1
|
Zeng J, Fan X, Liu Y, Song Y, Cong P, Jiang X, Xu J, Xue C. Preparation, identification and application of lipid-Maillard reaction products during the drying process of squid fillets. Food Chem 2025; 479:143790. [PMID: 40086396 DOI: 10.1016/j.foodchem.2025.143790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/21/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Squid fillets are susceptible to lipid oxidation and Maillard reaction during the drying process. In this study, a novel additive agent lipid-Maillard reaction products (L-MRPs) was optimized by response surface methodology, then the main antioxidant components of L-MRPs were identified. Finally, L-MRPs was applied to the drying process of squid fillets (LMSF) by comparing with the control group. The results showed that the optimal reaction conditions were pH 10.90, lipid content 1.70 %, reaction temperature 104 °C, reaction time 105 min. The DPPH radical scavenging activity of final L-MRPs was 89.78 %. The main antioxidant components of L-MRPs were Fru-Arg (19.31 μg/g), pyrroles (762.04 μg/g) and other HCCs (293.97 μg/kg). Besides, compared to the control group, LMSF group showed lower thiobarbituric acid reactive substances value (4.58 mg/kg) and formaldehyde content (17.00 mg/kg), but more flavor compounds (455.78 μg/kg) and higher sensory scores. Finally, the potential antioxidant and flavor-enhancing mechanism of L-MRPs was proposed.
Collapse
Affiliation(s)
- Junpeng Zeng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China
| | - Xiaowei Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China
| | - Yanjun Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Peixu Cong
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Xiaoming Jiang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China; Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266235, China.
| |
Collapse
|
2
|
Nie CZ, Che J, Wang J, Huang XH, Qin L. Improvement of flavor and inhibition of accompanying harmful substances in roasted fish by different tea pre-marinades. Food Chem 2025; 479:143781. [PMID: 40086395 DOI: 10.1016/j.foodchem.2025.143781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Flavor compounds and harmful substances are critical factors influencing the quality and safety of roasted fish. This study study investigated the effects of six different tea pre-marinades on the flavor and the formation of harmful compounds in roasted fish. The results indicated that pre-marination with tea significantly improved the flavor of the roasted fish. The volatile compounds in the roasted fish increased notably after the fish was marinated with tea, including aldehydes such as hexanal, ketones such as heptan-2-one, and pyrazines. Additionally, the content of free amino acids was significantly elevated (P < 0.05). Furthermore, pre-marination with green, black, and oolong teas effectively reduces harmful substances, such as acrylamide, heterocyclic amines, and polycyclic aromatic hydrocarbons, in roasted fish. This study provides a theoretical foundation for utilizing plant extracts to produce high-quality and safe roasted fish products.
Collapse
Affiliation(s)
- Cheng-Zhen Nie
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Jing Che
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Ji Wang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xu-Hui Huang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Lei Qin
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Lee D, Lee S, Jo C. Application of Animal Resources into the Maillard Reaction Model System to Improve Meat Flavor. Food Sci Anim Resour 2025; 45:303-327. [PMID: 39840239 PMCID: PMC11743841 DOI: 10.5851/kosfa.2024.e133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/18/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025] Open
Abstract
Simulating meat flavor via Maillard reaction model systems that contain a mixture of amino acids and reducing sugars is an effective approach to understanding the reaction mechanism of the flavor precursors. Notably, animal resources such as fish, beef, chicken, pork hydrolysates, and fats are excellent precursors in promoting favorable meaty and roasted flavors and umami tastes of Maillard reaction products. The experimental conditions and related factors of the model systems for sensory enhancements, debittering, and off-flavor reduction with meat and by-products are summarized in this review. The review also highlights the flavor precursors in the animal resources and their participation in the Maillard reaction. This review provides a basis for a better understanding of the model systems, especially those prepared with animal resources.
Collapse
Affiliation(s)
- Dongheon Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Seokjun Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
4
|
Prajapati P, Garg M, Singh N, Chopra R, Mittal A, Sabharwal PK. Transforming plant proteins into plant-based meat alternatives: challenges and future scope. Food Sci Biotechnol 2024; 33:3423-3443. [PMID: 39493399 PMCID: PMC11525364 DOI: 10.1007/s10068-024-01683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 11/05/2024] Open
Abstract
The global transition towards sustainable living has led to a growing demand for innovative food products that enhance environmental sustainability. Traditional meat production is known for its high energy consumption and significant carbon emissions, necessitating alternative approaches. Plant-based meat (PBM) offers a promising solution to reduce the ecological footprint of animal agriculture. This paper examines various challenges in PBM development, including nutritional equivalence, industrial scalability, organoleptic properties, and digestibility. Addressing these challenges requires interdisciplinary collaboration to ensure consumer acceptance, regulatory compliance, and environmental stewardship. Advanced technologies like nanotechnology, fermentation, and enzymatic hydrolysis, along with automation and repurposing cattle farms, offer solutions to enhance PBM's quality and production efficiency. By integrating these innovations, PBM has the potential to revolutionize the food industry, offering sustainable and nutritious alternatives that meet global dietary needs while significantly reducing environmental impact. Graphical abstract
Collapse
Affiliation(s)
- Priyanka Prajapati
- Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Meenakshi Garg
- Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Neha Singh
- Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Rajni Chopra
- National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana India
| | - Avneesh Mittal
- Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Prabhjot K. Sabharwal
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India
| |
Collapse
|
5
|
Lu JW, Lin CY, Fang M. Roasted fish reaction flavor by plant-based ingredients. Food Chem 2024; 460:140492. [PMID: 39032289 DOI: 10.1016/j.foodchem.2024.140492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Currently, there are no commercially available plant-based products that replicate the flavor profile of roasted fish. As the increasing demand of plant-based meat in the recent years, the exploration of plant-based meat flavors holds significant importance. This study revealed that a blend of lysine, leucine, glutamic acid, alanine, cysteine, glucose, and algae oil (rich in docosahexaenoic acid, DHA), when subjected to heating in low pH, generated the distinct flavor like roasted mackerel. The precursor, mechanism and flavor note were investigated. Key aromatic compounds such as isovaleric acid, octanoic acid, 1,5-octadien-3-one, 2,4-octadienal, 2-octenal, furaneol, 2,5-furandicarboxaldehyde, and 2-pentenylfuran were found as important contributors in the reaction flavor model. These compounds primarily derived from heat-induced lipid oxidation, lipid degradation, and Maillard reaction of these plant-based ingredients. The development of plant-based meat flavors is crucial for promoting the substantial progress of plant-based meat products.
