1
|
dos Santos E, Gomes RG, Mangolin CA, Machado MDFPDS. A review of mandacaru fruit phytochemicals, its pharmacotherapeutic benefits and uses in food technology. Food Sci Biotechnol 2025; 34:1789-1803. [PMID: 40196331 PMCID: PMC11972249 DOI: 10.1007/s10068-024-01749-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/26/2024] [Accepted: 11/13/2024] [Indexed: 04/09/2025] Open
Abstract
The Cereus genus includes medicinal plants native to the Neotropical region. Although their colorful fruits are consumed in arid and semi-arid areas, these are underused industrially due to limited knowledge. This review presents recent studies on the chemical, physicochemical, and bioactive aspects of Cereus fruits, along with pharmacotherapeutic benefits and potential applications of peel, pulp, and seed compounds. Cereus fruits exhibit high nutritional value and richness in bioactive compounds. Their peel has the highest antioxidant concentration, mainly phenolics, flavonoids, and carotenoids. Their pulp offers significant dietary fiber and energy. Seed flour and oil are rich in minerals (K, P and Mg), and also contain oleic, linoleic, and palmitic acids. Most studies focus on Cereus jamacaru, indicating the need to explore other Cereus species for their varied compositions, in addition to innovative physicochemical analyses to uncover relevant compounds.
Collapse
Affiliation(s)
- Everaldo dos Santos
- Graduate Program in Agronomy, State University of Maringá, Maringá, PR Brazil
| | | | | | | |
Collapse
|
2
|
Coelho VS, de Moura DG, Aguiar LL, Ribeiro LV, Silva VDM, da Veiga Correia VT, Melo AC, Silva MR, de Paula ACCFF, de Araújo RLB, Melo JOF. The Profile of Phenolic Compounds Identified in Pitaya Fruits, Health Effects, and Food Applications: An Integrative Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:3020. [PMID: 39519939 PMCID: PMC11548494 DOI: 10.3390/plants13213020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE This integrative review aimed to identify the phenolic compounds present in pitayas (dragon fruit). METHODS We employed a comprehensive search strategy, encompassing full-text articles published between 2013 and 2023 in Portuguese, English, and Spanish from databases indexed in ScienceDirect, Capes Periodics, Scielo, and PubMed. The study's selection was guided by the question, "What are the main phenolic compounds found in pitaya fruits?". RESULTS After screening 601 papers, 57 met the inclusion criteria. The identified phytochemicals have been associated with a range of health benefits, including antioxidant, anti-inflammatory, and anxiolytic properties. Additionally, they exhibit promising applications in the management of cancer, diabetes, and obesity. These 57 studies encompassed various genera, including Hylocereus, Selenicereus, and Stenocereus. Notably, Hylocereus undatus and Hylocereus polyrhizus emerged as the most extensively characterized species regarding polyphenol content. Analysis revealed that flavonoids, particularly kaempferol and rutin, were the predominant phenolic class within the pulp and peel of these fruits. Additionally, hydroxycinnamic and benzoic acid derivatives, especially chlorogenic acid, caffeic, protocatechuic, synaptic, and ellagic acid, were frequently reported. Furthermore, betalains, specifically betacyanins, were identified, contributing to the characteristic purplish-red color of the pitaya peel and pulp. These betalains hold significant potential as natural colorants in the food industry. CONCLUSION Therefore, the different pitayas have promising sources for the extraction of pigments for incorporation in the food industry. We recommend further studies investigate their potential as nutraceuticals.
Collapse
Affiliation(s)
- Vinicius Serafim Coelho
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (V.S.C.); (D.G.d.M.); (L.L.A.); (V.T.d.V.C.); (R.L.B.d.A.)
| | - Daniela Gomes de Moura
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (V.S.C.); (D.G.d.M.); (L.L.A.); (V.T.d.V.C.); (R.L.B.d.A.)
| | - Lara Louzada Aguiar
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (V.S.C.); (D.G.d.M.); (L.L.A.); (V.T.d.V.C.); (R.L.B.d.A.)
| | - Lucas Victor Ribeiro
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 36307-352, MG, Brazil; (L.V.R.); (V.D.M.S.)
