 469:142560. [PMID: 39721435 DOI: 10.1016/j.foodchem.2024.142560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/30/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
This study investigated the effects of formulation and ultrasound on the processing properties and nutrient digestion of soy protein isolate (SPI)-egg white protein (EWP) emulsion gels. The incorporation of EWP significantly improved the texture properties and freeze-thaw stability through disulfide bonds and homogeneous networks in comparison to SPI emulsion gels. However, swelling ratio of emulsion gels at SPI:EWP ratios of 3:1 and 2:1 decreased due to disruption of SPI network continuity. After ultrasound, SPI-EWP emulsion gels exhibited higher gel strength, freeze-thaw stability, and swelling ratio. Digestion kinetics showed an increased half-life time of SPI-EWP emulsion gels with no significant difference in PCmax. Flexible proteins could adsorb around small droplets, forming tight interfacial layers and a dense and uniform network according to particle size and Cryo-SEM. This work elucidated the mechanism of performance stabilization and digestion kinetics of SPI-EWP emulsion gels, supporting the design of animal and plant protein complex products.
Collapse
Affiliation(s)
- Yudan Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhiyuan Zheng
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Sijia Cao
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Wenjin Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Zhaohui Yan
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Renzhao Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
4
|
Kar A, Bornhorst GM. Ultrasound-treated hybrid protein gels from pea and whey: A comparison of gastric breakdown mechanisms with commercial protein-based foods. Food Res Int 2025; 203:115856. [PMID: 40022377 DOI: 10.1016/j.foodres.2025.115856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 03/03/2025]
Abstract
A novel hybrid protein gel was developed to sustainably meet the growing demands for protein with pea and whey protein isolates (3:2 in 15 % w/v protein content) which was ultrasound treated (7.5 and 15 min), and gelled (90 °C, 60 min). The study investigated the impact of ultrasound treatment on the structure and gastric breakdown kinetics of hybrid protein gels and compared these properties to commercial protein-based foods (ham, paneer, and mozzarella). Ultrasound treatment for 15 min significantly (p < 0.05) reduced particle size (d50: 5.4 µm vs 32.5 µm in control) and resulted in a higher initial Young's modulus than control. Protein hydrolysis at 180 min was ∼53 % lower (p < 0.05) with 15 min ultrasound treatment than control and 7.5 min ultrasound treatment. Hybrid protein gels exhibited similarities in initial Young's modulus to mozzarella (p > 0.05), while ham and paneer were significantly firmer (p < 0.05). Effective diffusivity of moisture from gastric fluid decreased (p < 0.05) in the order: ham > paneer and mozzarella > hybrid protein gels. In contrast, the effective acid diffusivity from gastric fluid was similar (p > 0.05) between hybrid protein gels and paneer, which were ∼74 % higher (p < 0.05) than ham and mozzarella. Digestion time influenced (p < 0.05) breakdown mechanisms (texture, dry matter loss, moisture, and acid uptake) during digestion. This study confirmed that hybrid protein gels were comparable to commercial protein-based foods and the limiting factor driving gastric breakdown is unique to different foods incorporating proteins.
Collapse
Affiliation(s)
- Alisha Kar
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Gail M Bornhorst
- Department of Food Science and Technology, University of California, Davis, CA, USA; Department of Biological and Agricultural Engineering, University of California, Davis, CA, USA; Riddet Institute, Palmerston North, New Zealand.
| |
Collapse
|
5
|
Choi JS, Chin KB. Influence of NaCl and phosphate on gelation properties of chicken breast myofibrillar protein gels and its application to in vitro digestion model. Food Chem 2024; 460:140638. [PMID: 39182444 DOI: 10.1016/j.foodchem.2024.140638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024]
Abstract
To investigate the combination effect of sodium chloride and phosphates on chicken breast myofibrillar proteins, MP gels containing various molarity of NaCl (0.15, 0.30 and 0.45 M) and phosphate (0 and 0.05 M) were prepared, their rheological properties were characterized, and applied to an in vitro digestion model. MP mixture containing 0.45 M NaCl and 0.05 M phosphate had the highest viscosity. The gel strength and cooking yield of MP gels was improved by increasing of molarity of NaCl. As NaCl concentration in MP increased, sulfhydryl levels decreased, while disulfide levels increased. As NaCl and phosphate levels increase, MP gels become denser and porosity decreases, which may reduce protein digestibility. In SDS-PAGE, protein bands from MP gels containing low NaCl levels (≤ 0.30 M) degraded more rapidly during in vitro digestion. These results may support the need for the meat industry to develop low-salt meat products with improved digestibility. KEYWORDS: Chicken, Myofibrillar protein, NaCl, Phosphate, Rheological properties, In vitro digestion.