Collapse
Affiliation(s)
- Jing-Wen Lu
- Department of Food Science, Collage of Life Science, National Taiwan Ocean University. 2, Beining Rd., Keelung City, Taiwan..
| | - Chun-Yu Lin
- Department of Food Science, Collage of Life Science, National Taiwan Ocean University. 2, Beining Rd., Keelung City, Taiwan
| | - Mingchih Fang
- Department of Food Science, Collage of Life Science, National Taiwan Ocean University. 2, Beining Rd., Keelung City, Taiwan..
| |
Collapse
|
6
|
Li Y, Li H, Zhang G, Liu J, Drolma D, Ye B, Yang M. Boosted Meat Flavor by the Metabolomic Effects of Nile Tilapia Dietary Inclusion of Zophobas atratus Larval Meal. FRONT BIOSCI-LANDMRK 2024; 29:382. [PMID: 39614443 DOI: 10.31083/j.fbl2911382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Zophobas atratus larval meal (ZLM) is a high-quality feed supplement with potential activities that can improve fish growth performance and promote meat quality. However, there have been limited recent studies investigating the metabolic effects of ZLM. Therefore, this study aims to uncover the metabolomic mechanism through which ZLM improves tilapia meat flavor using metabolomic strategies. METHOD In this study, soybean meal in the basal diets was replaced with 15%, 30%, or 60% ZLM, where anti-nutrient factors were destroyed by high temperature treatment. After being fed these ZLM supplements for 30 days, dorsal muscles were collected from tilapia for meat sensory evaluation tests. Liver samples were also collected for metabolomic analysis using the gas chromatography-mass spectrometry (GC-MS) platform and combined with biochemical assays to verify metabolism-related enzyme activities and reveal crucial metabolic pathways and critical biomarkers associated with ZLM's ability to improve meat flavor. RESULTS In tilapia livers, ZLM enhanced the activity of enzymes involved in energy metabolism including succinate dehydrogenase (SDH), pyruvate dehydrogenase (PDH), α-ketoglutarate dehydrogenase (α-KGDH), NADP-malate dehydrogenase (NAD-MDH) and mitochondrial isocitrate dehydrogenase (ICDHm). This resulted in increased levels of reduced nicotinamide adenine dinucleotide (NADH), acetyl CoA and ATP which led to accumulation of flavor fatty acids such as arachidonic acid, linoleic acid (9,12-Octadecadienoic acid), linolenic acid (9,12,15-Octadecatrienoic acid) and oleic acid (9-Octadecenoic acid). Additionally, there was an increase in flavor nucleotides like guanosine adenosine-5'-monophosphate and uridine-5'-monophosphate while off-flavor metabolites like inosine and hypoxanthine decreased. Furthermore, beneficial metabolomic responses led to a decrease in off-flavor metabolites such as 2-methylisoborneol trimethylamine and geosmin while increasing umami metabolites like 2-methyl-3-furanthiol and nonanal. CONCLUSIONS This metabolomic study demonstrates that inclusion of ZLM diets enhances the flavor profile of tilapia dorsal muscle. The accumulation of flavor compounds, coupled with a reduction in earthy taste and off-flavor metabolites, contributes to an improved meat flavor and freshness. Additionally, there is an increase in the levels of flavor-related amino acids and nucleotides. These previously unidentified metabolic effects highlight the potential significance of ZLM as a dietary supplement for enhancing the biosynthesis of flavor metabolites in tilapia.
Collapse
Affiliation(s)
- Yanfeng Li
- Science & Technology Park, Xizang Key Laboratory of Veterinary Drug, Xizang Vocational Technical College, 850030 Lasa, Xizang, China
- Institute of Vegetables, Institute of Food Science and Technology, Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, 850000 Lasa, Xizang, China
| | - Haozheng Li
- Science & Technology Park, Xizang Key Laboratory of Veterinary Drug, Xizang Vocational Technical College, 850030 Lasa, Xizang, China
| | - Ge Zhang
- Science & Technology Park, Xizang Key Laboratory of Veterinary Drug, Xizang Vocational Technical College, 850030 Lasa, Xizang, China
| | - Jiale Liu
- Institute of Vegetables, Institute of Food Science and Technology, Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, 850000 Lasa, Xizang, China
| | - Dawa Drolma
- Institute of Vegetables, Institute of Food Science and Technology, Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, 850000 Lasa, Xizang, China
| | - Bo Ye
- College of Resources and Environment, Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, 510225 Guangzhou, Guangdong, China
| | - Manjun Yang
- Science & Technology Park, Xizang Key Laboratory of Veterinary Drug, Xizang Vocational Technical College, 850030 Lasa, Xizang, China
- School of Life Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Yin C, Zhang C, Xu Y, Su L. Effects of Different Roasting Methods on the Quality of Roasted Large Yellow Croaker ( Larimichthys crocea). Foods 2024; 13:2772. [PMID: 39272537 PMCID: PMC11394897 DOI: 10.3390/foods13172772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
This study investigated the effects of different roasting methods (45% light wave and 55% microwave roasting, 70% light wave and 30% microwave roasting, 100% light wave roasting, far-infrared roasting, and oven roasting) on the quality of roasted large yellow croaker. The quality was evaluated using sensory evaluation, texture characteristics, color differences, moisture content, and volatile flavor substances. In this context, different roasting methods can affect the color, taste, and flavor of large yellow croaker fish, significantly improving the overall acceptance of roasted fish. The results showed that after 45% light wave and 55% microwave roasting, the elasticity of fish meat was maintained, the hardness of fish meat was reduced, the moisture content and distribution were changed, and the taste was the best. Far-infrared roasting and 45% light wave and 55% microwave roasting had a significant effect on the color of large yellow croaker samples and improved the sensory evaluation score. Forty-six volatile compounds were detected using gas chromatography-mass spectrometry. After roasting, the oxidation and Maillard reactions of lipids and proteins were increased, with the 45% light wave and 55% microwave roasting giving the highest variety of volatile flavor substance products.
Collapse
Affiliation(s)
- Chenjing Yin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Chao Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Yangli Xu
- Wenzhou Academy of Agricultural Science, Wenzhou Characteristic Food Resources Engineering and Technology Research Center, Wenzhou 325006, China
| | - Laijin Su
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
8
|
de Sousa Fontes VM, de Sousa Galvão M, Moreira de Carvalho L, do Nascimento Guedes FL, Dos Santos Lima M, Alencar Bezerra TK, Madruga MS. Thiamine, cysteine and xylose added to the Maillard reaction of goat protein hydrolysate potentiates the formation of meat flavoring compounds. Food Chem 2024; 445:138398. [PMID: 38394903 DOI: 10.1016/j.foodchem.2024.138398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/16/2023] [Accepted: 01/06/2024] [Indexed: 02/25/2024]
Abstract
A protein hydrolysate of goat viscera added with xylose, cysteine, and thiamine under different pH was used to prepare a meat flavoring. Goat viscera hydrolysate and flavoring were subjected to analysis of physicochemical characteristics, amino acid profile, sugars, fatty acids, and volatile profile. Meat aroma characteristics were initiated in the hydrolysate, in which Strecker's pyrazines and aldehydes were identified, which also had fatty acids and amino acids available for the formation of 96 volatile compounds in the flavorings via lipid manipulation, Maillard occurrence, Strecker manipulation and interactions among these means. Maillard reaction products with intense meat aroma, such as 2-methyl-3-furanthiol, 2-furfurylthiol and, bis(2-methyl-3-furyl) disulfide were isolated only in the flavoring at pH 4. In contrast, the flavoring at pH 6 showed a higher concentration than all the other compounds, providing a lower meat characteristic, but an intense sweet, fatty and goat aroma.
