1
|
Xue L, Wei W, Fu F, Tian H, Hu X, Zhang C. Riboflavin-mediated ultraviolet photosensitive oxidation of beef myofibrillar proteins with different storage times. Food Chem 2025; 471:142788. [PMID: 39788020 DOI: 10.1016/j.foodchem.2025.142788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/13/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
The study was designed to investigate the mechanism of Riboflavin (RF)-mediated UVA photosensitive oxidation on beef myofibrillar proteins (MP) oxidized at different storage times. To elucidate the direct relationship between RF and protein oxidation, the mechanism of action was analyzed in terms of amino acid and side chain residues, protein structure, and protein oxidative metabolism. Oxidation of MP resulted in significant changes in the levels of carbonyls, sulfhydryls, Lysine, Arginine, Threonin, and Histidine. The oxidized MP secondary structure was changed, fluorescence intensity decreased, and surface hydrophobicity increased. Metabolomics results revealed that RF-mediated UVA photosensitized oxidation is primarily mediated by Riboflavin metabolism and co-regulated with Phenylalanine metabolism. Moreover, with the increase of frozen storage time, Arginine and proline metabolism was inhibited, and the contents of creatine were significantly reduced, which exacerbated MP oxidative damage. The results provide a theoretical basis for unraveling the mechanism of RF-mediated UVA photosensitive oxidation of MP.
Collapse
Affiliation(s)
- Liangyu Xue
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Product Processing, Ministry of Agriculture, Beijing 100193, China; Zibo Institute for Digital Agriculture and Rural Research, Zibo 255051, China
| | - Wensong Wei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Product Processing, Ministry of Agriculture, Beijing 100193, China; Zibo Institute for Digital Agriculture and Rural Research, Zibo 255051, China.
| | - Fangting Fu
- Zibo Institute for Digital Agriculture and Rural Research, Zibo 255051, China
| | - Huixin Tian
- Zibo Institute for Digital Agriculture and Rural Research, Zibo 255051, China
| | - Xiaojia Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Product Processing, Ministry of Agriculture, Beijing 100193, China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Product Processing, Ministry of Agriculture, Beijing 100193, China; Zibo Institute for Digital Agriculture and Rural Research, Zibo 255051, China.
| |
Collapse
|
2
|
Zhou X, Shi J, Yu N, Zhu X, Zhang Q, Ma L, Mao S, Zuo W, Zhang X, Yang J. Casein-grape seed proanthocyanidins complexes stabilized Pickering emulsion gels based on Lycium Barbarum seed oil with excellent mechanical properties and oxidation resistance. Food Chem 2025; 468:142416. [PMID: 39689490 DOI: 10.1016/j.foodchem.2024.142416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/21/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
Pickering emulsion gels received extensive attention in encapsulating fat-soluble substances such as Lycium barbarum seed oil (LBSO). However, the gels presented poor mechanical properties, otherwise, their physical encapsulation cannot inhibit lipid peroxidation. Herein, grape seed proanthocyanidins (OPCs) and casein (CAS) complexes interacted through hydrogen and covalent bonds were proposed to build Pickering emulsion gels and encapsulate LBSO, which changed the secondary structures of CAS and further enhanced emulsifying ability, oxidation resistance, and gelling performance. The CAS-OPCs gels had better microstructures and mechanical properties due to the enhancement of hydrogen and covalent interactions. Furthermore, gels with OPC contents of 8.00 mg/mL had performance in 3D printing. And gels reduced the peroxide value of LBSO (9.33±0.20 to 1.39±0.22 mmol/kg) after heating. This study helps reveal the possible mechanisms of OPCs on gels and provides a reference for the application and research of OPCs and CAS composites in Pickering emulsion gels.