Collapse
Affiliation(s)
- Ji Seon Choi
- Department of Animal Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Koo Bok Chin
- Department of Animal Science, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
6
|
Kwon H, Du Z, Li Y. AlphaFold 2-based stacking model for protein solubility prediction and its transferability on seed storage proteins. Int J Biol Macromol 2024; 278:134601. [PMID: 39137857 DOI: 10.1016/j.ijbiomac.2024.134601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Accurate protein solubility prediction is crucial in screening suitable candidates for food application. Existing models often rely only on sequences, overlooking important structural details. In this study, a regression model for protein solubility was developed using both the sequences and predicted structures of 2983 E. coli proteins. The sequence and structural level properties of the proteins were bioinformatically extracted and subjected to multilayer perceptron (MLP). Moreover, residue level features and contact maps were utilized to construct a graph convolutional network (GCN). The out-of-fold predictions of the two models were combined and fed into multiple meta-regressors to create a stacking model. The stacking model with support vector regressor (SVR) achieved R2 of 0.502 and 0.468 on test and external validation datasets, respectively, displaying higher performance compared to existing regression models. Based on the improved performance compared to its based models, the stacking model effectively captured the strength of its base models as well as the significance of the different features used. Furthermore, the model's transferability was indirectly validated on a dataset of seed storage proteins using Osborne definition as well as on a case study using molecular dynamic simulation, showing potential for application beyond microbial proteins to food and agriculture-related ones.
Collapse
Affiliation(s)
- Hyukjin Kwon
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Zhenjiao Du
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
7
|
Milan AM, Menting GGA, Barnett MPG, Liu Y, McNabb WC, Roy NC, Hutchings SC, Mungure T, Weeks M, Li S, Hort J, Calder S, O'Grady G, Mithen RF. The impact of heat-set milk protein gel textures modified by pH on circulating amino acid appearance and gastric function in healthy female adults: a randomised controlled trial. Food Funct 2024; 15:5613-5626. [PMID: 38722062 DOI: 10.1039/d3fo04474b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Modification of dairy proteins during processing impacts structural assemblies, influencing textural and nutritional properties of dairy products, and release and availability of amino acids during digestion. By modifying only pH, acid heat-set bovine dairy gels with divergent textural properties were developed to alter protein digestion. In vitro assay confirmed faster digestion of protein from a firm gel (pH 5.65) versus a soft gel (pH 6.55). We hypothesised that firm gel (FIRM-G; pH 5.6) would result in greater indispensable amino acid (IAA) appearance in circulation over 5 h and corresponding differences in gastric myoelectrical activity relative to soft gel (SOFT-G; pH 6.2). In a randomised, single-blind cross-over trial, healthy females (n = 20) consumed 150 g of each gel; plasma amino acid appearance was assessed over 5 hours. Iso-nitrogenous, iso-caloric gels were prepared from identical mixtures of bovine milk and whey protein concentrates; providing 17.7 g (FIRM-G) and 18.9 g (SOFT-G) of protein per serving. Secondary outcomes included gastric myoelectrical activity measured by body surface gastric mapping, glycaemic, triglyceridaemic, and subjective appetite and digestive responses. Overall plasma IAA (area under the curve) did not differ between gels. However, plasma IAA concentrations were higher, and increased more rapidly over time after SOFT-G compared with FIRM-G (1455 ± 53 versus 1350 ± 62 μmol L-1 at 30 min, p = 0.024). Similarly, total, branched-chain and dispensable amino acids were higher at 30 min with SOFT-G than FIRM-G (total: 3939 ± 97 versus 3702 ± 127 μmol L-1, p = 0.014; branched-chain: 677 ± 30 versus 619 ± 34 μmol L-1, p = 0.047; dispensable: 2334 ± 53 versus 2210 ± 76 μmol L-1, p = 0.032). All other measured parameters were similar between gels. Peak postprandial aminoacidaemia was higher and faster following ingestion of SOFT-G. Customised plasma amino acid appearance from dairy is achievable by altering gel coagulum structure using pH during processing and may have minimal influence on related postprandial responses, with implications for targeting food design for optimal health. The Clinical Trial Registry number is ACTRN12622001418763 (https://www.anzctr.org.au) registered November 7, 2022.