Collapse
Affiliation(s)
| | - Mércia de Sousa Galvão
- Departament of Food Engineering, Center for Technology, Federal University of Paraiba, Campus I, 58051-900, Brazil
| | - Leila Moreira de Carvalho
- Departament of Food Engineering, Center for Technology, Federal University of Paraiba, Campus I, 58051-900, Brazil
| | | | - Marcos Dos Santos Lima
- Federal Institute of Education Science and Technology Sertão Pernambucano, Department of Food Technology, Campus Petrolina, Rod. BR 407 Km 08, S/N, Jardim São Paulo, Petrolina, Pernambuco CEP 56314-520, Brazil.
| | | | - Marta Suely Madruga
- Departament of Food Engineering, Center for Technology, Federal University of Paraiba, Campus I, 58051-900, Brazil.
| |
Collapse
|
9
|
Xiong K, Guo H, Xue S, Liu M, Dai Y, Lin X, Zhang S. Production optimization of food functional factor ergothioneine in wild-type red yeast Rhodotorula mucilaginosa DL-X01. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4050-4057. [PMID: 38353320 DOI: 10.1002/jsfa.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Ergothioneine (EGT) is a high-value food functional factor that cannot be synthesized by humans and other vertebrates, and the low yield limits its application. RESULTS In this study, the optimal fermentation temperature, fermentation time, initial pH, inoculum age, and inoculation ratio on EGT biosynthesis of Rhodotorula mucilaginosa DL-X01 were optimized. In addition, the effects of three key precursor substances - histidine, methionine, and cysteine - on fungal EGT synthesis were verified. The optimal conditions were further obtained by response surface optimization. The EGT yield of R. mucilaginosa DL-X01 under optimal fermentation conditions reached 64.48 ± 2.30 mg L-1 at shake flask fermentation level. Finally, the yield was increased to 339.08 ± 3.31 mg L-1 (intracellular) by fed-batch fermentation in a 5 L bioreactor. CONCLUSION To the best of our knowledge, this is the highest EGT yield ever reported in non-recombinant strains. The fermentation strategy described in this study will promote the efficient biosynthesis of EGT in red yeast and its sustainable production in the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kexin Xiong
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Hui Guo
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Siyu Xue
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Mengyang Liu
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yiwei Dai
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xinping Lin
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Sufang Zhang
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
10
|
Qiu D, Gan R, Feng Q, Shang W, He Y, Li C, Shen X, Li Y. Flavor formation of tilapia byproduct hydrolysates in Maillard reaction. J Food Sci 2024; 89:1554-1566. [PMID: 38317380 DOI: 10.1111/1750-3841.16956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/07/2024]
Abstract
The Maillard reaction (MR) of tilapia byproduct protein hydrolysates was investigated for the use of byproduct protein as a food ingredient and to mask its fishy odor and bitter flavor. The flavor differences in tilapia byproduct hydrolysates before and after the MR were analyzed to explore the key flavor precursor peptides and amino acids involved in MR. The results suggested that eight key volatile substances, including 2,5-dimethylpyrazine, 2-pentylfuran, hexanal, octanal, nonanal, (E)-2-decenal, decanal, and 1-octen-3-ol contributed most to the MR products group (ROAV > 1). Ten volatile compounds, including 1-octen-3-ol, hexanal, 2-pentylfuran, 2,5-dimethylpyrazine, methyl decanoate, and 2-octylfuran, were the flavor markers that distinguished the different samples (VIP > 1). The four most consumed peptides were VAPEEHPTL, GPIGPRGPAG, KSADDIKKAF, and VWEGQNIVK. Umami peptides and bitter free amino acids (FAAs) were the key flavor precursor peptide and FAAs, respectively. Overall, the hydrolysates of tilapia byproducts with flavor improved by MR are a promising strategy for the production of flavorings.
Collapse
Affiliation(s)
- Dan Qiu
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Ruiqing Gan
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Qiaohui Feng
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Wenting Shang
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Yanfu He
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou, Hainan, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, Hainan, China
| | - Chuan Li
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou, Hainan, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, Hainan, China
| | - Xuanri Shen
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou, Hainan, China
| | - Yongcheng Li
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou, Hainan, China
| |
Collapse
|
11
|
Jeong H, Yoon S, Yang NE, Youn MY, Hong SJ, Jo SM, Kim KS, Jeong EJ, Kim HW, Shin EC. Chemometric approach for an application of Atlantic salmons ( Oncorhynchus keta) by-product for potential food sources. Food Sci Biotechnol 2024; 33:855-876. [PMID: 38371683 PMCID: PMC10866838 DOI: 10.1007/s10068-023-01400-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/13/2023] [Accepted: 07/24/2023] [Indexed: 02/20/2024] Open
Abstract
This study identified the aroma profile of salmon by-product for high utilization of by-products, including hydrolysates of head, frame, and skin were treated with reducing sugars and thermal processing. Electronic nose (E-nose) and gas chromatography-mass spectrometry (GC-MS) coupled with gas chromatography-olfactometry (GC-O) were used to analyzed the aroma profile. A total of 140 and 90 volatile compounds were detected through E-nose and GC-MS respectively, and the main volatile compounds were aldehydes. A total of 23 odor active compounds were recognized using GC-O, and 3-methyl-butanal, heptanal, benzaldehyde, octanal, furfural, and methoxy-phenyl-oxime were identified as the aroma of salmon. Using multivariate analysis, the pattern between the pretreated samples and aroma profiles was confirmed, and there were clear separations among the samples. The results of this study provide the aroma profile of salmon by-products and are expected salmon by-products to be used as a potential food source.
Collapse
Affiliation(s)
- Hyangyeon Jeong
- Department of GreenBio Science/Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju, 52725 Republic of Korea
| | - Sojeong Yoon
- Department of GreenBio Science/Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju, 52725 Republic of Korea
| | - Na-Eun Yang
- Department of Animal Science & Biotechnology, Gyeongsang National University, Jinju, 52725 Republic of Korea
| | - Moon Yeon Youn
- Department of GreenBio Science/Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju, 52725 Republic of Korea
| | - Seong Jun Hong
- Department of GreenBio Science/Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju, 52725 Republic of Korea
| | - Seong Min Jo
- Department of GreenBio Science/Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju, 52725 Republic of Korea
| | - Kyeong Soo Kim
- Department of Pharmaceutical Engineering, Gyeongsang National University, Jinju, 52725 Republic of Korea
| | - Eun Ju Jeong
- Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju, 52725 Republic of Korea
| | - Hyun-Wook Kim
- Department of Animal Science & Biotechnology, Gyeongsang National University, Jinju, 52725 Republic of Korea
| | - Eui-Cheol Shin
- Department of GreenBio Science/Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju, 52725 Republic of Korea
| |
Collapse
|
12
|
Zhang J, Rui C, Jia C. An interpenetrating polymer networks based on polydivinylbenzene/aminated polyglycidyl methacrylate with better decolorization performance toward reducing sugar solution. Food Chem 2024; 434:137483. [PMID: 37722338 DOI: 10.1016/j.foodchem.2023.137483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 08/20/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
The separation of valuable sugar components from a xylose mother liquor (XML) requires a pre-decolorization over a resin, however the market-available resins show a low performance. To overcome this drawback, an interpenetrating polymer network (IPN) resin was designed for efficiently removing the non-sugar impurities from an XML. The prepared IPN resin showed good decolorization performance for the XML, and the decolorization effect of the XML on the resin modified with a short-chain amination reagent was better. The adsorption capacity of the resin for phenols was significantly improved after an amination-modification, but that for furfural remained constant. The theoretical study confirmed that good decolorization effect of the XML on that resin was mainly ascribed to the synergistic action of adsorption forces, such as π-π stacking and hydrogen bonding.