Collapse
Affiliation(s)
- Xin Zhou
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jie Shi
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Na Yu
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, China
| | - Xiuzhen Zhu
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qiqi Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lanlan Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shan Mao
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Wenbao Zuo
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China..
| | - Xia Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China..
| | - Jianhong Yang
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China..
| |
Collapse
|
3
|
Wang C, Zhang L, Han L, Yu Q. The mechanism of peanut shell flavonoids inhibiting the oxidation of myofibrillar protein: An elucidation of the antioxidative preservation action of peanut shell flavonoids on chilled pork. Int J Biol Macromol 2024; 283:137900. [PMID: 39581397 DOI: 10.1016/j.ijbiomac.2024.137900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Flavonoids, a significant subclass of polyphenols, possess antioxidant properties and contribute to the preservation of chilled meat. In this paper, a phosphate buffer solution (pH = 6.25, simulated chilled pork) and a Fenton oxidation system (simulated myofibrillar protein oxidation process during storage) were established to explain the antioxidative preservation of chilled pork using peanut shell flavonoids (PSFs). The results indicated that PSFs changed the secondary structure of myofibrillar protein (MP), significantly inhibiting the oxidation of amino acids and the formation of carbonyl groups in MP (P < 0.05). Because PSFs and amino acids in chilled pork were combined to form complex through non-covalent bond in a pH 6.25 environment and covalent bond in a Fenton oxidation system. The antioxidant capacity of the complex was significantly enhanced (P < 0.05). The molecular docking technique predicted the antioxidant binding sites were Cys176, Ala182 and Val 124. This study provides a theoretical foundation for the preservation of chilled pork using PSFs.
Collapse
Affiliation(s)
- Cong Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China.
| |
Collapse
|
4
|
Sharma S, Majumdar RK, Mehta NK. Valorisation of pineapple peel waste as natural surimi gel enhancer and its optimization in Nile tilapia (Oreochromis niloticus) surimi gels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:62283-62295. [PMID: 37639097 DOI: 10.1007/s11356-023-29527-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
This investigation explored the preparation of surimi gel enhancer from pineapple peel waste, hugely generated by industries and spreading serious environment pollutions. The peel extracted with 100% ethanol had higher bioactive and antioxidant attributes, which was subsequently fortified in tilapia surimi at levels of 0.20%-1.20%, w/w to improve its physiochemical, textural, protein structural and sensorial properties. Our finding demonstrated that surimi gels enriched with 0.80% ethanolic pineapple peel extract (PAPE) exhibited significant (p<0.05) improvement in water holding capacity, breaking force, gel strength, and other textural properties and sensory attributes. Furthermore, the surimi gels fortified with 0.80% PAPE exhibited the elevated levels of hydrogen and hydrophobic interactions, while sulfhydryl and free amino acid contents demonstrated a contrasting trend. The FTIR spectra displayed that the incorporation of PAPE influenced the secondary structure of the protein, as evidenced by shifts in the α-helix to β-sheet peaks. In addition, 0.80% PAPE added gels displayed a compact, uniform, and organized microstructure, featuring small cavities. In summary, the fortification of tilapia surimi gels with 0.80% PAPE could improve gelling and other technological properties with higher sensory scores. This study offers an effective approach to utilize the pineapple peel as a gel enhancer additive for the development of functional surimi and surimi-based products enriched with bioactive compounds.
Collapse
Affiliation(s)
- Sanjeev Sharma
- Department of Fish Processing Technology and Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, 799210, India
| | - Ranendra Kumar Majumdar
- Department of Fish Processing Technology and Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, 799210, India
| | - Naresh Kumar Mehta
- Department of Fish Processing Technology and Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, 799210, India.