Collapse
Affiliation(s)
- Amber M Milan
- The Liggins Institute, The University of Auckland, Auckland, New Zealand.
- AgResearch Limited, Palmerston North, New Zealand.
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | | | - Matthew P G Barnett
- AgResearch Limited, Palmerston North, New Zealand.
- The Riddet Institute, Palmerston North, New Zealand.
| | - Yutong Liu
- The Liggins Institute, The University of Auckland, Auckland, New Zealand.
| | - Warren C McNabb
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand
- The Riddet Institute, Palmerston North, New Zealand.
| | - Nicole C Roy
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand
- The Riddet Institute, Palmerston North, New Zealand.
- Department of Human Nutrition, The University of Otago, Otago, New Zealand.
| | | | - Tanyaradzwa Mungure
- AgResearch Limited, Palmerston North, New Zealand.
- The University of Melbourne, Melbourne, Australia.
| | - Mike Weeks
- AgResearch Limited, Palmerston North, New Zealand.
| | - Siqi Li
- The Riddet Institute, Palmerston North, New Zealand.
| | - Joanne Hort
- The Riddet Institute, Palmerston North, New Zealand.
- Food Experience and Sensory Testing Lab, Massey University, Palmerston North, New Zealand.
| | - Stefan Calder
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Greg O'Grady
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Richard F Mithen
- The Liggins Institute, The University of Auckland, Auckland, New Zealand.
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand
- The Riddet Institute, Palmerston North, New Zealand.
| |
Collapse
|
8
|
Qin X, Guo Y, Zhao X, Liang B, Sun C, Li X, Ji C. Fabricating Pea Protein Micro-Gel-Stabilized Pickering Emulsion as Saturated Fat Replacement in Ice Cream. Foods 2024; 13:1511. [PMID: 38790810 PMCID: PMC11121546 DOI: 10.3390/foods13101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Unsaturated fat replacement should be used to reduce the use of saturated fat and trans fatty acids in the diet. In this study, pea protein micro-gels (PPMs) with different structures were prepared by microparticulation at pH 4.0-7.0 and named as PPM (pH 4.0), PPM (pH 4.5), PPM (pH 5.0), PPM (pH 5.5), PPM (pH 6.0), PPM (pH 6.5), and PPM (pH 7.0). Pea protein was used as a control to evaluate the structure and interfacial properties of PPMs by particle size distribution, Fourier transform infrared spectroscopy (FTIR), free sulfhydryl group content, and emulsifying property. PPM (pH 7.0) was suitable for application in O/W emulsion stabilization because of its proper particle size, more flexible structure, high emulsifying activity index (EAI) and emulsifying stability index (ESI). The Pickering emulsion stabilized by PPM (pH 7.0) had a uniform oil droplet distribution and similar rheological properties to cream, so it can be used as a saturated fat replacement in the manufacture of ice cream. Saturated fat was partially replaced at different levels of 0%, 20%, 40%, 60%, 80%, and 100%, which were respectively named as PR0, PR20, PR40, PR60, PR80, and PR100. The rheological properties, physicochemical indexes, and sensory properties of low-saturated fat ice cream show that PPM (pH 7.0)-stabilized emulsion can be used to substitute 60% cream to manufacture low-saturated fat ice cream that has high structural stability and similar melting properties, overrun, and sensory properties to PR0. The article shows that it is feasible to prepare low-saturated fat ice cream with PPM (pH 7.0)-stabilized Pickering emulsion, which can not only maintain the fatty acid profile of the corn oil used, but also possess a solid-like structure. Its application is of positive significance for the development of nutritious and healthy foods and the reduction of chronic disease incidence.