Collapse
Affiliation(s)
- Junwei Zhang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Changchun Rui
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Caijing Jia
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Xia X, Li J, Liang R, Li Y, Ma X, Yang Y, Lozano-Ojalvo D. Effects of unfolding treatment assisted glycation on the IgE/IgG binding capacity and antioxidant activity of ovomucoid. Food Funct 2024; 15:196-207. [PMID: 38047408 DOI: 10.1039/d3fo04035f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Ovomucoid is the immune-dominant allergen in the egg white of hens. Due to its structure based on nine disulfide bonds as well as its resistance to heat and enzymatic hydrolysis, the allergenicity of this food protein is difficult to decrease by technological processes. We sought to reduce its allergenicity through the Maillard reaction. The unfolding of ovomucoid with L-cysteine-mediated reduction was used to increase accessibility to conformational and linear epitopes by modifying the secondary and tertiary structures of the allergen. Glycation with different saccharides revealed the beneficial effect of maltose glycation on the IgG-binding capacity reduction. By determining the better glycation conditions of unfolded ovomucoid, we produced ovomucoid with reduced IgE binding capacity due to the glycation sites (K17, K112, K129, and K164) on epitopes. Moreover, after simulated infant and adult gastrointestinal digestion, the unfolded plus glycated ovomucoid showed higher ABTS˙+ scavenging activity, O2˙- scavenging activity, ˙OH scavenging activity, Fe2+ chelating activity, and a FRAP value; in particular, for ˙OH scavenging activity, there was a sharp increase of more than 100%.
Collapse
Affiliation(s)
- Xian Xia
- School of Public Health, Zunyi Medical University, Zunyi 563000, China.
| | - Jiangdong Li
- School of Public Health, Zunyi Medical University, Zunyi 563000, China.
| | - Rui Liang
- School of Public Health, Zunyi Medical University, Zunyi 563000, China.
| | - Yi Li
- School of Public Health, Zunyi Medical University, Zunyi 563000, China.
| | - Xiaojuan Ma
- School of Public Health, Zunyi Medical University, Zunyi 563000, China.
- Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi 563000, China
| | - Ying Yang
- Department of Dermatology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Daniel Lozano-Ojalvo
- Instituto de Investigaciónen Ciencias de la Alimentación (CIAL, CSIC), Madrid 28049, Spain
| |
Collapse
|
14
|
Ding Y, Yan C, Dai W, Wang Y, Liu S, Zheng R, Zhou X. Flavor improving effects of cysteine in xylose-glycine-fish waste protein hydrolysates (FPHs) Maillard reaction system. BIORESOUR BIOPROCESS 2023; 10:95. [PMID: 38647832 PMCID: PMC10992153 DOI: 10.1186/s40643-023-00714-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/07/2023] [Indexed: 04/25/2024] Open
Abstract
A promising way to utilize fish by-products is to develop hydrolysis of fish proteins with enzymes. The obtained fish protein hydrolysates (FPHs) are rich in peptides and amino acids, but bitterness and aroma defects impede further utilization of FPHs. The present study adopted Maillard reaction to improve FPHs' flavor and illustrated the role of cysteine in this system. We investigated the impact of cysteine (0, 0.25%, 0.5%, 0.75%, and 1%) on the browning intensity, free amino acids (FAAs), molecular weight distribution, structure of MRPs, volatile compounds changes and organoleptic characteristics of xylose-glycine-FPHs Maillard reaction systems. Results showed that the addition of cysteine lowered the browning degree of Maillard reaction products (MRPs) by inhibiting the cross-linking of small peptides and reducing the production of melanin. GC-MS and GC-IMS analysis indicated that cysteine inhibited the formation of furans and nitrogen-containing compounds and facilitated the formation of sulfur-containing compounds contributing to the meaty flavor. Sensory analysis revealed that 0.25-0.75% range of cysteine increased the meaty, caramel, umami, mouthfulness and salty notes, and caused a decrease in bitter taste of the MRPs as confirmed by GC-MS. A highly significant correlation between the organoleptic characteristics and physicochemical indicators of MRPs was found by Mantel test. These results elucidated the influence of cysteine on the formation of Maillard reaction products and will help improve the flavor profile of meat flavorings.
Collapse
Affiliation(s)
- Yicheng Ding
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Chen Yan
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Wangli Dai
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yanbo Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Shulai Liu
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Renchao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Xuxia Zhou
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
15
|
Zhou Y, Zhang Y, Hong H, Luo Y, Li B, Tan Y. Mastering the art of taming: Reducing bitterness in fish by-products derived peptides. Food Res Int 2023; 173:113241. [PMID: 37803554 DOI: 10.1016/j.foodres.2023.113241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 10/08/2023]
Abstract
Processed fish by-products are valuable sources of peptides due to their high protein content. However, the bitterness of these peptides can limit their use. This review outlines the most recent advancements and information regarding the reduction of bitterness in fish by-products derived peptides. The sources and factors influencing bitterness, the transduction mechanisms involved, and strategies for reducing bitterness are highlighted. Bitterness in peptides is mainly influenced by the source, preparation method, presence of hydrophobic amino acid groups, binding to bitter receptors, and amino acid sequence. The most widely utilized techniques for eliminating bitterness or enhancing taste include the Maillard reaction, encapsulation, seperating undesirable components, and bitter-blockers. Finally, a summary of the current challenges and future prospects in the domain of fish by-products derived peptides is given. Despite some limitations, such as residual bitterness and limited industrial application, there is a need for further research to reduce the bitterness of fish by-products derived peptides. To achieve this goal, future studies should focus on the technology of fish by-products derived peptide bitterness diminishment, with the aim of producing high-quality products that meet consumer expectations.
Collapse
Affiliation(s)
- Yongjie Zhou
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yan Zhang
- Experimental Seafood Processing Laboratory, Coastal Research and Extension Center, Mississippi State University, Pascagoula, MS 39567, USA
| | - Hui Hong
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bo Li
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
16
|
Li K, Wang J, Zhuang Y, Yuan G, Li Y, Zhu X. Glucose-Histidine Heyns compound: Preparation, characterization and fragrance enhancement. Carbohydr Res 2023; 532:108922. [PMID: 37573726 DOI: 10.1016/j.carres.2023.108922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
N-(2-Deoxy-D-glucos-2-yl)-L-histidine (Glu-His), one of Heyns rearrangement products (HRPs), was prepared by condensation, dehydration and rearrangement using l-Histidine and d-Fructose as raw materials with methanol as solvent. The response surface method (RSM) was used to improve yield of product and the optimal reaction condition was as following: the original ratio of Fru:His was 1.2:1 and the temperature and time of reaction was 73.2 °C and 4.7 h, and the yield of final product was 74.10% with the purity of 99.7%. The structure of product was identified by IR, NMR and conformed as C12H19N3O7 (317.1 Da) by high-resolution mass spectrometry (HRMS) and UPLC-MS/MS. The pyrolysis behavior of Glu-His showed that its initial pyrolysis temperature was 145.2 °C and the total weight loss reached 70.61% at 800 °C. The number of pyrolysis products increased with the increase of temperature, and the main pyrolysis products were pyrans, furans, pyrazines, pyrroles, pyridines, indoles and etc. with burnt-sweet, baking, nutty, sweet and floral aroma features. At last, the fragrance enhancement effect of Glu-His in the preparation of reconstructed tobacco stem (RTS) was investigated and the result of sensory evaluation showed that the smoke of RTS cigarettes brought about more sweet and moist, less irritation, better flavor and comfort with the addition of Glu-His (0.25%, w/w).
