1
|
Tian F, Zhou Z, Lu J, Qiao C, Wang C, Pang T, Guo L, Li J, Pang R, Xie H. Development and validation of a combined QuEChERS and HPLC-MS/MS method for trace analysis of ten diamide insecticides in agricultural products. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2282-2294. [PMID: 39969401 DOI: 10.1039/d4ay02117g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Diamide insecticides are being widely registered worldwide, yet most of them lack established maximum residue limits (MRLs) in agricultural products. In this study, we combined a QuEChERS (quick, easy, cheap, efficient, rugged, and safe) extraction method with high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) analysis to simultaneously identify and quantify ten diamide insecticides in seven matrices for the first time. The method was validated in accordance with SANTE/11312/2021 guidelines, including sensitivity, linearity, trueness, and precision. Excellent linearity (R2 > 0.99) was obtained for all diamide insecticides within the concentration range of 5-1000 µg kg-1. The limit of detection (LOD) and limit of quantification (LOQ) were 0.01-1 µg kg-1 and 5 µg kg-1, respectively. The recoveries of the ten diamide insecticides at three levels (5, 100, and 1000 µg kg-1) ranged from 76.6% to 108.2% with good intra-day relative standard deviation (RSDr) (1.0-13.4%) and inter-day relative standard deviation (RSDR) (2.3-15.7%). The proposed method was applied to analyze 70 real agricultural product samples, and only six samples contained diamide insecticides. The results demonstrated that the method was both convenient and reliable for detecting diamide insecticides in agricultural products. The method was then applied to analyze agricultural product samples collected in a field trial to estimate the MRLs for the next step.
Collapse
Affiliation(s)
- Fajun Tian
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Zhenzhen Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Junfeng Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Chengkui Qiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Caixia Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Tao Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Linlin Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Jun Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Rongli Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Hanzhong Xie
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| |
Collapse
|
2
|
Su L, Wu Z, Ruan G, Huang Y. Covalent organic frameworks hybridized polymeric high internal phase emulsions with amphiphilicity for extraction of trace bisamide insecticides in food samples. Mikrochim Acta 2024; 192:44. [PMID: 39739144 DOI: 10.1007/s00604-024-06890-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
Polymeric high internal phase emulsions decorated with covalent organic frameworks (polyHIPEs-COFs) were synthesized and used as the sorbent for cyantraniliprole and chlorantraniliprole. Pickering high internal phase emulsions stabilized by covalent organic frameworks solid particles and liquid surfactants (Span80 and polyvinylpyrrolidone) endow the composites with open-cell structures and superwettability. The amphiphilicity and open-cell structures enable rapid adsorption and desorption for cyantraniliprole and chlorantraniliprole, and the solid-phase extraction process can be completed in 5 min. The adsorption efficiencies of polyHIPEs-COFs for cyantraniliprole and chlorantraniliprole are above 85.19%, but lower than 10% for fenvalerate, anti-aphid, and chlorpyrifos, demonstrating the good adsorption selectivity for cyantraniliprole and chlorantraniliprole. The adsorption efficiencies of cyantraniliprole and chlorantraniliprole using a same polyHIPEs-COFs and five different batches of polyHIPEs-COFs range from 94.25 to 100.00%, revealing the good reproducibility of the sorbent. In addition, the polyHIPEs-COF-based solid-phase extraction combined with high-performance liquid chromatography-ultraviolet detector (HPLC-UV) was developed for determination of bisamide insecticides in vegetable (eggplants, tomatoes, and peppers) samples. Results showed that the method was feasible to determine the cyantraniliprole and chlorantraniliprole in real vegetable samples with a linear range of 0.012-1.2 μg/kg and limits of detection of 0.0075-0.0090 μg/kg. The recoveries of cyantraniliprole and chlorantraniliprole spiked in vegetable samples ranged from 85.00 to 100.00% with relative standard deviations less than 3.52%. The study indicates the feasibility of amphiphilic polyHIPEs-COFs in extraction and enrichment of bisamide insecticides from vegetable samples for HPLC-UV analysis.