Collapse
Affiliation(s)
- Xv Qin
- College of Life Sciences, Yantai University, Yantai 264005, China; (X.Q.); (Y.G.); (X.Z.)
| | - Yaxian Guo
- College of Life Sciences, Yantai University, Yantai 264005, China; (X.Q.); (Y.G.); (X.Z.)
| | - Xiaoqing Zhao
- College of Life Sciences, Yantai University, Yantai 264005, China; (X.Q.); (Y.G.); (X.Z.)
| | - Bin Liang
- College of Food Engineering, Ludong University, Yantai 264025, China
| | - Chanchan Sun
- College of Life Sciences, Yantai University, Yantai 264005, China; (X.Q.); (Y.G.); (X.Z.)
| | - Xiulian Li
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China;
| | - Changjian Ji
- Department of Physics and Electronic Engineering, Qilu Normal University, Jinan 250200, China;
| |
Collapse
|
9
|
Lee S, Jo K, Jeong SKC, Jeon H, Kim YJ, Choi YS, Jung S. Heat-induced gelation of egg white proteins depending on heating temperature: Insights into protein structure and digestive behaviors in the elderly in vitro digestion model. Int J Biol Macromol 2024; 262:130053. [PMID: 38360234 DOI: 10.1016/j.ijbiomac.2024.130053] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
This study investigated the effects of heating temperature of egg white gels (EWGs) on the digestive characteristics by heating egg white (EW) to reach 75 °C (EWG-75) and 95 °C (EWG-95). The gel protein structure showed a decrease in the maximum tryptophan fluorescence intensity and a significant increase in the surface hydrophobicity of EWGs compared to EW (P < 0.05). The total and reactive free sulfhydryl groups were higher in the EWGs than in the EW (P < 0.05). While the proportions of α-helical and β-sheet structures remained similar in EW and EWG-75 (P > 0.05), EWG-95 exhibited a notable decrease in α-helix content (P < 0.05) and an increase in β-sheet content (P < 0.05). Furthermore, EWG-95 displayed higher hardness and cohesiveness than EWG-75 (P < 0.05). In the adult and elderly in vitro digestion models, EWG-95 exhibited the highest protein digestibility (50.44 % and 54.65 % in the models of elderly and adult subjects, respectively) after GI digestion (P < 0.05), followed by EWG-75 and EW. The electrophoretogram of the digesta revealed more intense protein bands in the elderly digestion model, particularly in the gastric digesta of EW, indicating slower digestion compared to the adult model. Therefore, EW should be appropriately heated before consumption, especially for elderly individuals, to facilitate efficient protein digestion and absorption.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seul-Ki-Chan Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hayeon Jeon
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yea-Ji Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
10
|
Kar A, Olenskyj AG, Garcia Guerrero M, Graham R, Bornhorst GM. Interplay of egg white gel pH and intragastric pH: Impact on breakdown kinetics and mass transport processes. Food Res Int 2023; 173:113290. [PMID: 37803603 DOI: 10.1016/j.foodres.2023.113290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 10/08/2023]
Abstract
Egg white gels have been utilized as a model system to study protein breakdown kinetics based on physical and biochemical breakdown processes during in vitro gastric digestion. Additionally, the impact of regulating intragastric pH on the breakdown kinetic processes was investigated. The present study evaluated the impact of gel pH (based on the pH of protein dispersion prepared at pH 3, 5 and 7.5) and intragastric pH regulation (with or without adjustment to pH 2 during in vitro gastric digestion) on the effective diffusion of gastric juice components (water and HCl), gel softening kinetics during gastric digestion, microstructural analysis using micro- computed tomography and protein hydrolysis in the liquid and solid fraction of egg white gel digesta. Egg white gels were subjected to 30 s oral digestion and 15, 30, 60, 120, 180 or 240 min gastric digestion in a static in vitro gastric digestion model, with or without gastric pH adjustment to pH 2. The gel pH affected all the properties measured during gastric digestion and each gel pH represented a specific driving mechanism for protein breakdown. A lower gel pH (pH 3) demonstrated a higher diffusion of moisture and acid, resulting in faster softening (p < 0.05). An intermediate pH (pH 5) showed greater protein-protein interactions due to the proximity to the isoelectric point of egg white proteins, resulting in very slow softening during digestion (p < 0.05), and a higher pH (pH 7) resulted in higher acid diffusion, intermediate gel hardness and very slow softening kinetics (p < 0.05). The gastric pH adjustment during digestion of egg protein gels affected (p < 0.05) the equilibrium moisture and acid contents as well as protein hydrolysis. The study confirmed that there is an interplay between initial gel pH and the intragastric pH which affected the breakdown kinetics of egg white gels during the gastric digestion process.