Collapse
Affiliation(s)
- Kuan Li
- Research Center of Tobacco and Health, University of Science and Technology of China, Hefei, 230052, China
| | - Jinling Wang
- Center of Technology, China Tobacco Jiangsu Industrial Corporation, Nanjing, 210019, China.
| | - Yadong Zhuang
- Center of Technology, China Tobacco Jiangsu Industrial Corporation, Nanjing, 210019, China
| | - Guangxiang Yuan
- Jiangsu Xinyuan Reconstituted Tobacco Co., Ltd., Huaian, 223002, China
| | - Yuxiu Li
- Research Center of Tobacco and Health, University of Science and Technology of China, Hefei, 230052, China
| | - Xiaolan Zhu
- Research Center of Tobacco and Health, University of Science and Technology of China, Hefei, 230052, China.
| |
Collapse
|
17
|
Xiang D, Li P, Gong R, Sun Y, Chen X, Wei H, Xu Y. Quantification and Distribution of Thiols in Fermented Grains of Sauce-Aroma Baijiu Production Process. Foods 2023; 12:2658. [PMID: 37509751 PMCID: PMC10378441 DOI: 10.3390/foods12142658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 07/30/2023] Open
Abstract
Five volatile thiol compounds (methanethiol, ethanethiol, 2-mercapto-1-ethanol, 2-furfurylthiol, and 2-methyl-3-furanethiol) in fermented grains of sauce-aroma baijiu were determined using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The samples were pre-treated using a modified QuEChERS method. 4,4'-Dithiodipyridine (DTDP) derivatization reaction improved the detectability and stability of volatile thiol compounds. From the end of the first round to the end of the seventh round of fermentation and different fermentation states from the fifth round of fermented grains of the sauce-aroma baijiu production process were analyzed. The results showed that the concentrations of methanethiol (67.64-205.37 μg/kg), ethanethiol (1.22-1.76 μg/kg), 2-furfurylthiol (0.51-3.03 μg/kg), and 2-methyl-3-furanthiol (1.70-12.74 μg/kg) were increased with the number of fermentation rounds. Methanethiol, 2-furfurylthiol, and 2-methyl-3-furanthiol increased during fermentation and distillation in the fifth round. Fermentation and distillation were important stages for their widespread production. After distillation, there were still a large number of volatile thiol compounds in the fermented grains. The thermal reaction was of great significance in the formation of these thiols.
Collapse
Affiliation(s)
- Danhua Xiang
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214100, China
| | - Peiqi Li
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214100, China
| | - Rong Gong
- Guizhou Jinsha Liquor Wine Cellar Co., Ltd., Bijie 551800, China
| | - Yanbin Sun
- Guizhou Jinsha Liquor Wine Cellar Co., Ltd., Bijie 551800, China
| | - Xiangmei Chen
- Guizhou Jinsha Liquor Wine Cellar Co., Ltd., Bijie 551800, China
| | - Heli Wei
- Guizhou Jinsha Liquor Wine Cellar Co., Ltd., Bijie 551800, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214100, China
- Key Laboratory of Baijiu Supervision Technology for State Market Regulation, Chengdu 610097, China
| |
Collapse
|
18
|
Zhang G, Xiao P, Yuan M, Li Y, Xu Y, Li H, Sun J, Sun B. Roles of sulfur-containing compounds in fermented beverages with 2-furfurylthiol as a case example. Front Nutr 2023; 10:1196816. [PMID: 37457986 PMCID: PMC10348841 DOI: 10.3389/fnut.2023.1196816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/25/2023] [Indexed: 07/18/2023] Open
Abstract
Aroma is a critical component of the flavor and quality of beverages. Among the volatile chemicals responsible for fragrance perception, sulfur compounds are unique odorants due to their extremely low odor threshold. Although trace amounts of sulfur compounds can enhance the flavor profile of beverages, they can lead to off-odors. Sulfur compounds can be formed via Maillard reaction and microbial metabolism, imparting coffee aroma and altering the flavor of beverages. In order to increase the understanding of sulfur compounds in the field of food flavor, 2-furfurylthiol (FFT) was chosen as a representative to discuss the current status of their generation, sensory impact, enrichment, analytical methods, formation mechanisms, aroma deterioration, and aroma regulation. FFT is comprehensively reviewed, and the main beverages of interest are typically baijiu, beer, wine, and coffee. Challenges and recommendations for FFT are also discussed, including analytical methods and mechanisms of formation, interactions between FFT and other compounds, and the development of specific materials to extend the duration of aroma after release.
Collapse
Affiliation(s)
- Guihu Zhang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Peng Xiao
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Mengmeng Yuan
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Youming Li
- Inner Mongolia Taibus Banner Grassland Brewing Co., Ltd., Xilin Gol League, China
| | - Youqiang Xu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Hehe Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Jinyuan Sun
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Quality and Safety, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
19
|
Gu M, Li C, Chen L, Li S, Xiao N, Zhang D, Zheng X. Insight from untargeted metabolomics: Revealing the potential marker compounds changes in refrigerated pork based on random forests machine learning algorithm. Food Chem 2023; 424:136341. [PMID: 37216778 DOI: 10.1016/j.foodchem.2023.136341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/16/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
Data on changes in non-volatile components and metabolic pathways during pork storage were inadequately investigated. Herein, an untargeted metabolomics coupled with random forests machine learning algorithm was proposed to identify the potential marker compounds and their effects on non-volatile production during pork storage by ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS/MS). A total of 873 differential metabolites were identified based on analysis of variance (ANOVA). Bioinformatics analysis shows that the key metabolic pathways for protein degradation and amino acid transport are amino acid metabolism and nucleotide metabolism. Finally, 40 potential marker compounds were screened using the random forest regression model, innovatively proposing the key role of pentose-related metabolism in pork spoilage. Multiple linear regression analysis revealed that d-xylose, xanthine, and pyruvaldehyde could be key marker compounds related to the freshness of refrigerated pork. Therefore, this study could provide new ideas for the identification of marker compounds in refrigerated pork.
Collapse
Affiliation(s)
- Minghui Gu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Cheng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shaobo Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Naiyu Xiao
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Xiaochun Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
20
|
The potential meat flavoring generated from Maillard reaction products of wheat gluten protein hydrolysates-xylose: Impacts of different thermal treatment temperatures on flavor. Food Res Int 2023; 165:112512. [PMID: 36869515 DOI: 10.1016/j.foodres.2023.112512] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/11/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Wheat gluten protein hydrolysates were prepared by Flavourzyme, followed by xylose-induced Maillard reaction at different temperatures (80 °C, 100 °C and 120 °C). The MRPs were subjected to analysis of physicochemical characteristics, taste profile and volatile compounds. The results demonstrated that UV absorption and fluorescence intensity of MRPs significantly increased at 120 °C, suggesting formation of a large amount of Maillard reaction intermediates. Thermal degradation and cross-linking simultaneously occurred during Maillard reaction, while thermal degradation of MRPs played a more predominant role at 120 °C. MRPs exhibited high umami and low bitter taste at 120 °C, accompanied by the high content of umami amino acids and low content of bitter amino acids. Furans and furanthiols with pronounced meaty flavor served as the main volatile compounds in MRPs at 120 °C. Overall, high temperature-induced Maillard reaction of wheat gluten protein hydrolysates and xylose is a promising strategy for the generation of potential plant-based meat flavoring.