Collapse
Affiliation(s)
- Lin Su
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Zhuqiang Wu
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Guihua Ruan
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China.
| | - Yipeng Huang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China.
| |
Collapse
|
3
|
Tulasi B, Kaithamalai B, Angappan S, Gurudevan T, Padmanaban G, Chellamuthu S, Venkidusamy M, Palanisamy K, Chelladurai AV. Standardization of an analytical technique for determination of pesticide residues in fresh and processed button mushroom Agaricus bisporus (Lange) Imbach. Sci Rep 2024; 14:30747. [PMID: 39730521 PMCID: PMC11680587 DOI: 10.1038/s41598-024-80690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/21/2024] [Indexed: 12/29/2024] Open
Abstract
An efficient modified QuEChERS procedure was established for the simultaneous determination of 37 pesticide residues in fresh and processed edible button mushroom by employing GC/ GC-MS and LC-MS/MS. The effectiveness, reliability and accuracy of the method were assessed through validation parameters such as linearity, LOD, LOQ, precision, accuracy, uncertainty, and matrix effect. The linearity calibration for all the selected pesticides at standard concentrations (0.003, 0.01, 0.025, 0.05, 0.075, and 0.1 µg mL- 1) obtained were ≥ 0.970 in both GC and LC-MS/MS. The LOD and LOQ values were 0.003 and 0.01 µg g- 1, respectively. The recoveries obtained in the spiking level of 0.01-0.1 µg g- 1 were in the acceptable range (71.69 to 117.90%) with RSD less than 20%. Matrix effect and uncertainty for all target compounds were in the acceptable range. Monitoring of edible button mushroom samples collected from market revealed the presence of cypermethrin residues in four out of 25 fresh button mushroom samples and no detectable residues were found in processed mushroom products tested. Dietary risk assessement was calculated to the detected cypermethrin in the fresh button mushroom samples and RQ value obtained was <1, where risk is acceptable.
Collapse
Affiliation(s)
- B Tulasi
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Bhuvaneswari Kaithamalai
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| | - Suganthi Angappan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | | | - Geetha Padmanaban
- Department of Food Science and Nutrition, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Selvi Chellamuthu
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Muralitharan Venkidusamy
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Karthik Palanisamy
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Anusha Veeran Chelladurai
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| |
Collapse
|
4
|
Tian F, Lu J, Qiao C, Wang C, Pang T, Guo L, Li J, Pang R, Xie H. Effects of storage and processing on the residual distribution and behavior of five preservatives and their metabolites in pomegranate. Food Chem 2024; 455:139905. [PMID: 38833870 DOI: 10.1016/j.foodchem.2024.139905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/12/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Pomegranate are often treated with preservatives during storage. This study investigated the effects of storage and food processing on the residual behavior of the five commonly used preservatives (prochloraz, thiophanate-methyl, pyrimethanil, imazalil, and difenoconazole) and their metabolites in pomegranate and its products. The LOQs for all target compounds were 0.001 mg kg-1. The residue levels of five preservatives in the calyx was highest, followed by the peel, stalk, septum, umbilicus, and seed. For the migration ability, the five preservatives from pomegranate peel to seed was negatively correlated with their octanol/water partition coefficients. The processing factors of each procedures of juice, wine, vinegar, and pectin processing were <1. Nevertheless, the PF values in drying peel during the overall process ranged from 1.26 to 4.09. Hence, it is worth noting that consumption of pomegranate essential oil and drying peel may pose a potential risk to the health of consumers.
Collapse
Affiliation(s)
- Fajun Tian
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453514, China.