| | - Viviane Dias Medeiros Silva
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 36307-352, MG, Brazil; (L.V.R.); (V.D.M.S.)
| | - Vinícius Tadeu da Veiga Correia
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (V.S.C.); (D.G.d.M.); (L.L.A.); (V.T.d.V.C.); (R.L.B.d.A.)
| | - Angelita Cristine Melo
- Curso de Farmácia, Campus Centro-Oeste, Universidade Federal de São João del-Rei, Divinópolis 35501-296, MG, Brazil;
| | - Mauro Ramalho Silva
- Departamento de Bioquímica e Imunologia, Campus Pampulha, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | | | - Raquel Linhares Bello de Araújo
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (V.S.C.); (D.G.d.M.); (L.L.A.); (V.T.d.V.C.); (R.L.B.d.A.)
| | - Julio Onesio Ferreira Melo
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 36307-352, MG, Brazil; (L.V.R.); (V.D.M.S.)
| |
Collapse
|
3
|
de Sousa Silva FT, da Rocha Viana JD, Gomes da Silva MDF, Silvestre da Silva G, Florindo Guedes MI, de Lima Rebouças E, Apolinário da Silva AP, Coutinho MR, Wlisses da Silva A, Rodrigues de Souza AC, Zocolo GJ, Herbster Moura CF, Dionísio AP. Microfiltered red-purple pitaya concentrate: A promising multifunctional food-derived colorant. J Food Sci 2024; 89:6759-6773. [PMID: 39289801 DOI: 10.1111/1750-3841.17351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024]
Abstract
Red pitaya fruit has become a source of natural colorant, because it is rich in betalains, a pigment that imparts a red-purple color that interests the food and cosmetics industries. This fruit also possesses high nutritional value, with a range of bioactive compounds known to confer potential health benefits and prevent chronic diseases, such as diabetes, which makes it useful for use as pharmaceutical agents and dietary supplements. In order to improve its technological and biological effects, a concentration will be required. Thus, the microfiltration, followed by vacuum concentration, can be an interesting strategy for this purpose. This study aimed to explore tangential microfiltration to produce microfiltered material, which is an important step to obtain the microfiltered red-purple pitaya concentrate. Therefore, physicochemical and chemical characterization (including 1H NMR analysis) and biological properties (toxicity and diabetes) of this concentrate were assessed, using adult zebrafish as a model. The results show that microfiltration was carried out efficiently, with an average consumption of 95.75 ± 3.13 and 74.12 ± 3.58 kW h m-3, varying according to the material used ("unpeeled pitaya pulp" or "pitaya pulp with peel," respectively). The in vivo tests indicated non-toxicity and hypoglycemic effect of the concentrate, since the blood glucose levels were significantly lower in the zebrafish groups treated with this concentrate in comparison with that of control group. Thus, this study suggests the potential of microfiltered red-purple pitaya concentrate as a promising multifunctional food-derived colorant, exhibiting beneficial biological effects far beyond its attractive color. PRACTICAL APPLICATION: Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose has attracted attention as a potential source of natural colorants because of its red-purple skin and flesh color. In addition, this fruit has a range of bioactive compounds, which make it a valuable resource for providing potential health benefits and preventing chronic diseases such as diabetes. In this paper, the microfiltered red-purple pitaya concentrate showed beneficial biological effects far beyond its attractive color. Thus, this product can be considered a promising multifunctional food-derived colorant to use in the food, pharmaceutical, or cosmetics industries.