Collapse
|
21
|
Zhang Y, Zhang Y, Song H, Pan W, Chen W. The Fishy Off-Odor Removal and Umami Enhancing Effect of Enzymatic Hydrolysis of Fish By-Products by Proteases. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2023. [DOI: 10.1080/10498850.2023.2185846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Yuanyuan Zhang
- Laboratory of Molecular Sensory Science, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Yu Zhang
- Laboratory of Molecular Sensory Science, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Huanlu Song
- Laboratory of Molecular Sensory Science, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Wenqing Pan
- R & D, Flavor & Fragrance Engineering Technology Research Center of Hunan Province, Changde, Hunan Province, China
| | - Wanying Chen
- R & D, Flavor & Fragrance Engineering Technology Research Center of Hunan Province, Changde, Hunan Province, China
| |
Collapse
|
22
|
Liu L, Zhao Y, Lu S, Liu Y, Xu X, Zeng M. Metabolomics investigation on the volatile and non-volatile composition in enzymatic hydrolysates of Pacific oyster ( Crassostrea gigas). Food Chem X 2023; 17:100569. [PMID: 36845524 PMCID: PMC9945435 DOI: 10.1016/j.fochx.2023.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
To investigate the differences of volatile and non-volatile metabolites between oyster enzymatic hydrolysates and boiling concentrates, molecular sensory analysis and untargeted metabolomics were employed. "Grassy," "fruity," "oily/fatty," "fishy," and "metallic" were identified as sensory attributes used to evaluate different processed oyster homogenates. Sixty-nine and 42 volatiles were identified by gas chromatography-ion mobility spectrometry and gas chromatography-mass spectrometry, respectively. Pentanal, 1-penten-3-ol, hexanal, (E)-2-pentenal, heptanal, (E)-2-hexenal, 4-octanone, (E)-4-heptenal, 3-octanone, octanal, nonanal, 1-octen-3-ol, benzaldehyde, (E)-2-nonenal, and (E, Z)-2,6-nonadienal were detected as the key odorants (OAV > 1) after enzymatic hydrolysis. Hexanal, (E)-4-heptenal, and (E)-2-pentenal were significantly associated with off-odor, and 177 differential metabolites were classified. Aspartate, glutamine, alanine, and arginine were the key precursors affecting the flavor profile. Linking sensory descriptors to volatile and nonvolatile components of different processed oyster homogenates will provide information for the process and quality improvement of oyster products.
Collapse
Affiliation(s)
| | | | | | | | - Xinxing Xu
- Corresponding authors at: No.5 Yushan Road, Shinan District, Beijing 100083, China.
| | - Mingyong Zeng
- Corresponding authors at: No.5 Yushan Road, Shinan District, Beijing 100083, China.
| |
Collapse
|
23
|
Li Y, Jiang S, Zhu Y, Shi W, Zhang Y, Liu Y. Effect of different drying methods on the taste and volatile compounds, sensory characteristics of Takifugu obscurus. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
24
|
Zhang D, Ayed C, Fisk ID, Liu Y. Effect of cooking processes on tilapia aroma and potential umami perception. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
25
|
Zhou T, Xia X, Cui H, Hayat K, Zhang X, Ho CT. Competitive Formation of 2,3-Butanedione and Pyrazines through Intervention of Added Cysteine during Thermal Processing of Alanine-Xylose Amadori Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15202-15212. [PMID: 36444759 DOI: 10.1021/acs.jafc.2c07026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The intervention of cysteine (Cys) on the formation of 2,3-butanedione and pyrazines was evaluated during the thermal processing of the alanine-xylose Amadori compound (AX-ARP). With the involvement of Cys, the competitive formation of 2,3-butanedione and pyrazines was induced. The formation of 2,3-butanedione in the AX-ARP/Cys model was suppressed due to the inhibitory effect of the precursors of 2,3-butanedione like deoxypentosones, while the added Cys in the AX-ARP/Cys model competed with the recovered alanine (Ala) to capture glyoxal and methylglyoxal to make up for the absence of pyrazines in the AX-ARP model at an initial pH value of 7. The content of pyrazines increased from 0 up to 16.48 μg/L (120 °C, 120 min). Exogenous Cys itself showed lower reactivity with 2,3-butanedione through the Strecker degradation reaction; while the pH was increased to 8, the degradative products of Cys were facilitated to consume the residual 2,3-butanedione giving rise to the formation of 2,4,5-trimethylthiazole at 120 °C. It was the degradative products of Cys that accelerated the reaction for consumption of 2,3-butanedione rather than Cys itself. Additionally, the inhibitory effect of Cys on 2,3-butanedione formation was weakened under a basic condition, while the promotional effect on the formation of pyrazines was further boosted. With more Cys participating in the process of AX-ARP thermal degradation, the formation of 2,3-butanedione was further inhibited, while the yields of pyrazines were increased.
Collapse
Affiliation(s)
- Tong Zhou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Xue Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, United States
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
26
|
Liu S, Sun H, Ma G, Zhang T, Wang L, Pei H, Li X, Gao L. Insights into flavor and key influencing factors of Maillard reaction products: A recent update. Front Nutr 2022; 9:973677. [PMID: 36172529 PMCID: PMC9511141 DOI: 10.3389/fnut.2022.973677] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022] Open
Abstract
During food processing, especially heating, the flavor and color of food change to a great extent due to Maillard reaction (MR). MR is a natural process for improving the flavor in various model systems and food products. Maillard reaction Products (MRPs) serve as ideal materials for the production of diverse flavors, which ultimately improve the flavor or reduce the odor of raw materials. Due to the complexity of the reaction, MR is affected by various factors, such as protein source, hydrolysis conditions, polypeptide molecular weight, temperature, and pH. In the recent years, much emphasis is given on conditional MR that could be used in producing of flavor-enhancing peptides and other compounds to increase the consumer preference and acceptability of processed foods. Recent reviews have highlighted the effects of MR on the functional and biological properties, without elaborating the flavor compounds obtained by the MR. In this review, we have mainly introduced the Maillard reaction-derived flavors (MF), the main substances producing MF, and detection methods. Subsequently, the main factors influencing MF, from the selection of materials (sugar sources, protein sources, enzymatic hydrolysis methods, molecular weights of peptides) to the reaction conditions (temperature, pH), are also described. In addition, the existing adverse effects of MR on the biological properties of protein are also pointed out.