| | - Junfeng Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Chengkui Qiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453514, China
| | - Caixia Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Tao Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Linlin Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453514, China
| | - Jun Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Rongli Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453514, China
| | - Hanzhong Xie
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| |
Collapse
|
5
|
Qiu W, Chen J, Hua Y, Yang Y, Lin S. Method development, multi-residue determination, and dietary exposure risk assessment of plant growth regulators in homologous materials of medicine and food. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1039. [PMID: 39384629 DOI: 10.1007/s10661-024-13204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Residues of plant growth regulators (PGRs) in homologous materials of medicine and food threaten public health. This study aimed to develop a rapid, sensitive, and high-throughput method for simultaneously determining 16 PGR residues in homologous materials of medicine and food. Furthermore, the established method was applied to actual samples to assess the potential exposure risk of multi-PGR residues. A modified high-throughput quick, easy, cheap, effective, rugged, and safe (QuEChERS) method coupled with ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed and validated. The extraction solvent, type of extraction method, and subsequent purification techniques were investigated to achieve a better analysis of the target. Risk assessment was based on chronic dietary risk assessment. Ultrasonic extraction with 1% formic acid-acetonitrile was employed, and MgSO4 + NaAc was selected as the clean-up sorbent. The 16 PGRs showed a good linear relationship in the range of 1 ~ 200 μg/L (r ≥ 0.9960), with detection limits ranging from 0.3 to approximately 3 μg/kg. The recovery rate ranged from 65 to 109%, with RSD from 0.01 to 10% (n = 6). The total detection rate of 16 PGRs in the samples was 87%. The risk assessment indicated that the multi-residues of PGRs in homologous materials of medicine and food would not pose a potential risk to human health. This work provides a valuable reference for the monitoring of multiple PGRs. It has also improved our understanding of the possible exposure risk of PGR residues in homologous materials of medicine and food.
Collapse
Affiliation(s)
- Wenqian Qiu
- Physical and Chemical Analysis Department, Fujian Provincial Center For Disease Control and Prevention,Fujian Provincial Key Laboratory of Zoonosis Research, 386 Chongan Road, Fujian, Fuzhou, 350012, China
| | - Jiali Chen
- School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Yongyou Hua
- Physical and Chemical Analysis Department, Fujian Provincial Center For Disease Control and Prevention,Fujian Provincial Key Laboratory of Zoonosis Research, 386 Chongan Road, Fujian, Fuzhou, 350012, China
| | - Yan Yang
- Physical and Chemical Analysis Department, Fujian Provincial Center For Disease Control and Prevention,Fujian Provincial Key Laboratory of Zoonosis Research, 386 Chongan Road, Fujian, Fuzhou, 350012, China
| | - Shouer Lin
- Physical and Chemical Analysis Department, Fujian Provincial Center For Disease Control and Prevention,Fujian Provincial Key Laboratory of Zoonosis Research, 386 Chongan Road, Fujian, Fuzhou, 350012, China.
| |
Collapse
|
6
|
Salim SA, Baharudin NH, Ibrahim NS, Abd Ghani Z, Ismail MN. Determination of aflatoxins in rice from Penang, Malaysia by dispersive liquid-liquid micro-extraction and LC-MS/MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:563-574. [PMID: 38527182 DOI: 10.1080/19440049.2024.2329614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/05/2024] [Indexed: 03/27/2024]
Abstract
Rice is one of the crops cultivated in Malaysia, and it is the main diet for most of the population. In this study, dispersive liquid-liquid micro-extraction (DLLME) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to develop, optimise and validate a reliable, easy-to-use and quick approach to detect aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1) and aflatoxin G2 (AFG2). The extraction recoveries in DLLME were enhanced by the addition of 5% salt, utilising chloroform as the extraction solvent and acetonitrile as the dispersive solvent. The DLLME parameters - the extraction solvent volume, salt concentration and dispersive solvent volume were optimised with Box-Behnken design (BBD) and response surface methodology (RSM). Under optimised experimental conditions, excellent linearity was obtained with a limit of detection (LOD) ranging from 0.125 to 0.25 ng g-1, a limit of quantitation (LOQ) ranging from 0.25 to 0.3 ng g-1 and a correlation value (R2) of 0.990. The matrix effects were between -11.1% and 19.9%, and recoveries ranged from 87.4% to 117.3%. The optimised and validated method was used effectively to assess aflatoxins contamination in 20 commercial rice samples collected from local supermarkets in Penang, Malaysia. AFB1 was detected at 0.41-0.43 ng g-1 in two rice samples, below the regulatory limit.