Collapse
|
4
|
Lacerda VR, Bastante CC, Machado ND, Vieites RL, Casas Cardoso L, Mantell-Serrano C. Supercritical extraction of betalains from the peel of different pitaya species. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5513-5521. [PMID: 38353869 DOI: 10.1002/jsfa.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Pitaya is a fruit with high consumer acceptance and health benefits. Pitaya peel is a waste product with potential in the food industry, as an antioxidant enrichment and natural colouring. Therefore, there is an interest in recovering its constituents and searching for pitaya species with greater potential. This work aimed to obtain bioactive extracts from the dried peel of pitaya fruits of the species Selenicereus monacanthus (Lem.), S. costaricensis W. and S. undatus H. using supercritical fluids at different pressures (100, 250 and 400 bar) and ethanol-water 15% v/v or ethanol 100% as co-solvents. The extraction yield, antioxidant activity, colour and total betalain content were evaluated. RESULTS The extract obtained from S. monacanthus showed the highest extraction yield (49.6 g kg-1), followed by S. costaricensis (27.5 g kg-1) and S. undatus (17.7 g kg-1) at 400 bar and 35 °C using ethanol 15%, v/v. The antioxidant capacity was strongly influenced by pressure, favouring the obtaining of betalain-rich extracts at higher pressures, especially in the species S. costaricensis (0.6 g kg-1) and S. monacanthus (0.3 g kg-1). To improve the extraction of S. undatus (the most cultivated species), the procedure of subsequential extractions was applied. This procedure considerably increased the extraction yield, antioxidant activity and total content of betalains. The use of ethanol 100% provided more bioactive fractions and achieved a good separation of betalains. CONCLUSION The supercritical extraction method can overcome the challenge of efficiently extracting compounds from pitaya peel, due to the presence of bioactive compounds of great polarity. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Vander Rocha Lacerda
- Department of Vegetable Production (Horticulture), School of Agriculture, São Paulo State University (UNESP), Botucatu, Brazil
| | - Cristina Cejudo Bastante
- Chemical Engineering and Food Technology Department, Faculty of Science, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Puerto Real, Spain
| | - Noelia D Machado
- Chemical Engineering and Food Technology Department, Faculty of Science, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Puerto Real, Spain
| | - Rogério Lopes Vieites
- Department of Vegetable Production (Horticulture), School of Agriculture, São Paulo State University (UNESP), Botucatu, Brazil
| | - Lourdes Casas Cardoso
- Chemical Engineering and Food Technology Department, Faculty of Science, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Puerto Real, Spain
| | - Casimiro Mantell-Serrano
- Chemical Engineering and Food Technology Department, Faculty of Science, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Puerto Real, Spain
| |
Collapse
|
5
|
Santos GBM, de Abreu FAP, da Silva GS, Guedes JAC, Lira SM, Dionísio AP, Pontes DF, Zocolo GJ. UPLC-QTOF-MS E based metabolomics and chemometrics study of the pitaya processing. Food Res Int 2024; 178:113957. [PMID: 38309877 DOI: 10.1016/j.foodres.2024.113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
The search for knowledge related to the Pitaya (Hylocereus polyrhizus [F.A.C. Weber] Britton & Rose, family Cactaceae) is commonly due to its beneficial health properties e aesthetic values. But process to obtain pitaya pulp is a first and important step in providing information for the subsequent use of this fruit as colorant, for example. Therefore, the effects of the pulping process on the metabolomic and chemometric profile of non-volatile compounds of pitaya were assessed for the first time. The differences in metabolic fingerprints using UPLC-QTOF-MSE and multivariate modeling (PCA and OPLS-DA) was performed in the following treatments: treatment A, which consists of pelled pitaya and no ascorbic acid addition during pulping; treatment B, use of unpelled pitaya added of ascorbic acid during pulping; and control, unpelled pitaya and no ascorbic acid addition during pulping. For the metabolomic analysis, UPLC-QTOF-MSE shows an efficient method for the simultaneous determination of 35 non-volatile pitaya metabolites, including isorhamnetin glucosyl rhamnosyl isomers, phyllocactin isomers, 2'-O-apiosyl-phylocactin and 4'-O-malonyl-betanin. In addition, the chemometric analysis efficiently distinguished the metabolic compounds of each treatment applied and shows that the use of unpelled pitaya added of ascorbic acid during pulping has an interesting chemical profile due to the preservation or formation of compounds, such as those derived from betalain, and higher yields, which is desirable for the food industry.