| |
Collapse
|
5
|
Zhang G, Bi X, Wang R, Yin Z, Zheng Y, Peng X, Jia N, Liu D. Effects of catechin on the stability of myofibrillar protein-soybean oil emulsion and the adsorbed properties of myosin at the oil-water interface. Food Chem 2024; 442:138478. [PMID: 38278102 DOI: 10.1016/j.foodchem.2024.138478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/30/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
The effects of different concentrations of catechin on the stability of myofibrillar protein-soybean oil emulsions and the related mechanisms were investigated. Adding 10 μmol/g catechin had no obvious effects on the emulsion stability and myosin structure, but 50, 100 and 200 μmol/g catechin decreased the emulsion stability. The microstructure observations showed that 10 μmol/g catechin caused a dense and uniform emulsion to form, whereas 50, 100 and 200 μmol/g catechin induced the merging of oil droplets. The addition of 50, 100 and 200 μmol/g catechin caused a decline in both the total sulfhydryl content and surface hydrophobicity, suggesting protein aggregation, which decreased the adsorption capacity of myosin and the elasticity of interfacial film. These results suggested that higher concentrations of catechin were detrimental to the emulsifying properties of myosin and that the dose should be considered when it is used as an antioxidant.
Collapse
Affiliation(s)
- Guangyao Zhang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China
| | - Xinxin Bi
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China
| | - Rongrong Wang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China
| | - Zhiwan Yin
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China
| | - Yue Zheng
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China
| | - Xinyan Peng
- College of Life Science, Yantai University, Yantai, Shandong 264005, China
| | - Na Jia
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China.
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
6
|
Guo Y, Ming Y, Li X, Sun C, Dong X, Qi H. Effect of phlorotannin extracts from Ascophyllum nodosum on the textural properties and structural changes of Apostichopus japonicus. Food Chem 2024; 437:137918. [PMID: 37925780 DOI: 10.1016/j.foodchem.2023.137918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/30/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
In this work, phlorotannin extracts (PhTEs) were isolated from Ascophyllum nodosum. The effects of PhTEs on the textural properties, structural changes and oxidation level of Apostichopus japonicus (A. japonicus) were investigated. The results showed that thermal treatment could lead to the dissolution of TCA-soluble peptides and free hydroxyproline and promote the degradation of A. japonicus. The chemical compositional changes and texture profile analysis results indicated that PhTEs could effectively inhibit the degradation of A. japonicus and improve the hardness and chewiness of A. japonicus. Analysis of multiple spectroscopic methods suggested that the secondary and tertiary conformations tended to be stable after PhTEs were added. In addition, electron spin resonance results indicated that PhTEs could reduce the oxidation level of A. japonicus. These results suggest that the degradation of A. japonicus during mild heat treatment can be regulated by PhTEs, which provides insights for quality control in A. japonicus heat treatment.
Collapse
Affiliation(s)
- Yicheng Guo
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, China
| | - Yu Ming
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, China
| | - Xiang Li
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, China
| | - Chenghang Sun
- Department of Biochemical Engineering, Chaoyang Teachers College, Chaoyang 122000, China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, China
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, China.
| |
Collapse
|
7
|
Guo X, Wei Y, Liu P, Deng X, Zhu X, Wang Z, Zhang J. Study of four polyphenol- Coregonus peled (C. peled) myofibrillar protein interactions on protein structure and gel properties. Food Chem X 2024; 21:101063. [PMID: 38162040 PMCID: PMC10757253 DOI: 10.1016/j.fochx.2023.101063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/28/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024] Open
Abstract
The effects of four polyphenols-chlorogenic acid (CA), gallic acid (GA), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG) on the structure, gel properties, and interaction mechanisms of myofibrillar protein (MP) were studied. The changes in MP structure with polyphenols were analyzed using circular dichroism. The ultraviolet and fluorescence spectra and thermodynamic analysis indicated that the type of binding between the four polyphenols with the MP was static quenching of complex formation. GA had a more pronounced effect on improving MP gel properties. Finally, molecular docking determined that the affinity of the protein with the four polyphenols was in the order EGCG > ECG > CA > GA, with the main interaction force being hydrophobic interactions and hydrogen bonding, but hydrogen bonding dominates the interaction between GA and the protein. The findings illuminate the mechanism of MP binding to different polyphenols and facilitate the study of polyphenol-protein properties.