Collapse
Affiliation(s)
- Sofiyatul Akmal Salim
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Nur Shahila Ibrahim
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang, Malaysia
| | - Zalilawati Abd Ghani
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang, Malaysia
| | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
7
|
Yang X, Cui Y, Zhao N, Wang S, Yan H, Han D. Magnetic molecularly imprinted polymers integrated ionic liquids for targeted detecting diamide insecticides in environmental water by HPLC-UV following MSPE. Talanta 2024; 270:125620. [PMID: 38176249 DOI: 10.1016/j.talanta.2023.125620] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
Efficiently detecting diamide insecticides in environmental water is challenging due to their low concentrations and complex matrix interferences. In this study, we developed ionic liquids (ILs)-incorporated magnetic molecularly imprinted polymers (IL-MMIPs) for the detection of diamide insecticides, capitalizing on the advantages of ILs and quick magnetic separation through surface imprinting. Tetrachlorantraniliprole was used as the template, and a specific IL, 1-vinyl-3-ethylimidazolium hexafluorophosphate ([VEIm][PF6]), was employed as the functional monomer. Various synthesis conditions were investigated to optimize adsorption efficiency. The prepared IL-MMIPs were successfully employed as adsorbents in magnetic solid-phase extraction (MSPE) to selectively extract, separate, and quantify three types of diamide insecticides from water samples using HPLC-UV detection. Under optimal conditions, the analytical method achieved low limits of detection (0.69 ng mL-1, 0.64 ng mL-1, 0.59 ng mL-1 for cyantraniliprole, chlorantraniliprole and tetrachlorantraniliprole, respectively). The method also displayed a wide linear range (0.003-10 μg mL-1 for cyantraniliprole and chlorantraniliprole, and 0.004-10 μg mL-1 for tetrachlorantraniliprole, respectively) with satisfactory coefficients (R2≥0.9996), and low relative standard deviation (RSD≤2.55%). Additionally, extraction recoveries fell within the range of 79.4%-109%. The results clearly demonstrate that IL-MMIPs exhibit exceptional recognition and rebinding capabilities. The developed IL-MMIPs-MSPE-HPLC-UV method is straightforward and rapid, making it suitable for the detection and analysis of three kinds of diamide insecticides in environmental water.
Collapse
Affiliation(s)
- Xiaonan Yang
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding, 071002, China
| | - Yahan Cui
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding, 071002, China
| | - Niao Zhao
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding, 071002, China
| | - Shenghui Wang
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding, 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding, 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
| | - Dandan Han
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding, 071002, China.
| |
Collapse
|
8
|
Wang Y, Li J, Ma P, Gao D, Song D. Synthesis of in-situ magnetized MOF-cellulose membranes for high-efficiency enrichment of diamide insecticides in vegetables and determination by LC-MS/MS. Talanta 2024; 270:125626. [PMID: 38211354 DOI: 10.1016/j.talanta.2024.125626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
This study presents a novel, eco-friendly composite adsorbent material designed for the magnetic solid-phase extraction of diamide insecticides from vegetable samples. The membrane, denoted as Fe-MMm, was incorporated with a cellulose framework embedded with Metal-Organic Frameworks (MOFs) and Multi-Walled Carbon Nanotubes (MWCNTs) magnetized with Fe3O4. This innovative material streamlined the conventional solid-phase extraction process, simplifying the sample pre-treatment. By combining it with liquid chromatography tandem mass spectrometry (LC-MS/MS), the method achieves significantly enhanced extraction efficiency through systematic optimization of experimental parameters, including adsorbent selection, pH, ionic strength, adsorption time, and elution time. The method had a wide linear range of 0.1-1000 ng/mL and an exceptionally low detection limit ranging from 0.023 to 0.035 ng/mL. The successful identification of diamide insecticides in vegetable samples underscores the potential of Fe-MMm as a robust material for sample pretreatment in analytical applications.
Collapse
Affiliation(s)
- Yuning Wang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street, 2699, Changchun, China
| | - Jingkang Li
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street, 2699, Changchun, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street, 2699, Changchun, China
| | - Dejiang Gao
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street, 2699, Changchun, China.