Collapse
Affiliation(s)
| | | | | | | | - Sandra Machado Lira
- Department of Nutrition, State University of Ceara, 60714-903 Fortaleza, CE, Brazil
| | - Ana Paula Dionísio
- Embrapa Agroindústria Tropical, Dra Sara Mesquita St., 2270, 60511-110 Fortaleza, CE, Brazil
| | | | - Guilherme Julião Zocolo
- Embrapa Agroindústria Tropical, Dra Sara Mesquita St., 2270, 60511-110 Fortaleza, CE, Brazil.
| |
Collapse
|
6
|
Rodrigues JA, Ferro E, Araújo R, Henriques AV, Gomes AM, Vasconcelos MW, Gil AM. Metabolic Evaluation of Lupin-Enriched Yogurt by Nuclear Magnetic Resonance Metabolomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:894-903. [PMID: 38112332 DOI: 10.1021/acs.jafc.3c05837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Untargeted nuclear magnetic resonance (NMR) metabolomics was used to evaluate compositional changes during yogurt fermentation upon lupin enrichment compared to traditional conditions. Lupin significantly changed the sample metabolic profile and its time course dynamics, seemingly delaying microbial action. The levels of organic and amino acids were significantly altered, along with those of some sugars, nucleotides, and choline compounds. Lupin seemed to favor acetate and formate synthesis, compared to that of citrate and fumarate; a higher formate levels may suggest increased levels of Streptococcus thermophilus action, compared toLactobacillus bulgaricus. Lupin-yogurt was poorer in hippurate, lactose (and hence lactate), galactose, glucose-1-phosphate, and galactose-1-phosphate, containing higher orotate levels (possibly related to increased uridine derivatives), among other differences. Trigonelline was confirmed as a lupin marker, possibly together with glutamate and histidine. Other metabolite trajectories remained unchanged upon lupin addition, unveiling unaffected underlying processes. These results demonstrate the usefulness of untargeted NMR metabolomics to understand/develop new foodstuffs and their production processes, highlighting the identity of a variety of bioactive metabolites with importance for human health.
Collapse
Affiliation(s)
- João A Rodrigues
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Evla Ferro
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Universidade Católica Portuguesa, CBQF─Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
| | - Rita Araújo
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana V Henriques
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Universidade Católica Portuguesa, CBQF─Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
| | - Ana M Gomes
- Universidade Católica Portuguesa, CBQF─Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
| | - Marta W Vasconcelos
- Universidade Católica Portuguesa, CBQF─Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
| | - Ana M Gil
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Vega EN, Ciudad-Mulero M, Fernández-Ruiz V, Barros L, Morales P. Natural Sources of Food Colorants as Potential Substitutes for Artificial Additives. Foods 2023; 12:4102. [PMID: 38002160 PMCID: PMC10670170 DOI: 10.3390/foods12224102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, the demand of healthier food products and products made with natural ingredients has increased overwhelmingly, led by the awareness of human beings of the influence of food on their health, as well as by the evidence of side effects generated by different ingredients such as some additives. This is the case for several artificial colorants, especially azo colorants, which have been related to the development of allergic reactions, attention deficit and hyperactivity disorder. All the above has focused the attention of researchers on obtaining colorants from natural sources that do not present a risk for consumption and, on the contrary, show biological activity. The most representative compounds that present colorant capacity found in nature are anthocyanins, anthraquinones, betalains, carotenoids and chlorophylls. Therefore, the present review summarizes research published in the last 15 years (2008-2023) in different databases (PubMed, Scopus, Web of Science and ScienceDirect) encompassing various natural sources of these colorant compounds, referring to their obtention, identification, some of the efforts made for improvements in their stability and their incorporation in different food matrices. In this way, this review evidences the promising path of development of natural colorants for the replacement of their artificial counterparts.
Collapse
Affiliation(s)
- Erika N. Vega
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (M.C.-M.); (V.F.-R.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - María Ciudad-Mulero
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (M.C.-M.); (V.F.-R.)
| | - Virginia Fernández-Ruiz
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (M.C.-M.); (V.F.-R.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Patricia Morales
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (M.C.-M.); (V.F.-R.)