Collapse
Affiliation(s)
- Xin Guo
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yabo Wei
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Pingping Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaorong Deng
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xinrong Zhu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhouping Wang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
8
|
Zhang G, Bi X, Li L, Zheng Y, Zheng D, Peng X, Jia N, Liu D. Catechins affect the oil-holding capacity of meat batters by changing the structure and emulsifying properties of surface proteins at the fat globules. Int J Biol Macromol 2023; 252:126474. [PMID: 37625755 DOI: 10.1016/j.ijbiomac.2023.126474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
The effects of different concentrations of catechins on the oil-holding capacity, myofibrillar proteins (MPs) structure and adsorbed properties of interfacial proteins in meat batters were investigated. The addition of 100 mg/kg catechin had no negative effects on the physicochemical properties of meat batter. However, 500 and 1500 mg/kg catechin caused an increase in drip loss and deterioration of dynamic rheological properties; the total sulfhydryl content, surface hydrophobicity and α-helix ratio of MPs decreased significantly (p < 0.05); in meat emulsions, the emulsifying property was reduced, the particle size increased, and less interfacial protein was absorbed on the fat globules. All concentrations of catechins significantly (p < 0.05) inhibited lipid oxidation in meat batters. Medium and high concentrations of catechins induced aggregation of MPs via covalent and noncovalent interactions between MPs and MPs or MPs and catechins, which destroyed the gel and emulsifying property of protein and eventually decrease the oil-holding capacity of meat batters.
Collapse
Affiliation(s)
- Guangyao Zhang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China
| | - Xinxin Bi
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China
| | - Lingli Li
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China
| | - Yue Zheng
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China
| | - Duoduo Zheng
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China
| | - Xinyan Peng
- College of Life Science, Yantai University, Yantai, Shandong 264005, China
| | - Na Jia
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China.
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
9
|
Sharma S, Majumdar RK, Mehta NK. Manipulation of protein structure and bonding pattern to improve the gelling and textural quality of surimi gels from silver carp: incorporation of mosambi (Citrus limetta) peel extract. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6871-6883. [PMID: 37309565 DOI: 10.1002/jsfa.12769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/04/2023] [Accepted: 06/13/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND This investigation focused on the use of mosambi peel extract (MPE) fortification (at 0% to 1.50%, w/w) in silver carp surimi to improve the gelling, textural, and other physicochemical properties of the surimi. RESULTS The peels were extracted in ethanol (40-100% concentrations, v/v) and water. It was found that 100% ethanol had significantly (P < 0.05) higher yield and total phenolic, flavonoid, and tannin content. The fortification of MPE at optimum level (0.75%) improved the breaking force (55.1%) and gel strength (89.9%) significantly (P < 0.05) in comparison with 0% MPE gel samples. Moreover, 0.75% MPE-fortified gels had higher hydrogen and hydrophobic bonds, higher water-holding capacity, and lower sulfhydryl groups and free amino groups. The myosin heavy chain (MHC) bands in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) disappeared completely in the MPE-fortified gels. Fortification with MPE affected the secondary structures of protein as shifting of peaks was observed in Fourier-transform infrared (FTIR) spectra. Scanning electron microscopy (SEM) images showed relatively organized finer and denser gel networks in MPE-treated gels. CONCLUSION The surimi gels fortified with 0.75% MPE demonstrated improved gelling properties, with an overall higher acceptability than the unfortified gels (0% MPE). The fortified gels also became enriched with bioactive polyphenols, which are generally not present in surimi. This study provides an efficient way to utilize mosambi peel to develop functional surimi and surimi-based products with improved gel ability. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sanjeev Sharma