Collapse
|
27
|
Lu Y, Teo JN, Liu SQ. Fermented shellfish condiments: A comprehensive review. Compr Rev Food Sci Food Saf 2022; 21:4447-4477. [PMID: 36038528 DOI: 10.1111/1541-4337.13024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 01/28/2023]
Abstract
Fermented shellfish condiments are globally consumed especially among Asian countries. Condiments, commonly used as flavor enhancers, have unique sensory characteristics and are associated with umami and meaty aroma. The main reactions that occur during fermentation of shellfish include proteolysis by endogenous enzymes and microbial activities to produce peptides and amino acids. The actions of proteolytic enzymes and microorganisms (predominantly bacteria) are found to be largely responsible for the formation of taste and aroma compounds. This review elaborates different aspects of shellfish fermentation including classification, process, substrates, microbiota, changes in both physicochemical and biochemical components, alterations in nutritional composition, flavor characteristics and sensory profiles, and biological activities and their undesirable impacts on health. The characteristics of traditional shellfish production such as long duration and high salt concentration not only limit nutritional value but also inhibit the formation of toxic biogenic amines. In addition, this review article also covers novel bioprocesses such as low salt fermentation and use of novel starter cultures and/or novel enzymes to accelerate fermentation and produce shellfish condiments that are of better quality and safer for consumption. Practical Application: The review paper summarized the comprehensive information on shellfish fermentation to provide alternative strategies to produce shellfish comdiments that are of better quality and safer for consumption.
Collapse
Affiliation(s)
- Yuyun Lu
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - Jun Ning Teo
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - Shao Quan Liu
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
28
|
Ye Y, Ye S, Wanyan Z, Ping H, Xu Z, He S, Cao X, Chen X, Hu W, Wei Z. Producing beef flavors in hydrolyzed soybean meal-based Maillard reaction products participated with beef tallow hydrolysates. Food Chem 2022; 378:132119. [PMID: 35033715 DOI: 10.1016/j.foodchem.2022.132119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/18/2021] [Accepted: 01/07/2022] [Indexed: 11/04/2022]
Abstract
This work investigated the effect of oxidized beef tallow on the volatile compositions and sensory properties of soybean meal-based Maillard reaction products (MRPs). Various tallow oxidation methods included thermal treatment (TT), enzymatic hydrolysis (ET) and enzymatic hydrolysis combined with mild thermal (ETT) treatment. Results showed that all these oxidized tallow contained more types of volatile compounds than those of untreated tallow. Moreover, the composition of almost all types of volatile substances was greatly increased with the addition of the oxidized beef tallow into the hydrolyzed soybean meal-based Maillard reaction system. More importantly, the composition of oxygen-containing heterocycles (63.89 μg/mL), sulfur-containing compounds (76.64 μg/mL), and nitrogen-containing heterocycles (19.81 μg/mL) that contribute positively to sensory properties in ETT-MRPs was found to be the highest among all the MRPs. Correlation assessment revealed that ETT was closely related to the most typical volatile products and sensory attributes, indicating this approach can effectively enhance the sensory and flavor of hydrolyzed soybean meal derived MRPs.
Collapse
Affiliation(s)
- Yongkang Ye
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China; School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Shuangshuang Ye
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhangxiang Wanyan
- School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Hao Ping
- School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Zixun Xu
- School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Shudong He
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaodong Cao
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Xiangyang Chen
- School of Life and Environmental Sciences, Huangshan University, Huangshan 245041, China
| | - Wanwan Hu
- Huangshan Chaogang Food Co., Ltd, Huangshan 245000, China
| | - Zhaojun Wei
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
29
|
Shi C, Song W, Gao J, Yan S, Guo C, Zhang T. Enhanced production of cordycepic acid from Cordyceps cicadae isolated from a wild environment. Braz J Microbiol 2022; 53:673-688. [PMID: 35122655 PMCID: PMC9151976 DOI: 10.1007/s42770-022-00687-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/29/2022] [Indexed: 02/07/2023] Open
Abstract
Cordyceps acid is an active component of Cordyceps cicadae and has a variety of medicinal uses, including anti-tumor effects, the prevention of cerebral hemorrhaging and myocardial infarction, and the inhibition of a wide range of bacteria. The objectives of this study were to identify C. cicadae fungi and optimize the culture conditions to obtain a high yield of cordycepic acid. First, a wild C. cicadae was identified by morphological observation and rDNA sequence analysis. Secondly, the optimal fermentation conditions were determined using a single-factor method, a Plackett-Burman design, and a Box-Behnken response surface. Finally, using the yield of fruit bodies and the content of cordyceps acid as indices, combined with a single-factor experiment and a response surface design, the best combination of conditions for cultivation was determined. The results showed that the best combination was as follows: sucrose 2%, tryptone 2%, KH2PO4 0.4%, MgSO4·7H2O 0.4%, an initial pH of the fermentation liquid of 7.0, 5% inoculum, fermentation for 4.5 d, a ratio of medium to liquid of 1:1.7, illumination intensity 150 Lux, illumination time 15 h per day, and 70% humidity. The content of cordycepic acid in the fruiting bodies developed in cultivation was 2.07-fold higher than that in the wild C. cicadae. This study provides a theoretical basis for the large-scale cultivation of C. cicadae with a high concentration of cordycepic acid.
Collapse
Affiliation(s)
- Cuie Shi
- School of Biologic Engineering, Huainan Normal University, Huainan, 232038, Anhui, China
| | - Wenlong Song
- School of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Jian Gao
- School of Biologic Engineering, Huainan Normal University, Huainan, 232038, Anhui, China
| | - Shoubao Yan
- School of Biologic Engineering, Huainan Normal University, Huainan, 232038, Anhui, China.
| | - Chen Guo
- School of Biologic Engineering, Huainan Normal University, Huainan, 232038, Anhui, China
| | - Tengfei Zhang
- School of Biologic Engineering, Huainan Normal University, Huainan, 232038, Anhui, China
| |
Collapse
|
30
|
Effect of heat treatment on amino acids and volatile compounds of enzymatic pork trimmings hydrolysate supplemented with xylose and cysteine. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Li X, Liu SQ. Effect of thermal treatment on aroma compound formation in yeast fermented pork hydrolysate supplemented with xylose and cysteine. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1457-1465. [PMID: 34398982 DOI: 10.1002/jsfa.11480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The present study has revealed an innovative method of coupling enzyme hydrolysis, yeast fermentation and thermal treatment to transform pork trimmings into a seasoning product. The pork trimmings were first enzymatically hydrolysed and fermented into liquid pork hydrolysates, followed by adding xylose and cysteine, then heat treatment. RESULTS Approximately 28% of xylose and 7% of glucose were consumed, and amino acids increased by around 31% after thermal treatment. The heated yeast fermented pork hydrolysates possessed a characteristic 'savoury, roasted-meat and fruity sweet' aroma as a result of the formation of thermally induced sulfur-containing volatiles such as 2-furfurylthiol, as well as retention of yeast generated esters including isoamyl acetate and hexyl acetate. CONCLUSION The heat-treated fermented pork hydrolysates impart an attractive and innovative aroma because of yeast fermentation and heat treatment. The innovative heated fermented pork hydrolysates could be further processed into a nutritional and savoury pork broth and/or a meat sauce. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinzhi Li
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Shao-Quan Liu
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
32
|
Liang Y, Wang K, Yang Q, Zhang L, Shi C, Tavakoli S, Tan Y, Luo Y, Hong H. The antioxidant activities and flavor properties of glycated bighead carp meat hydrolysates produced with galactose and galacto-oligosaccharides. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Li X, Liu S. Modulation of aroma compounds in yeast and lactic acid bacterium co‐fermented pork hydrolysates by thermal treatment and addition of aroma precursors (cysteine and xylose). Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Xinzhi Li
- Department of Food Science and Technology National University of Singapore Science Drive 2 Singapore 117542 Singapore
| | - Shao‐Quan Liu
- Department of Food Science and Technology National University of Singapore Science Drive 2 Singapore 117542 Singapore
- National University of Singapore (Suzhou) Research Institute No. 377 Linquan Street, Suzhou Industrial Park Suzhou 215123 China
| |
Collapse
|
34
|
Maillard reaction of food-derived peptides as a potential route to generate meat flavor compounds: A review. Food Res Int 2022; 151:110823. [PMID: 34980374 DOI: 10.1016/j.foodres.2021.110823] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/27/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022]
Abstract
Plant-based meat analogues (PBMA) are promising foods to address the global imbalance between the supply and demand for meat products caused by the increasing environmental pressures and growing human population. Given that the flavor of PBMA plays a crucial role in consumer acceptance, imparting meat-like flavor is of great significance. As a natural approach to generate meat-like flavor, the Maillard reaction involving food-derived peptides could contribute to the required flavor compounds, which has promising applications in PBMA formulations. In this review, the precursors of meat-like flavor are summarized followed by a discussion of the reactions and mechanisms responsible for generation of the flavor compounds. The preparation and analysis techniques for food-derived Maillard reacted peptides (MRPs) as well as their taste and aroma properties are discussed. In addition, the MRPs as meat flavor precursors and their potential application in the formulation of PBMA are also discussed. The present review provides a fundamental scientific information useful for the production and application of MRPs as meat flavor precursors in PBMA.