Collapse
Affiliation(s)
| | | | | | | | - Gail M Bornhorst
- University of California, Davis, USA; Riddet Institute, Palmerston North, New Zealand.
| |
Collapse
|
11
|
Wu S, Sun W, Yang Y, Jia R, Zhan S, Ou C, Huang T. Phosphorylated Fish Gelatin and the Quality of Jelly Gels: Gelling and Microbiomics Analysis. Foods 2023; 12:3682. [PMID: 37835334 PMCID: PMC10572387 DOI: 10.3390/foods12193682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Phosphorylated fish gelatin (PFG) exhibited preferable physical and chemical properties than fish gelatin (FG) in our previous study. To investigate the application values of PFG, the effects of different ratios (2:1, 1:1 and 1:2) of FG(PFG)/κ carrageenan (κC) on the quality of jelly gels (JGs) were investigated. The sensory quality of PFG:κC (1:2)/FG:κC (1:2) was found to be superior based on sensory evaluations, which was also verified with the results for texture, rheology, etc. Moreover, the structural changes in JGs were related to the introduction of phosphoric acid groups into the molecular chain of gelatin and the protein-polysaccharide interactions. According to the storage results, PFG jelly had better storage quality, higher hardness and chewiness values than those of FG jelly. High-throughput sequencing of JG microbial analysis showed that the addition of PFG changed the amount of microorganisms, microbial species abundance and the microbial composition of JGs, which were also closely related to the storage quality of JGs. In conclusion, the applications of PFG have promising potential to improve the quality of confectionery.
Collapse
Affiliation(s)
- Shiyu Wu
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (S.W.); (W.S.); (Y.Y.); (R.J.); (S.Z.); (C.O.)
| | - Wanyi Sun
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (S.W.); (W.S.); (Y.Y.); (R.J.); (S.Z.); (C.O.)
| | - Yihui Yang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (S.W.); (W.S.); (Y.Y.); (R.J.); (S.Z.); (C.O.)
| | - Ru Jia
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (S.W.); (W.S.); (Y.Y.); (R.J.); (S.Z.); (C.O.)
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315832, China
| | - Shengnan Zhan
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (S.W.); (W.S.); (Y.Y.); (R.J.); (S.Z.); (C.O.)
| | - Changrong Ou
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (S.W.); (W.S.); (Y.Y.); (R.J.); (S.Z.); (C.O.)
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315832, China
| | - Tao Huang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (S.W.); (W.S.); (Y.Y.); (R.J.); (S.Z.); (C.O.)
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315832, China
| |
Collapse
|
12
|
Wang W, Wang Y, Liu X, Yu Q. The Characteristics of Whey Protein and Blueberry Juice Mixed Fermentation Gels Formed by Lactic Acid Bacteria. Gels 2023; 9:565. [PMID: 37504444 PMCID: PMC10379976 DOI: 10.3390/gels9070565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
The properties of blueberry juice and whey protein gels formed by the mixed fermentation of L. plantarum 67 and L. paracasei W125 were investigated. The state of the gels, including the colour and surface morphology of the microspheres, showed significant changes with different fermentation times. The polyphenolic, flavonoid, and protein release of whey protein or combined blueberry juice fermented gels under in vitro digestion were investigated. The whey protein and blueberry juice fermented gels had more small pores, with a honeycomb structure, compared to whey protein fermented gels. The hardness of the gels was increased after fermentation for 7 h for the whey protein gels and whey protein mixture blueberry juice gels. The storage modulus and water-holding capacity of the gels were increased between fermentation times of 6 h and 8 h. The swelling rates of the whey protein gels fermented for 7 h and whey protein mixed blueberry juice gels fermented for 8 h and kept in pepsin-free simulated gastric fluid for 1 h had higher values. The release of polyphenols, flavonoids, and protein for the fermented gels was higher at fermentation of 7 h in the in vitro digestion experiment. We found that the chewiness of the whey protein gels, or whey protein mixed fermentation gels, was higher at a fermentation time of 7.5 h and 8 h. However, the cohesiveness values were not significantly different. Therefore, whey protein fermented gels and whey protein mixed blueberry juice fermented gels should be fermented for more than 7 h. This facilitates the release of polyphenols, flavonoids, and protein in the gastric juices.
