1
|
Aguilera ÁY, Almeida VE, da Silva Oliveira NM, de Brito PF, Mendes EA, Veras G, Springer V. Combining capillary electrophoresis and chemometric tools for the straightforward determination of imidazolinone herbicides in plant-based milks. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1701-1710. [PMID: 39373510 DOI: 10.1002/jsfa.13948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/31/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Highly polar herbicides, such as imidazolinones, are used for weed control to increase agricultural productivity and crop quality. However, their misapplication can lead to residues in ready-to-eat food with a potential health risk for consumers. Hence, the fast determination of these herbicides is necessary for timely action. In this work, an eco-friendly method based on capillary zone electrophoresis combined with chemometrics was used for the determination of imazapyr and imazamox in vegetable-based beverages such as soy and quinoa milk. RESULTS The analytical strategy consisted of only three steps: (i) protein precipitation prior to sample injection (ii) data pre-processing to reduce the background and make corrections on electrophoretic times shift, and (iii) resolution of fully overlapped capillary electrophoresis (CE) peaks by the well-known partial least square (PLS) algorithm, which extracts quantitative information attributed to the analytes. The method was successfully applied in the concentration range between 1.00 and 100 μg L-1 with coefficient of determination of the calibration (R2 cal) and prediction (R2 pred) > 0.90, residual prediction deviation of calibration (RPDcal) and of prediction (RPDpred) > 3, and relative error of prediction (REP) > 11 in the analyzed sample matrices, in the three built methods (quinoa samples, soy samples, and joint quinoa and soy samples). CONCLUSION The proposed methodology offers a simple and quick alternative for determining imidazolinones at trace concentrations in vegetable beverages, such as quinoa and soy milk, without complex sample preparation. The results were consistent with those obtained using more complex techniques, confirming the applicability of this method. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ángela Y Aguilera
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Valber E Almeida
- Department of Chemistry, Universidade Estadual da Paraiba, Campina Grande, Brazil
| | | | | | - Enia Aguiar Mendes
- Department of Chemistry, Universidade Estadual da Paraiba, Campina Grande, Brazil
| | - Germano Veras
- Department of Chemistry, Universidade Estadual da Paraiba, Campina Grande, Brazil
| | - Valeria Springer
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| |
Collapse
|
2
|
Mitra S, Saran RK, Srivastava S, Rensing C. Pesticides in the environment: Degradation routes, pesticide transformation products and ecotoxicological considerations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173026. [PMID: 38750741 DOI: 10.1016/j.scitotenv.2024.173026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024]
Abstract
Among rising environmental concerns, emerging contaminants constitute a variety of different chemicals and biological agents. The composition, residence time in environmental media, chemical interactions, and toxicity of emerging contaminants are not fully known, and hence, their regulation becomes problematic. Some of the important groups of emerging contaminants are pesticides and pesticide transformation products (PTPs), which present a considerable obstacle to maintaining and preserving ecosystem health. This review article aims to thoroughly comprehend the occurrence, fate, and ecotoxicological importance of pesticide transformation products (PTPs). The paper provides an overview of pesticides and PTPs as contaminants of emerging concern and discusses the modes of degradation of pesticides, their properties and associated risks. The degradation of pesticides, however, does not lead to complete destruction but can instead lead to the generation of PTPs. The review discusses the properties and toxicity of PTPs and presents the methods available for their detection. Moreover, the present study examines the existing regulatory framework and suggests the need for the development of new technologies for easy, routine detection of PTPs to regulate them effectively in the environment.
Collapse
Affiliation(s)
- Suchitra Mitra
- Indian Institute of Science Education and Research, Kolkata 741245, WB, India
| | - R K Saran
- Department of Microbiology, Maharaja Ganga Singh University, Bikaner, Rajasthan, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, UP, India.