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, India
| | | | - Naresh Kumar Mehta
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, India
| |
Collapse
|
10
|
Zhang G, Xiao G, Yi Z, Wang L, Jia N, Liu D. Effects of quercetin on the gel properties of pork myofibrillar proteins and related changes in protein conformation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4899-4907. [PMID: 36929328 DOI: 10.1002/jsfa.12558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/23/2023] [Accepted: 03/16/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND To study the effects of quercetin on the functionality of myofibrillar proteins (MPs), various levels of quercetin (0, 10, 50, 100 and 200 μmol g-1 protein) were added to MP solution and the structure and gel properties of MPs were determined. RESULTS Compared with the control MPs not treated with quercetin, adding 10, 50 and 100 μmol g-1 quercetin caused a significant (P < 0.05) loss of sulfhydryls; 10 and 50 μmol g-1 quercetin enhanced the surface hydrophobicity significantly (P < 0.05), and 50, 100 and 200 μmol g-1 quercetin reduced the fluorescence intensity of tryptophan. Additions of 50, 100 and 200 μmol g-1 quercetin resulted in a significant (P < 0.05) reduction in MP solubility. Adding 10, 50 and 100 μmol g-1 quercetin did not significantly (P > 0.05) change the gel strength and water-holding ability of MPs than control, but 200 μmol g-1 quercetin declined the gel properties significantly (P < 0.05). The microstructure and dynamic rheological properties confirmed the results of the gel properties of MPs affected by various levels of quercetin. CONCLUSION The results obtained in the present study show that mildly high levels of quercetin can maintain the gel properties of MPs, which may be a result of the moderate MP cross-linkage and aggregation caused by the covalent and non-covalent interactions of MPs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangyao Zhang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning, China
| | - Guijie Xiao
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning, China
| | - Zi Yi
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning, China
| | - Letian Wang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning, China
| | - Na Jia
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning, China
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning, China
| |
Collapse
|
11
|
Shang S, Wang Y, Jiang P, Fu B, Dong X, Qi L. Progress in the application of novel cryoprotectants for the stabilization of myofibrillar proteins. Crit Rev Food Sci Nutr 2023; 64:9756-9770. [PMID: 37222573 DOI: 10.1080/10408398.2023.2215874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this review, the physicochemical and conformational changes of myofibrillar proteins (MPs) of freeze-induced mince-based aquatic foods were comprehensively summarized in depth. Studies have demonstrated that temperature fluctuation and long-time freezing negatively affect food quality, resulting in texture alteration, drip fluid, flavor degradation, and nutrition loss due to MPs denaturation, aggregation, and oxidation. Attempts have been made in ice-recrystallization inhibition, freezing point depression, and ice shape and growth control for better cryopreservation. Moreover, to further minimize the quality deterioration, cryoprotectants were acknowledged to reduce the denaturation and aggregation of the MPs effectively. Recently, interest in novel functional ingredients, including oligosaccharides, protein hydrolysates, and natural polyphenols demonstrated excellent cryoprotective effects while avoiding health concerns and undesirable flavor caused by traditional sugar-based or phosphates-based cryoprotectants. Therefore, the present review provides a systematic overview of these low molecular weight multifunctional substances with a particular sequence and highlights their underlying mechanism in the inhibition of ice recrystallization the stabilization of MPs.