Collapse
Affiliation(s)
- Wenqiong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Weiwei Food & Beverage Co., Ltd., Xuzhou 221114, China
| | - Yuxian Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xian Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, China
| | - Qian Yu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
13
|
Deng R, Mars M, Janssen AE, Smeets PA. Gastric digestion of whey protein gels: A randomized cross-over trial with the use of MRI. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
14
|
Liu J, Zhang R, Jiang H, Yan Z, Zhang Y, Zhang T, Liu X. Network structure of response to freeze-thaw cycles in egg white protein gels filled with emulsion: Digestive kinetics regulated by the state of water and embedded oil. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Current insights into protein solubility: A review of its importance for alternative proteins. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Cao M, Liao L, Zhang X, Chen X, Peng S, Zou L, Liang R, Liu W. Electric field-driven fabrication of anisotropic hydrogels from plant proteins: Microstructure, gel performance and formation mechanism. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Dong X, Wu P, Cong H, Chen XD. Mechanistic study on in vitro disintegration and proteolysis of whey protein isolate gels: Effect of the strength of sodium ions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
18
|
Gelling Characteristics of Emulsions Prepared with Modified Whey Protein by Multiple-Frequency Divergent Ultrasound at Different Ultrasonic Power and Frequency Mode. Polymers (Basel) 2022; 14:polym14102054. [PMID: 35631936 PMCID: PMC9144504 DOI: 10.3390/polym14102054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
The effect of ultrasonic frequency mode (mono, dual and tri-frequency) and ultrasonic power (0–300 W) on structural properties (intrinsic fluorescence and sulfhydryl content) of whey protein was studied. Emulsions prepared with modified whey protein were used to form the heat-set gels, and the properties of whey protein emulsion gels (WPEG) and their digestion were investigated. The textural and rheological properties of WPEG prepared using whey protein pretreated by mono and dual-frequency ultrasound at the power between 180–240 W were enhanced, while those of WPEG prepared with whey protein pretreated by triple-frequency above the power of 180 W were declined. WPEG prepared using whey protein pretreated by dual-frequency ultrasound (DFU) with the power of 240 W had the highest hardness and storage modulus which were 3.07 and 1.41 times higher than the control. The microstructure of WPEG prepared using DFU pretreated whey protein showed homogeneous and denser networks than those of the control according to the results of confocal laser scanning microscope (CLSM). The modification in the microstructure and properties of the WPEG prepared using DFU pretreated whey protein delayed the protein disintegration during the first 30 min of gastric digestion when compared with control. Whereas the release rate of free amino group of the WPEG prepared using whey protein modified by ultrasonic pretreatment increased during the intestinal phase when compared with that of control. The results indicated that using dual-frequency ultrasound to modify whey protein is more efficient in improving the properties of WPEG, and ultrasonic power should be considered during the application of ultrasound pretreatment in producing protein gels. The fine network of WPEG prepared with whey protein pretreated by ultrasound resulted in better hardness and storage modulus. Partially unfolding of the protein induced by ultrasound pretreatment might make the whey protein more susceptible to the digestive enzyme. Our results could provide new insights for using ultrasound as the potential processing tool on designing specific protein emulsion gels as the delivery system for nutrients.