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| |
Collapse
|
3
|
Covalently Functionalized Cellulose Nanoparticles for Simultaneous Enrichment of Pb(II), Cd(II) and Cu(II) Ions. Polymers (Basel) 2023; 15:polym15030532. [PMID: 36771833 PMCID: PMC9921717 DOI: 10.3390/polym15030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Cellulose nanoparticles are sustainable natural polymers with excellent application in environmental remediation technology. In this work, we synthesized cellulose nanoparticles and covalently functionalized them with a multi-functional group possessing ligands. The hybrid material shows excellent adsorption properties for the simultaneous extraction of multiple metal ions in the sample preparation technique. The sorbent shows excellent sorption capacity in the range of 1.8-2.2 mmol/g of material. The developed method was successfully employed for the simultaneous extraction of Pb(II), Cd(II) and Cu(II) from real-world samples (industrial effluent, river water, tap and groundwater) and subsequently determined by inductively coupled plasma optical emission spectroscopy (ICP-OES). The method shows a preconcentration limit of 0.7 ppb attributes to analyze the trace concentration of studied metal ions. The detection limit obtained for Pb(II), Cd(II) and Cu(II) is found to be 0.4 ppb.
Collapse
|
4
|
Teixeira Tarley CR, Gorla FA, Midori de Oliveira F, Nascentes CC, Ferreira MDP, Ferreira da Costa M, Segatelli MG. Investigation of the performance of cross-linked poly(acrylic acid) and poly(methacrylic acid) as efficient adsorbents in SPE columns for simultaneous preconcentration of tricyclic antidepressants in water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:5100-5109. [PMID: 36472141 DOI: 10.1039/d2ay01520j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A solid phase extraction-based (SPE) procedure for simultaneous preconcentration of five tricyclic antidepressants (TCAs), amitriptyline hydrochloride (AMT), nortriptyline hydrochloride (NOR), doxepin hydrochloride (DOX), imipramine hydrochloride (IMI), and clomipramine hydrochloride (CLO) from water samples with determination by HPLC-DAD is proposed. Polymers were characterized by FT-IR, SEM, and thermogravimetric analysis. SPE-based methods were carried out by the preconcentration of 320.0 mL of TCAs at pH 7.0 (buffered with 0.01 mol L-1 phosphate buffer) through 70.0 mg of adsorbent packed into a SPE cartridge, followed by elution with 1.0 mL of ACN : MeOH : acetic acid solution (45 : 45 : 10% v/v). Higher preconcentration factors were obtained ranging from 117.9 to 372.2 and 207.1 to 396.1 by using poly(MAA-co-EGDMA) and poly(AA-co-EGDMA), respectively, yielding lower limits of detection (0.03 to 0.12 μg L-1) and (0.03 to 0.15 μg L-1). These outcomes show satisfactory detectability of SPE-based methods, with slightly better performance using poly(MAA-co-EGDMA). On the other hand, poly(AA-co-EGDMA) was able to preconcentrate TCAs in the presence of humic acid (7.0 mg L-1) without interference. The precision of methods assessed as RSD (%) was very similar, ranging from 1.7% to 16.3% for poly(MAA-co-EGDMA) and 1.7% to 13.4% for poly(AA-co-EGDMA). SPE cartridges packed with the polymers showed high reusability (52 cycles of preconcentration and elution) without losing adsorption efficiency. The methods were applied to determine TCAs in tap, lake, and stream water samples and the accuracy was attested by addition and recovery tests (86.7-116.0%), with determined nortriptyline ranging from 0.48 to 0.52 μg L-1 in lake water samples.
Collapse
Affiliation(s)
- César Ricardo Teixeira Tarley
- Department of Chemistry, State University of Londrina (UEL), Rodovia Celso Garcia Cid, PR 445, Km 380, CEP 86.057-970, Londrina, Parana, Brazil.
- National Institute of Science and Technology in Bioanalytics (INCTBio), Institute of Chemistry, State University of Campinas (UNICAMP), Cidade Universitária Vaz s/n, CEP 13.083-970, Campinas, São Paulo, Brazil
| | - Felipe Augusto Gorla
- Department of Chemistry, State University of Londrina (UEL), Rodovia Celso Garcia Cid, PR 445, Km 380, CEP 86.057-970, Londrina, Parana, Brazil.