Collapse
|
35
|
Impacts of thermal treatment, xylose and cysteine addition on aroma compounds profile in lactic acid bacterium fermented pork hydrolysates. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
You K, Gao Y, Qian W, Fu J, Wang J, Zhou W. Simultaneous removal of fluoride, manganese and iron by manganese oxide supported activated alumina: characterization and optimization via response surface methodology. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3799-3816. [PMID: 34928845 DOI: 10.2166/wst.2021.461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fluoride, iron and manganese simultaneous exceedance of standard can be observed in groundwater in northeastern China. This work aims to apply a highly efficient method combining adsorption and oxidation for the synchronous removal of the inorganic ions. An innovative adsorbent (manganese-supported activated alumina) was synthesized by the impregnation method and showed a significant adsorption capacity better than that of fresh activated alumina. The characterization (scanning electron microscope; Brunauer, Emmett and Teller; X-ray diffraction and Fourier transform infrared spectroscopy) results verified the successful introduction of MnOOH and MnO2, and the improvement of surface microstructure enhanced the removal ability. The effect of single factors, such as pH value, reaction time or dosage on the removal performance has been verified. The maximum removal efficiencies of fluoride, iron and manganese were optimized via Response surface methodology considering the independent factors in the range of MO@AA dosage (5-9 g/L), pH (4-6) and contact time (4-12 h). Noted that compared with control, MO@AA exhibited 59.4% of improved fluoride performance. At pH of 5.79, contacting time of 12 h and 8.21 g/L of MO@AA, fluoride, iron and manganese removal were found to be 91, 100 and 23%, respectively. Herein, MO@AA was distinguished as good applicability for the treatment of fluoride-, iron- and manganese-containing groundwater.
Collapse
Affiliation(s)
- Kun You
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China E-mail:
| | - Yujia Gao
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China E-mail:
| | - Weiyi Qian
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China E-mail:
| | - Jinxiang Fu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China E-mail:
| | - Juliang Wang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China E-mail:
| | - Weiwei Zhou
- Department of Municipal Engineering and Equipment Engineering, Shandong Urban Construction Vocational College, Jinan 250103, China
| |
Collapse
|
37
|
Ma R, Jin Z, Wang F, Tian Y. Contribution of starch to the flavor of rice-based instant foods. Crit Rev Food Sci Nutr 2021; 62:8577-8588. [PMID: 34047638 DOI: 10.1080/10408398.2021.1931021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Increased consumption of instant foods has led to research attention, especially rice-based instant foods. Starch, one of the most important components of rice, significantly affects food quality. However, the mechanisms by which starch contributes to rice-based instant foods flavor are poorly understood in many cases. The review aims to describe the common mechanisms by which starch contributes to food flavor, including participating in flavor formation, and affecting flavor release throughout starch multiscale structure: particle morphology, crystal structure, molecular structure. Five specific examples of rice-based instant foods were further analyzed to summarize the specific contribution of starch to flavor, including instant rice, fermented rice cake, rice noodles, fried rice, and rice dumplings. During foods processing, reducing sugars produced by heating or enzymatic hydrolysis of starch participate in Maillard reaction, caramelization and thermal degradation, which directly or indirectly affect the formation of flavor compounds. In addition, adsorption by granules, encapsulation by retrograded V-type crystal, and controlled release by starch gel all contribute to rice-based instant food flavor qualities. These mechanisms jointly contribute to flavor compounds formation and release. Proper theoretical application and improved processing methods are needed to promote the high-quality, mechanization, and automation of rice-based instant foods production.
Collapse
Affiliation(s)
- Rongrong Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
38
|
Zhong R, Lu X, Zhong J, Chen L, Cheng W, Liang P. Influence of Maillard Reaction in Volatile Flavor Compounds of Blue Round Scad ( Decapterus maruadsi) Enzymatic Hydrolysate. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1910762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Rongbin Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Xiaodan Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Ji Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Lijiao Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Wenjian Cheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Peng Liang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, PR China
| |
Collapse
|
39
|
Screening of native microalgae species for carbon fixation at the vicinity of Malaysian coal-fired power plant. Sci Rep 2020; 10:22355. [PMID: 33339883 PMCID: PMC7749181 DOI: 10.1038/s41598-020-79316-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/07/2020] [Indexed: 12/02/2022] Open
Abstract
Global warming has become a serious issue nowadays as the trend of CO2 emission is increasing by years. In Malaysia, the electricity and energy sector contributed a significant amount to the nation’s CO2 emission due to fossil fuel use. Many research works have been carried out to mitigate this issue, including carbon capture and utilization (CCUS) technology and biological carbon fixation by microalgae. This study makes a preliminary effort to screen native microalgae species in the Malaysian coal-fired power plant’s surrounding towards carbon fixation ability. Three dominant species, including Nannochloropsis sp., Tetraselmis sp., and Isochrysis sp. were identified and tested in the laboratory under ambient and pure CO2 condition to assess their growth and CO2 fixation ability. The results indicate Isochrysis sp. as the superior carbon fixer against other species. In continuation, the optimization study using Response Surface Methodology (RSM) was carried out to optimize the operating conditions of Isochrysis sp. using a customized lab-scale photobioreactor under simulated flue gas exposure. This species was further acclimatized and tested under actual flue gas generated by the power plant. Isochrysis sp. had shown its capability as a carbon fixer with CO2 fixation rate of 0.35 gCO2/L day under actual coal-fired flue gas exposure after cycles of acclimatization phase. This work is the first to demonstrate indigenous microalgae species' ability as a carbon fixer under Malaysian coal-fired flue gas exposure. Thus, the findings shall be useful in exploring the microalgae potential as a biological agent for carbon emission mitigation from power plants more sustainably.
Collapse
|
40
|
Sim GY, Lee SU, Lee JW. Enhanced extraction of phytic acid from rice hulls with enzymatic treatment and production of ethanol from reducing sugars in hydrolyzed rice hulls after extraction of phytic acid. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|