| |
Collapse
|
8
|
Dhal S, Pal A, Gramza-Michalowska A, Kim D, Mohanty B, Sagiri SS, Pal K. Formulation and Characterization of Emulgel-Based Jelly Candy: A Preliminary Study on Nutraceutical Delivery. Gels 2023; 9:466. [PMID: 37367137 DOI: 10.3390/gels9060466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
The development of consumer-friendly nutraceutical dosage forms is highly important for greater acceptance. In this work, such dosage forms were prepared based on structured emulsions (emulgels), where the olive oil phase was filled within the pectin-based jelly candy. The emulgel-based candies were designed as bi-modal carriers, where oil-soluble curcumin and water-soluble riboflavin were incorporated as the model nutraceuticals. Initially, emulsions were prepared by homogenizing varied concentrations (10% to 30% (w/w)) of olive oil in a 5% (w/w) pectin solution that contained sucrose and citric acid. Herein, pectin acted as a structuring agent-cum-stabilizer. Physico-chemical properties of the developed formulations were thoroughly analyzed. These studies revealed that olive oil interferes with the formation of polymer networks of pectin and the crystallization properties of sugar in candies. This was confirmed by performing FTIR spectroscopy and DSC studies. In vitro disintegration studies showed an insignificant difference in the disintegration behavior of candies, although olive oil concentration was varied. Riboflavin and curcumin were then incorporated into the jelly candy formulations to analyze whether the developed formulations could deliver both hydrophilic and hydrophobic nutraceutical agents. We found that the developed jelly candy formulations were capable of delivering both types of nutraceutical agents. The outcome of the present study may open new directions for designing and developing oral nutraceutical dosage forms.
Collapse
Affiliation(s)
- Somali Dhal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India
| | - Anupam Pal
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack 754202, India
| | - Anna Gramza-Michalowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Doman Kim
- Graduate School of International Agricultural Technology, Seoul National University, Gangwon-do, Seoul 25354, Republic of Korea
| | - Biswaranjan Mohanty
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack 754202, India
| | - Sai S Sagiri
- Agro-Nanotechnology and Advanced Materials Research Center, Department of Food Science, Agricultural Research Organization, The Volcani Institute, Rishon Lezion 7505101, Israel
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India
| |
Collapse
|
9
|
Nishikito DF, Borges ACA, Laurindo LF, Otoboni AMMB, Direito R, Goulart RDA, Nicolau CCT, Fiorini AMR, Sinatora RV, Barbalho SM. Anti-Inflammatory, Antioxidant, and Other Health Effects of Dragon Fruit and Potential Delivery Systems for Its Bioactive Compounds. Pharmaceutics 2023; 15:159. [PMID: 36678789 PMCID: PMC9861186 DOI: 10.3390/pharmaceutics15010159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Dragon fruit (Hylocereus genus) has the potential for the prevention of diseases associated with inflammatory and oxidative processes. We aimed to comprehensively review dragon fruit health effects, economic importance, and possible use in delivery systems. Pubmed, Embase, and Google Scholar were searched, and PRISMA (Preferred Reporting Items for a Systematic Review and Meta-Analysis) guidelines were followed. Studies have shown that pitaya can exert several benefits in conditions such as diabetes, dyslipidemia, metabolic syndrome, cardiovascular diseases, and cancer due to the presence of bioactive compounds that may include vitamins, potassium, betacyanin, p-coumaric acid, vanillic acid, and gallic acid. Moreover, pitaya has the potential to be used in food and nutraceutical products as functional ingredients, natural colorants, ecologically correct and active packaging, edible films, preparation of photoprotective products, and additives. Besides the importance of dragon fruit as a source of bioactive compounds, the bioavailability is low. The development of delivery systems such as gold nanoparticles with these compounds can be an alternative to reach target tissues.