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street, 2699, Changchun, China.
| |
Collapse
|
9
|
Wu Y, Li J, Zhu J, Zhang Z, Zhang S, Wang M, Hua X. A Rapid and Sensitive Gold Nanoparticle-Based Lateral Flow Immunoassay for Chlorantraniliprole in Agricultural and Environmental Samples. Foods 2024; 13:205. [PMID: 38254506 PMCID: PMC10814772 DOI: 10.3390/foods13020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Chlorantraniliprole (CAP) is a new type of diamide insecticide that is mainly used to control lepidopteran pests. However, it has been proven to be hazardous to nontarget organisms, and the effects of its residues need to be monitored. In this study, five hybridoma cell lines were developed that produced anti-CAP monoclonal antibodies (mAbs), of which the mAb originating from the cell line 5C5B9 showed the highest sensitivity and was used to develop a gold nanoparticle-based lateral flow immunoassay (AuNP-LFIA) for CAP. The visible limit of detection of the AuNP-LFIA was 1.25 ng/mL, and the detection results were obtained in less than 10 min. The AuNP-LFIA showed no cross-reactivity for CAP analogs, except for tetraniliprole (50%) and cyclaniliprole (5%). In the detection of spiked and blind samples, the accuracy and reliability of the AuNP-LFIA were confirmed by a comparison with spiked concentrations and verified by ultra-performance liquid chromatography-tandem mass spectrometry. Thus, this study provides the core reagents for establishing CAP immunoassays and a AuNP-LFIA for the detection of residual CAP.
Collapse
Affiliation(s)
- Yanling Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.W.); (J.L.); (J.Z.); (M.W.)
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Jiao Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.W.); (J.L.); (J.Z.); (M.W.)
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Jie Zhu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.W.); (J.L.); (J.Z.); (M.W.)
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Zhaoxian Zhang
- Key Laboratory of Agri-Food Safety of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China;
| | - Shuguang Zhang
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| | - Minghua Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.W.); (J.L.); (J.Z.); (M.W.)
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Xiude Hua
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.W.); (J.L.); (J.Z.); (M.W.)
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| |
Collapse
|
10
|
Torabi E, Talebi K, Pourbabaee AA, Homayoonzadeh M, Ghamari MJ, Ebrahimi S, Faridy N. Optimizing the QuEChERS method for efficient monitoring of fipronil, thiobencarb, and cartap residues in paddy soils with varying properties. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:125. [PMID: 38195960 DOI: 10.1007/s10661-023-12279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024]
Abstract
This study aims to optimize the QuEChERS methodology for extracting three pesticides (fipronil, thiobencarb, and cartap) from two paddy soils with distinct characteristics. Various modifications were explored to enhance extraction efficiency, employing acetonitrile (MeCN) or ethyl acetate (EtOAc) for extraction and primary-secondary amine (PSA) and graphitized carbon black (GCB) for the clean-up. Assessment criteria included accuracy, precision, linearity, detection limits, uncertainty, and matrix effects. Results revealed that the clayey soil with lower organic carbon (OC) content (1.26%) and 100% moisture yielded the highest pesticide recoveries (113.72%, 115.73%, and 116.41% for FIP, THIO, and CART, respectively). In contrast, the silty clayey soil with higher OC content (2.91%) and 20% water content exhibited poor recoveries (< 60%). FIP and CART demonstrated better recoveries with MeCN, while THIO performed better with EtOAc under specific moisture conditions. Clean-up sorbents significantly reduced FIP and CART recoveries, with THIO recoveries less affected. Acidifying with HCl substantially improved CART recovery. EtOAc introduced a moderate to strong matrix effect for FIP and THIO, while MeCN in soils with 100% moisture resulted in a strong matrix effect for CART. The study highlighted the substantial impact of extraction conditions, pesticide properties, and soil conditions on the outcomes of the QuEChERS method. A comprehensive understanding of these interplays was deemed crucial for accurately quantifying pesticide residues in agricultural soils.