Collapse
|
19
|
Deng R, Seimys A, Mars M, Janssen AE, Smeets PA. Monitoring pH and whey protein digestion by TD-NMR and MRI in a novel semi-dynamic in vitro gastric simulator (MR-GAS). Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Wang R, Mohammadi M, Mahboubi A, Taherzadeh MJ. In-vitro digestion models: a critical review for human and fish and a protocol for in-vitro digestion in fish. Bioengineered 2021; 12:3040-3064. [PMID: 34187302 PMCID: PMC8806420 DOI: 10.1080/21655979.2021.1940769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/04/2021] [Indexed: 10/28/2022] Open
Abstract
Digestive systems in human, animals, and fish are biological reactors and membranes to digest food and extract nutrients. Therefore, static and dynamic models of in-vitro digestion systems are developed to study e.g. novel food and feed before in-vivo studies. Such models are well developed for human, but not to the same extent for animals and fish. On the other hand, recent advances in aquaculture nutrition have created several potential fish meal replacements, and the assessment of their nutrient digestibility is critical in the application as a fish meal replacement. Using an in-vitro method, the assessment of an ingredient digestibility could be faster and less expensive compared to using an in-vivo experiment. An in-vitro method has been widely used to assess food nutrient digestibility for humans; however, its application for fish is still in the early stages. Both the human and fish as monogastric vertebrates share similar gastrointestinal systems; thus, the concept from the application for humans could be applied for fish. This review aims to improve the in-vitro digestion protocol for fish by adapting the concept from then study for humans, summarizing the current available in-vitro digestion model developed for human and fish in-vitro digestion study, identifying challenges specifically for fish required to be tackled and suggesting an engineering approach to adapt the human in-vitro gastrointestinal model to fish. Protocols to conduct in-vitro digestion study for fish are then proposed.
Collapse
Affiliation(s)
- Ricky Wang
- Swedish Centre for Resource Recovery, University of Borås, Borås. Sweden
| | - Mahtab Mohammadi
- Swedish Centre for Resource Recovery, University of Borås, Borås. Sweden
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, Borås. Sweden
| | | |
Collapse
|
21
|
Zhang Y, Yuan JL, Fan C, Yan P, Kang X. Fabrication and characteristics of porcine plasma protein cold-set gel: Influence of the aggregates produced by glucono-δ-lactone acidification on microbial transglutaminase catalysis. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Lasschuijt MP, de Graaf K, Mars M. Effects of Oro-Sensory Exposure on Satiation and Underlying Neurophysiological Mechanisms-What Do We Know So Far? Nutrients 2021; 13:nu13051391. [PMID: 33919044 PMCID: PMC8143001 DOI: 10.3390/nu13051391] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
The mouth is the first part of the gastrointestinal tract. During mastication sensory signals from the mouth, so-called oro-sensory exposure, elicit physiological signals that affect satiation and food intake. It has been established that a longer duration of oro-sensory exposure leads to earlier satiation. In addition, foods with more intense sweet or salty taste induce earlier satiation compared to foods that are equally palatable, but with lower taste intensity. Oro-sensory exposure to food affects satiation by direct signaling via the brainstem to higher cortical regions involved in taste and reward, including the nucleus accumbens and the insula. There is little evidence that oro-sensory exposure affects satiation indirectly through either hormone responses or gastric signals. Critical brain areas for satiation, such as the brainstem, should be studied more intensively to better understand the neurophysiological mechanisms underlying the process of satiation. Furthermore, it is essential to increase the understanding of how of highly automated eating behaviors, such as oral processing and eating rate, are formed during early childhood. A better understanding of the aforementioned mechanisms provides fundamental insight in relation to strategies to prevent overconsumption and the development of obesity in future generations.
Collapse
|
23
|
Melchior S, Marino M, D'Este F, Innocente N, Nicoli MC, Calligaris S. Effect of the formulation and structure of monoglyceride-based gels on the viability of probiotic Lactobacillus rhamnosus upon in vitro digestion. Food Funct 2021; 12:351-361. [PMID: 33325962 DOI: 10.1039/d0fo01788d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This research was conducted to evaluate the potential use of saturated monoglyceride (MG)-based gels in the protection of probiotics upon in vitro digestion. For this purpose, a Lactobacillus rhamnosus strain was inoculated into binary and ternary systems, containing MGs, a water phase composed of an aqueous solution at controlled pH or UHT skimmed milk, and in ternary gels, sunflower oil. Gel structure characterization was initially performed just after preparation and after 14 days of storage at 4 °C by rheological, mechanical, thermal, and microscopy analyses. Afterwards, probiotic viability upon in vitro digestion was evaluated. The results highlighted that all freshly prepared samples showed good capability to protect L. rhamnosus with the exception of the binary system containing milk. However, the digestion of samples after 14 days of storage showed that the ternary system containing skimmed milk exhibited the best protection performance ensuring a L. rhamnosus viability of almost 106 CFU g-1 at the end of the gastrointestinal passage. Confocal microscopy results demonstrated that bacterial cells were located prevalently within the aqueous domain near the monoglycerides and protein aggregates. Under these conditions, they can simultaneously achieve physical protection and find nutrients to survive environmental stresses. These findings suggest that MG-based gels can be proposed as efficient carriers of probiotic bacteria not only during food processing and storage but also upon digestion.