Collapse
Affiliation(s)
- Shan Shang
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yueyue Wang
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Pengfei Jiang
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Baoshang Fu
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiuping Dong
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Libo Qi
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
12
|
Ming Y, Wang Y, Xie Y, Dong X, Nakamura Y, Chen X, Qi H. Polyphenol extracts from Ascophyllum nodosum protected sea cucumber (Apostichopus japonicas) body wall against thermal degradation during tenderization. Food Res Int 2023; 164:112419. [PMID: 36738022 DOI: 10.1016/j.foodres.2022.112419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023]
Abstract
To retard the protein degradation during sea cucumber processing, polyphenol extracts from Ascophyllum nodosum (PhE) was used as a potential antioxidant to maintain the structural integrity of sea cucumber body wall. Accordingly, the protection effects of PhE (0, 0.5, 1.0 and 1.5 mg PhE/g SFBW) against thermal degradation of the solid fragments of body wall (SFBW) have been investigated in order to evaluate their impact on the oxidation level and structural changes. Electronic Spin Resonance results showed that PhE could significantly inhibit the occurrence of oxidation by scavenging the free radicals. The effect of PhE on chemical analysis of soluble matters in SFBW was characterized by SDS-PAGE and HPLC. Compared with thermally treated SFBW, samples with PhE presented a decrease in protein dissolution. Thermal treatment resulted in the disintegration of collagen fibrils and fibril bundles in SFBW samples, while the density of collagen fibrils was increased, and the porosity decreased in samples with PhE. The results of FTIR and intrinsic tryptophan fluorescence confirmed that the structures of SFBW were modified by PhE. Besides, the denaturing temperature and decomposition temperature were both improved with the addition of PhE. These results suggested that PhE appeared to have a positive effect on lowering oxidation and improving thermostability and structural stability of SFBW, which could provide a theoretical basis for protecting sea cucumber body wall against degradation during thermal tenderization.
Collapse
Affiliation(s)
- Yu Ming
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, PR China
| | - Yingzhen Wang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, PR China
| | - Yuqianqian Xie
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, PR China
| | - Xiufang Dong
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, PR China.
| |
Collapse
|
13
|
Xu Y, Lv Y, Yin Y, Zhao H, Li X, Yi S, Li J. Improvement of the gel properties and flavor adsorption capacity of fish myosin upon yeast β-glucan incorporation. Food Chem 2022; 397:133766. [PMID: 35908465 DOI: 10.1016/j.foodchem.2022.133766] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022]
Abstract
The potential effects of yeast β-glucan (YG) on heat-induced gel properties, microstructure and flavor adsorption capacity of fish myosin at different NaCl concentrations were investigated in this study. The incorporation of YG significantly improved the texture properties, gel strength, water holding capacity (WHC), storage modulus and loss modulus of myosin gels, especially at a high salt level, whereas the whiteness declined. Furthermore, myosin gels containing YG displayed a more compact and ordered three-dimensional network structure, accompanied by the increasing immobilization of water in gels. The binding abilities of gels to selected flavor compounds at high salt content were inferior to those at the low salt content. Regardless of the salt level, YG addition boosted the flavor binding capacity of gels, which might be attributed to the unfolding of the protein conformation by exposing more flavor-binding sites, as well as the porous sponge structure of YG with unique adsorption capacity.
Collapse
Affiliation(s)
- Yongxia Xu
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Yanan Lv
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Yiming Yin
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Honglei Zhao
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China.
| | - Shumin Yi
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China.
| |
Collapse
|
14
|
Chen X, Chen K, Zhang L, Liang L, Xu X. Impact of Phytophenols on Myofibrillar Proteins: Revisit the Interaction Scenarios Inspired for Meat Products Innovation. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2089681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Kaiwen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Lingying Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Li Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Pang S, Wang Y, Hao R, Mráz J, Li S, Zheng Q, Pan J. UV
irradiation improved gel properties and chill‐stored stability of surimi gel. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Shiwen Pang
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co‐construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Yong Wang
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co‐construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Ruoyi Hao
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses Institute of Aquaculture and Protection of Waters České Budějovice 370 05 Czech Republic
| | - Jan Mráz
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses Institute of Aquaculture and Protection of Waters České Budějovice 370 05 Czech Republic
| | - Shengjie Li