Collapse
Affiliation(s)
- Ehssan Torabi
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Khalil Talebi
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ahmad Ali Pourbabaee
- Department of Soil Science, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mohammad Homayoonzadeh
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mohamad Javad Ghamari
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Seyedali Ebrahimi
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Nastaran Faridy
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
11
|
Yu J, Hou J, Xu Z, Yu R, Zhang C, Chen L, Zhao X. Dissipation behavior and dietary risk assessment of cyclaniliprole and its metabolite in cabbage under field conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125907-125914. [PMID: 38008836 DOI: 10.1007/s11356-023-31146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
Cyclaniliprole, a novel diamide insecticide, can successfully control Spodoptera litura (Fabricius, 1775) in cabbage. Understanding the residual level of cyclaniliprole in crops and the risk related to its dietary intake is imperative for safe application. Here, we established a simplified, sensitive method for simultaneous analysis of cyclaniliprole and its metabolite NK-1375 (3-bromo-2-((2-bromo-4H-pyrazolo[1,5-d]pyrido[3,2-b]-[1,4]oxazin-4-ylidene)amino)-5-chloro-N-(1-cyclopropylethyl)benzamide) in cabbage by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to investigate their dissipation behavior and residual characteristics. Cyclaniliprole showed rapid dissipation in cabbage and had a half-life of 1.8-2.7 days. The highest residue of total cyclaniliprole (sum of cyclaniliprole and NK-1375) in cabbage from different pre-harvest intervals (3 and 5 days) was 0.25 mg/kg. Our results confirmed the generally low dietary risk quotient of cyclaniliprole (0.243-1.036%) among different age and gender groups in China. Therefore, cyclaniliprole did not pose an unacceptable risk to consumers. This study contributes to setting cyclaniliprole maximum residue limit in cabbage by assessing its dissipation fate and food safety risks.
Collapse
Affiliation(s)
- Jianzhong Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Jiayin Hou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhenlan Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ruixian Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Changpeng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
12
|
Xie H, Li Y, Li J, Chen Y, Li J, Kuang L, Shah Bacha SA, Zhang T, Chao Y. Mycotoxin Determination in Peaches and Peach Products with a Modified QuEChERS Extraction Procedure Coupled with UPLC-MS/MS Analysis. Foods 2023; 12:3216. [PMID: 37685149 PMCID: PMC10487233 DOI: 10.3390/foods12173216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Peaches are the most significant temperate fruit crop worldwide. However, peach fruits are susceptible to fungal and mycotoxin contamination. Consequently, monitoring the residual levels of multiple mycotoxins in peaches and related products is essential. In this study, a novel method based on QuEChERS extraction, followed by ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) detection, was developed for analyzing 14 mycotoxins in peaches and peach products from China. Matrix-matched calibrations were employed to accurately quantify the mycotoxins and compensate for matrix effects. Recoveries for the target analytes ranged from 84.6% to 117.6%, with intra-day and inter-day precision below 20%. The limits of quantification were 2 or 5 μg/L for the 14 mycotoxins. This method was utilized to detect the presence of target mycotoxins in 109 fresh peaches, 100 diseased peaches, and 89 peach products from China. Six mycotoxins were identified in the rotten parts of the diseased peaches, with concentrations ranging from 5.2 to 1664.3 µg/kg. In the remaining parts of the diseased peach samples, only two toxins, alternariol (AOH) and alternariol monomethyl ether (AME), were quantified at levels of 15.3 µg/kg and 15.5 µg/kg, respectively. No mycotoxins were detected in fresh peaches. For peach products, all contamination levels were below the quantitative limits and significantly lower than the maximum legal limits established for the products.
Collapse
Affiliation(s)
- Hong Xie
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Yinping Li
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Jiaxing Li
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Jing Li
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Lixue Kuang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Syed Asim Shah Bacha
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Tiejun Zhang
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Yuehui Chao
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
13
|
Tian F, Qiao C, Wang C, Pang T, Guo L, Li J, Pang R, Xie H. The dissipation pattern of spirotetramat and its four metabolites in peaches: Effects of growing conditions, storage and processing factor. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
14
|
Li X, Tu M, Yang B, Zhang Q, Li H, Ma W. Chlorantraniliprole in foods: Determination, dissipation and decontamination. Food Chem 2023; 406:135030. [PMID: 36446283 DOI: 10.1016/j.foodchem.2022.135030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/29/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Chlorantraniliprole (CAP) is the first commercially available anthranilic diamide insecticide that targets ryanodine receptors. However, excessive use of CAP can lead to persistent contamination on treated foods and adverse effects on human wellness. The current review focuses on CAP residue analysis in foods by using chromatographic techniques. QuEChERS (quick, easy, cheap, effective, rugged and safe) is the most widely used sample preparation strategy and liquid chromatography tandem mass spectrometry is the predominant analytical method for various food matrices including vegetable, fruit, grain, fish and so on. Moreover, this review summarizes the dissipation pattern of CAP on foods and found it usually dissipates fast on plant in open-field environment. For decontamination, common culinary cleaning methods could effectively remove CAP from vegetables. Finally, some new directions are proposed for better advancement.