- Federal Institute of Paraná (IFPR), Avenida Cívica 475, Centro Cívico, CEP 85.935-000, Assis Chateaubriand, Parana, Brazil
| | - Fernanda Midori de Oliveira
- Department of Chemistry, State University of Londrina (UEL), Rodovia Celso Garcia Cid, PR 445, Km 380, CEP 86.057-970, Londrina, Parana, Brazil.
| | - Clésia Cristina Nascentes
- Department of Chemistry, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Milena do Prado Ferreira
- Department of Chemistry, State University of Londrina (UEL), Rodovia Celso Garcia Cid, PR 445, Km 380, CEP 86.057-970, Londrina, Parana, Brazil.
| | - Marcello Ferreira da Costa
- Department of Physics, State University of Londrina (UEL), Rodovia Celso Garcia Cid, PR 445 Km 380, CEP 86.057-970, Londrina, Parana, Brazil
| | - Mariana Gava Segatelli
- Department of Chemistry, State University of Londrina (UEL), Rodovia Celso Garcia Cid, PR 445, Km 380, CEP 86.057-970, Londrina, Parana, Brazil.
| |
Collapse
|
5
|
Sohrabi N, Mohammadi R, Ghassemzadeh HR, Heris SSS. Design and synthesis of a new magnetic molecularly imprinted polymer nanocomposite for specific adsorption and separation of diazinon insecticides from aqueous media. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Etikala A, Thamburaj S, Johnson AM, Sarma C, Mummaleti G, Kalakandan SK. Incidence, toxin gene profile, antibiotic resistance and antibacterial activity of Allium parvum and Allium cepa extracts on Bacillus cereus isolated from fermented millet-based food. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Angelis PN, Casarin J, Gonçalves Júnior AC, Rocha LR, Prete MC, Tarley CRT. Development of a Novel Molecularly Imprinted Polyvinylimidazole/Functionalized Carbon Black Nanocomposite‐based Paste Electrode for Electrochemical Sensing of Imazethapyr in Rice Samples. ELECTROANAL 2022. [DOI: 10.1002/elan.202100360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Pedro Nunes Angelis
- Universidade Estadual de Londrina (UEL) Departamento de Química Centro de Ciências Exatas Rodovia Celso Garcia Cid PR 445 Km 380, CEP 86050-482 Londrina-PR Brazil
| | - Juliana Casarin
- Universidade Estadual de Londrina (UEL) Departamento de Química Centro de Ciências Exatas Rodovia Celso Garcia Cid PR 445 Km 380, CEP 86050-482 Londrina-PR Brazil
| | - Affonso Celso Gonçalves Júnior
- Universidade Estadual do Oeste do Paraná (UNIOESTE) Centro de Ciências Agrárias, CEP 85960-000 Marechal Cândido Rondon-PR Brazil
| | - Luana Rianne Rocha
- Universidade Estadual de Londrina (UEL) Departamento de Química Centro de Ciências Exatas Rodovia Celso Garcia Cid PR 445 Km 380, CEP 86050-482 Londrina-PR Brazil
| | - Maiyara Carolyne Prete
- Universidade Estadual de Londrina (UEL) Departamento de Química Centro de Ciências Exatas Rodovia Celso Garcia Cid PR 445 Km 380, CEP 86050-482 Londrina-PR Brazil
| | - César Ricardo Teixeira Tarley
- Universidade Estadual de Londrina (UEL) Departamento de Química Centro de Ciências Exatas Rodovia Celso Garcia Cid PR 445 Km 380, CEP 86050-482 Londrina-PR Brazil
- Instituto Nacional de Ciência e Tecnologia (INCT) de Bioanalítica Universidade Estadual de Campinas (UNICAMP) Instituto de Química Departamento de Química Analítica Cidade Universitária Zeferino Vaz s/n, CEP 13083-970 Campinas Brazil
| |
Collapse
|
8
|
Recent progress on hollow porous molecular imprinted polymers as sorbents of environmental samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Synthesis and performance of cross-linked poly(vinylpyridine-co-protoporphyrin) for effective cobalt determination using a micro-packed column hyphenated system coupled to FAAS. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Villa CC, Sánchez LT, Valencia GA, Ahmed S, Gutiérrez TJ. Molecularly imprinted polymers for food applications: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Jia S, Zhou Y, Li J, Gong B, Ma S, Ou J. Highly selective enrichment and direct determination of imazethapyr residues from milk using magnetic solid-phase extraction based on restricted-access molecularly imprinted polymers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:426-435. [PMID: 33427265 DOI: 10.1039/d0ay02116d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Restricted access media magnetic molecularly imprinted polymers (RAM-MMIPs) were prepared