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co‐construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Qilin Zheng
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co‐construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Jinfeng Pan
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co‐construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| |
Collapse
|
16
|
Xu Y, Lv Y, Yin Y, Zhao H, Yi S, Li X, Li J. Impacts of yeast β‐glucan on thermal aggregation and flavour adsorption capacity of Spanish mackerel myosin. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yongxia Xu
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| | - Yanan Lv
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| | - Yiming Yin
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| | - Honglei Zhao
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| | - Shumin Yi
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| | - Xuepeng Li
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| | - Jianrong Li
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| |
Collapse
|
17
|
Cheng J, Lin Y, Tang D, Yang H, Liu X. Structural and gelation properties of five polyphenols-modified pork myofibrillar protein exposed to hydroxyl radicals. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Wang C, Jiang D, Sun Y, Gu Y, Ming Y, Zheng J, Yu C, Chen X, Qi H. Synergistic effects of UVA irradiation and phlorotannin extracts of Laminaria japonica on properties of grass carp myofibrillar protein gel. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2659-2667. [PMID: 33063326 DOI: 10.1002/jsfa.10890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/01/2020] [Accepted: 10/16/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Oxidized phlorotannin can be used as a protein crosslinking agent to produce high-quality fish gel products. Phlorotannin can be easily induced to form quinone compounds in an oxidizing environment, while o-quinone has been proven to be a reactive, electrophilic intermediate that easily reacts with proteins to form rigid molecular crosslinking networks. The objective of this study was to investigate the synergistic effects of ultraviolet A (UVA) irradiation (1 h, 15 W m-2 ) and various concentrations of Laminaria japonica phlorotannin extracts (PTE) on the gel properties of grass carp myofibrillar protein (MP). RESULTS UVA treatment and PTE could synergistically improve the MP gel properties more than PTE alone (P < 0.05). At 625 mmol kg-1 MP PTE alone, the gel strength and cooking yield reached 3.10 ± 0.16 g cm and 47.45 ± 0.35%, respectively, while with the same level of PTE plus UVA they became 4.26 ± 0.19 g cm and 53.89 ± 1.54%, respectively. The three-dimensional network structure of the gel (with PTE + UVA) showed higher connectivity and tightness than that of the control group (no treatment). CONCLUSIONS The synergistic effects of PTE and UVA could effectively induce crosslinking of grass carp MP, which could lead to an improvement of MP gel quality. These findings would provide a new technical approach to produce high-quality protein gel products in the fish processing industry. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunyan Wang
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, National Engineering Research Center of Seafood, Dalian, China
| | - Di Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, National Engineering Research Center of Seafood, Dalian, China
| | - Yihan Sun
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, National Engineering Research Center of Seafood, Dalian, China
| | - Yue Gu
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, National Engineering Research Center of Seafood, Dalian, China
| | - Yu Ming
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, National Engineering Research Center of Seafood, Dalian, China
| | - Jie Zheng
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Chenxu Yu
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, USA
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, National Engineering Research Center of Seafood, Dalian, China
| |
Collapse
|
19
|
Wu Q, Zhou J. The application of polyphenols in food preservation. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:35-99. [PMID: 34507646 DOI: 10.1016/bs.afnr.2021.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polyphenols are a kind of complex secondary metabolites in nature, widely exist in the flowers, bark, roots, stems, leaves, and fruits of plants. Numerous studies have shown that plant-derived polyphenols have a variety of bioactivities due to their unique chemical structure, such as antioxidant, antimicrobial, and prevention of chronic diseases, cardiovascular disease, cancer, osteoporosis, and neurodegeneration. With the gradual rise of natural product development, plant polyphenols have gradually become one of the research hotspots in the field of food science due to their wide distribution in the plants, and the diversity of physiological functions. Owing to the extraordinary antioxidant and antibacterial activity of polyphenols, plant-derived polyphenols offer an alternative to chemical additives used in the food industry, such as oil, seafood, meat, beverages, and food package materials. Based on this, this chapter provides an overview of the potential antioxidant and antibacterial mechanisms of plant polyphenols and their application in food preservation, it would be providing a reference for the future development of polyphenols in the food industry.
Collapse
Affiliation(s)
- Qian Wu
- Hubei University of Technology, Wuhan, China.
| | - Jie Zhou
- Northwest Agriculture & Forestry University, Yangling, China
| |
Collapse
|