Collapse
Affiliation(s)
- Xianjiang Li
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China.
| | - Mengling Tu
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| | - Bingxin Yang
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qinghe Zhang
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| | - Hongmei Li
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China.
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
15
|
Liu M, Li X, Han L, Wang Q, Kong X, Xu M, Wang K, Xu H, Shen Y, Gao G, Nie J. Determination and risk assessment of 31 pesticide residues in apples from China's major production regions. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
16
|
Development of a vortex-assisted dispersive micro-solid-phase extraction using reduced graphene oxide/Fe3O4 nanocomposites for the determination of chlorfenson pesticide in green tea samples by high-performance liquid chromatography-ultraviolet detection. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
El-Sheikh ESA, Ramadan MM, El-Sobki AE, Shalaby AA, McCoy MR, Hamed IA, Ashour MB, Hammock BD. Pesticide Residues in Vegetables and Fruits from Farmer Markets and Associated Dietary Risks. Molecules 2022; 27:8072. [PMID: 36432173 PMCID: PMC9695969 DOI: 10.3390/molecules27228072] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
The use of pesticides leads to an increase in agricultural production but also causes harmful effects on human health when excessively used. For safe consumption, pesticide residues should be below the maximum residual limits (MRLs). In this study, the residual levels of pesticides in vegetables and fruits collected from farmers' markets in Sharkia Governorate, Egypt were investigated using LC-MS/MS and GC-MS/MS. A total number of 40 pesticides were detected in the tested vegetable and fruit samples. Insecticides were the highest group in detection frequency with 85% and 69% appearance in vegetables and fruits, respectively. Cucumber and apple samples were found to have the highest number of pesticide residues. The mean residue levels ranged from 7 to 951 µg kg-1 (in vegetable samples) and from 8 to 775 µg kg-1 (in fruit samples). It was found that 35 (40.7%) out of 86 pesticide residues detected in vegetables and 35 (38.9%) out of 90 pesticide residues detected in fruits exceeded MRLs. Results for lambda-cyhalothrin, fipronil, dimothoate, and omethoate in spinach, zucchini, kaki, and strawberry, respectively, can cause acute or chronic risks when consumed at 0.1 and 0.2 kg day-1. Therefore, it is necessary for food safety and security to continuously monitor pesticide residues in fruits and vegetables in markets.