Collapse
Affiliation(s)
| | | | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | | | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | | | | | - Renata Vargas Sinatora
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Sandra M. Barbalho
- School of Food and Technology of Marilia (FATEC), São Paulo 17500-000, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| |
Collapse
|
10
|
Oliveira WQD, Sousa PHMD, Pastore GM. Olfactory and gustatory disorders caused by COVID-19: How to regain the pleasure of eating? Trends Food Sci Technol 2022; 122:104-109. [PMID: 35039714 PMCID: PMC8755554 DOI: 10.1016/j.tifs.2022.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022]
Abstract
Background Recently, anosmia and ageusia (and their variations) have been reported as frequent symptoms of COVID-19. Olfactory and gustatory stimuli are essential in the perception and pleasure of eating. Disorders in sensory perception may influence appetite and the intake of necessary nutrients when recovering from COVID-19. In this short commentary, taste and smell disorders were reported and correlated for the first time with food science. Scope and approach The objective of this short commentary is to report that taste and smell disorders resulted from COVID-19 may impact eating pleasure and nutrition. It also points out important technologies and trends that can be considered and improved in future studies. Key findings and conclusions Firmer food textures can stimulate the trigeminal nerve, and more vibrant colors are able to increase the modulation of brain metabolism, stimulating pleasure. Allied to this, encapsulation technology enables the production of new food formulations, producing agonist and antagonist agents to trigger or block specific sensations. Therefore, opportunities and innovations in the food industry are wide and multidisciplinary discussions are needed.
Collapse
Affiliation(s)
- Williara Queiroz de Oliveira
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, 13083-862, Campinas, SP, Brazil
| | - Paulo Henrique Machado De Sousa
- Department of Food Technology, Federal University of Ceará, Av. Mister Hull, 2977, Pici University Campus, Fortaleza, Ceará, ZIP 60356-000, Brazil
| | - Glaucia Maria Pastore
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, 13083-862, Campinas, SP, Brazil
| |
Collapse
|
11
|
Maturation Process, Nutritional Profile, Bioactivities and Utilisation in Food Products of Red Pitaya Fruits: A Review. Foods 2021; 10:foods10112862. [PMID: 34829143 PMCID: PMC8618204 DOI: 10.3390/foods10112862] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 12/29/2022] Open
Abstract
Red pitaya (Hylocereus polyrhizus, red pulp with pink peel), also known as dragon fruit, is a well-known species of pitaya fruit. Pitaya seeds and peels have been reported to exhibit higher concentrations of total polyphenols, beta-cyanins and amino acid than pulp, while anthocyanins (i.e., cyanidin 3-glucoside, delphinidin 3-glucoside and pelargonidin 3-glucoside) were only detected in the pulp extracts. Beta-cyanins, phenolics and flavonoids were found to increase gradually during fruit maturation and pigmentation appeared earlier in the pulp than peel. The phytochemicals were extracted and purified by various techniques and broadly used as natural, low-cost, and beneficial healthy compounds in foods, including bakery, wine, dairy, meat and confectionery products. These bioactive components also exhibit regulative influences on the human gut microbiota, glycaemic response, lipid accumulation, inflammation, growth of microbials and mutagenicity, but the mechanisms are yet to be understood. The objective of this study was to systematically summarise the effect of red pitaya’s maturation process on the nutritional profile and techno-functionality in a variety of food products. The findings of this review provide valuable suggestions for the red pitaya fruit processing industry, leading to novel formulations supported by molecular research.
Collapse
|
12
|
de Araújo FF, de Paulo Farias D, Neri-Numa IA, Pastore GM. Underutilized plants of the Cactaceae family: Nutritional aspects and technological applications. Food Chem 2021; 362:130196. [PMID: 34091165 DOI: 10.1016/j.foodchem.2021.130196] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/27/2021] [Accepted: 05/23/2021] [Indexed: 02/07/2023]
Abstract
This review examines the nutritional and functional aspects of some representatives of the Cactaceae family, as well as its technological potential in the most diverse industrial fields. The studied species are good sources of nutrients and phytochemicals of biological interest, such as phenolic compounds, carotenoids, betalains, phytosterols, tocopherols, etc. They also have shown great potential in preventing some diseases, including diabetes, obesity, cancer, and others. As to technological applications, the Cactaceae family can be explored in the production of food (e.g., cakes, yogurts, bread, ice cream, and juices), as natural dyes, sources of pectins, water treatment and in animal feed. In addition, they have great potential for many technological domains, including food chemistry, pharmacy, biotechnology, and many others.
Collapse
Affiliation(s)
- Fábio Fernandes de Araújo
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil.
| | - David de Paulo Farias
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil.
| | - Iramaia Angélica Neri-Numa
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil
| | - Glaucia Maria Pastore
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil
| |
Collapse
|