Collapse
Affiliation(s)
- Sofia Melchior
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, via Sondrio 2/A, 33100 Udine, Italy.
| | - Marilena Marino
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, via Sondrio 2/A, 33100 Udine, Italy.
| | - Francesca D'Este
- Dipartimento di Area Medica, Università di Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Nadia Innocente
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, via Sondrio 2/A, 33100 Udine, Italy.
| | - Maria Cristina Nicoli
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, via Sondrio 2/A, 33100 Udine, Italy.
| | - Sonia Calligaris
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, via Sondrio 2/A, 33100 Udine, Italy.
| |
Collapse
|
24
|
Mao C, Wu J, Cheng Y, Chen T, Ren X, Ma H. Physicochemical properties and digestive kinetics of whey protein gels filled with potato and whey protein mixture emulsified oil droplets: effect of protein ratios. Food Funct 2021; 12:5927-5939. [PMID: 34031682 DOI: 10.1039/d1fo00653c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Incorporating protein emulsified droplets into protein gels as active fillers have attracted much attention. However, using animal and plant protein mixtures emulsified droplets as the filler is lacking. We investigated the effect of emulsified droplets covered by potato protein (PP) and whey protein (WP) mixtures of different ratios (10/0, 9/1, 7/3, 5/5, 3/7, 1/9, 0/10) on mechanical, microstructural characteristics and digestion of emulsion-filled WP gels (EFWG). The results showed that the particle size of emulsified droplets increased with the enhancement of PP ratio, whereas their ζ-potential value decreased. Increasing the PP ratio improved the elastic moduli (G'), fracture stress and hardness of EFWG, while lowered the water holding capacity and swelling ratios of EFWG. Confocal laser scanning microscopy revealed that a higher PP ratio leads to a thicker gel skeleton and fine network. Although the enhancement of the PP ratio decreased disulfide bond content in EFWG, it improved the hydrogen bond and total non-covalent interactions in EFWG. Increased PP in filling emulsions delayed the release rate of the free amino group and free fatty acid during digestion. Moreover, the presence of NaCl improved the gel properties and digestion of EFWG. The findings of this study may provide information for developing new WP gel products with specific digestion rates.
Collapse
Affiliation(s)
- Chao Mao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Juan Wu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China. and Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China. and Jiangsu Provincial Key Laboratory for Food Physical Processing, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yu Cheng
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China. and Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China. and Jiangsu Provincial Key Laboratory for Food Physical Processing, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Tian Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China. and Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China. and Jiangsu Provincial Key Laboratory for Food Physical Processing, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China. and Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China. and Jiangsu Provincial Key Laboratory for Food Physical Processing, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
25
|
Abstract
This review outlines the current use of magnetic resonance (MR) techniques to study digestion and highlights their potential for providing markers of digestive processes such as texture changes and nutrient breakdown. In vivo digestion research can be challenging due to practical constraints and biological complexity. Therefore, digestion is primarily studied using in vitro models. These would benefit from further in vivo validation. NMR is widely used to characterise food systems. MRI is a related technique that can be used to study both in vitro model systems and in vivo gastro-intestinal processes. MRI allows visualisation and quantification of gastric processes such as gastric emptying and coagulation. Both MRI and NMR scan sequences can be configured to be sensitive to different aspects of gastric or intestinal contents. For example, magnetisation transfer and chemical exchange saturation transfer can detect proton (1H) exchange between water and proteins. MRI techniques have the potential to provide molecular-level and quantitative information on in vivo gastric (protein) digestion. This requires careful validation in order to understand what these MR markers of digestion mean in a specific digestion context. Combined with other measures they can be used to validate and inform in vitro digestion models. This may bridge the gap between in vitro and in vivo digestion research and can aid the optimisation of food properties for different applications in health and disease.
Collapse
|