as magnetic solid phase extraction (M-SPE) material by reversible addition fragmentation chain transfer (RAFT) technique. The resulting RAM-MMIPs had a uniform, imprinted, hydrophilic layer (63 nm), good binding capacity (34.85 mg g-1) and satisfactory selectivity. In addition, these RAM-MMIPs had a robust ability to eliminate the interference of protein macromolecules. These RAM-MMIPs were then coupled with HPLC/UV to identify imazethapyr (IM) residues in untreated milk samples. Several major factors would affect M-SPE extraction efficiency, such as the amount of RAM-MMIPs, pH, extraction time of the sample solution, and the volume ratio of the elution solvent. Under the optimal conditions, the developed method had good linearity (R2 > 0.9993), low detection limit (2.13 μg L-1), and low quantitative limit (7.15 μg L-1). These results indicated this proposed approach is an efficient method for direct enrichment and detection of IM herbicides in milk and other biological samples.
Collapse
Affiliation(s)
- Shicong Jia
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, P. R. China.
| | | | | | | | | | | |
Collapse
|
12
|
Tan P, Xu L, Wei XC, Huang HZ, Zhang DK, Zeng CJ, Geng FN, Bao XM, Hua H, Zhao JN. Rapid Screening and Quantitative Analysis of 74 Pesticide Residues in Herb by Retention Index Combined with GC-QQQ-MS/MS. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:8816854. [PMID: 33510929 PMCID: PMC7826212 DOI: 10.1155/2021/8816854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
In this research, a very practical QuEChERS-GC-MS/MS analytical approach for 74 pesticide residues in herb based on retention index was established. This novel analytical approach has two important technical advantages. One advantage is to quickly screen pesticide compounds in herbs without having to use a large number of pesticide standard substances at the beginning of the experiment. The other advantage is to assist in identifying the target pesticide compound accurately. A total of 74 kinds of pesticides were quickly prescreened in all chuanxiong rhizoma samples. The results showed that three kinds of pesticides were screened out in all the samples, including chlorpyrifos, fipronil, and procymidone, and the three pesticides were qualitatively and quantitatively determined. The RSD values for interday and intraday variation were acquired to evaluate the precision of the analytical approach, and the overall interday and intraday variations are not more than 1.97% and 3.82%, respectively. The variations of concentrations of the analyzed three pesticide compounds in sample CX16 are 0.74%-4.15%, indicating that the three pesticides in the sample solutions were stable in 48 h. The spiked recoveries of the three pesticides are 95.22%, 93.03%, and 94.31%, and the RSDs are less than ± 6.0%. The methodological verification results indicated the good reliability and accuracy of the new analytical method. This research work is a new application of retention index, and it will be a valuable tool to assist quickly and accurately in the qualitative and quantitative analysis of multipesticide residues in herbs.
Collapse
Affiliation(s)
- Peng Tan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Sichuan Academy of Traditional Chinese Medicine, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Chengdu 610041, China
| | - Li Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xi-Chuan Wei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hao-Zhou Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ding-Kun Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chen-Juan Zeng
- Sichuan Key Laboratory for Medicinal American Cockroach, Sichuan Good Doctor Panxi Pharmaceutical Co.,Ltd., Chengdu 610000, China
| | - Fu-Neng Geng
- Sichuan Key Laboratory for Medicinal American Cockroach, Sichuan Good Doctor Panxi Pharmaceutical Co.,Ltd., Chengdu 610000, China
| | - Xiao-Ming Bao
- Shimadzu Enterprise Management (China) Co.,Ltd., Chengdu 610023, China
| | - Hua Hua
- Sichuan Academy of Traditional Chinese Medicine, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Chengdu 610041, China
| | - Jun-Ning Zhao
- Sichuan Academy of Traditional Chinese Medicine, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Chengdu 610041, China
| |
Collapse
|