Collapse
Affiliation(s)
- El-Sayed A. El-Sheikh
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mahmoud M. Ramadan
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed E. El-Sobki
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ali A. Shalaby
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mark R. McCoy
- Department of Entomology and Nematology, UC Davis Cancer Center, University of California, Davis, CA 95616, USA
| | - Ibrahim A. Hamed
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed-Bassem Ashour
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Bruce D. Hammock
- Department of Entomology and Nematology, UC Davis Cancer Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
18
|
Li X, Sun Z, Yan T, Li Y, Zhang X, Liu M, Lin Y, Zhang Z, Xu H. Residue and distribution of drip irrigation and spray application of two diamide pesticides in corn and dietary risk assessment for different consumer groups. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6676-6686. [PMID: 35608937 DOI: 10.1002/jsfa.12035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND As the use of diamide insecticides on corn continues to increase, there is growing concern about their residue levels on corn and dietary risks to populations. In this study, the distribution, dispersion and transfer efficiency of two diamide insecticides (tetrachlorantraniliprole (TCAP) and cyantraniliprole (CNAP)) in different parts of corn and soil were investigated in a 1-year field trial in Guangzhou and Lanzhou using two different application methods - spray and drip irrigation, respectively - and the dietary risk of the insecticides to different consumer populations was assessed under the two application methods. RESULTS The results showed that drip irrigation had a longer persistence period than spraying, and there was a hysteresis in the absorption distribution of the agent in different parts of corn, which was gradually transferred to the leaves after absorption from the roots. The average TE1 (transfer efficiency) and TE2 were 0.230-0.261 and 1.749-1.851 for TCAP and 0.168-0.187 and 2.363-2.815 for CNAP, respectively. At corn harvest, both TCAP and CNAP were below detectable levels in soil and corn. For different consumer populations, hazard quotients ranged from 0.001 to 0.066 for TCAP and from 0.003 to 0.568 for CNAP - both well below 100%. CONCLUSION This study indicates that TCAP and CNAP applied by spray or drip irrigation are safe for long-term risk of human intake and also provides guidance for the use of both insecticides in agricultural production to control corn pests, especially in arid and semi-arid areas. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xianjia Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Zheng Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Tiantian Yan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yuan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xue Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Miaojiao Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yigang Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Zhixiang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Determination of 20 Neonicotinoid Insecticides and Their Metabolites in Infant Foods by a Modified QuEChERS Method Combined with HPLC-MS/MS. J CHEM-NY 2022. [DOI: 10.1155/2022/8092763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A rapid, effective, and reliable method for the simultaneous detection of 20 neonicotinoids and their metabolites in infant foods has been developed using liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). To improve the accuracy and precision of the method, different extraction solvents, extraction methods, and adsorbents were evaluated to achieve a better recovery and clean-up effect. Under optimized conditions, the samples were extracted with acetic acid acidified acetonitrile/ethyl acetate by ultrasonication, and then were cleaned with reduced graphene oxide@Fe3O4 (rGO@Fe3O4) and primary and secondary amine (PSA) through a QuEChERS step. A matrix-matched calibration method was applied for quantification. Relative standard deviations were all <15% for intraday and interday precision. The values of limit of detection and limit of quantification were ranging from 0.02–0.35 μg·kg−1 and 0.1–1.0 μg·kg−1, respectively. The presented method was applied to the analysis of real samples.
Collapse
|
20
|
Xu X, Guo L, Wu A, Liu L, Kuang H, Xu L, Xu C. Rapid and sensitive detection of flubendiamide in grapes and tomatoes using a colloidal gold immunochromatography assay. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1843-1854. [DOI: 10.1080/19440049.2022.2120635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Xinxin Xu
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lingling Guo
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Aihong Wu
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liqiang Liu
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
21
|
Tian F, Qiao C, Wang C, Pang T, Guo L, Li J, Pang R, Xie H. Dissipation behavior of prochloraz and its metabolites in grape under open-field, storage and the wine-making process. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Li G, Yang J, Zhang Y, Li S, Liu R. Simultaneous Determination of Diamide Insecticides in Honeysuckle Using a Modified QuEChERS Based on Carboxylated Multi‐walled Carbon Nanotubes and UPLC‐PDA**. ChemistrySelect 2022. [DOI: 10.1002/slct.202201226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Guangling Li
- Henan Institute of Science and Technology Xinxiang 453003 China
| | - Jinghua Yang
- Henan Institute of Science and Technology Xinxiang 453003 China
| | - Youduo Zhang
- Xinxiang County Bureau of Agriculture and Rural Affairs Xinxiang 453700 China
| | - Songwei Li
- Henan Institute of Science and Technology Xinxiang 453003 China
| | - Runqiang Liu
- Henan Institute of Science and Technology Xinxiang 453003 China
| |
Collapse
|
23
|
Aghris S, Alaoui OT, Laghrib F, Farahi A, Bakasse M, Saqrane S, Lahrich S, El Mhammedi M. Extraction and determination of flubendiamide insecticide in food samples: A review. Curr Res Food Sci 2022; 5:401-413. [PMID: 35243353 PMCID: PMC8861570 DOI: 10.1016/j.crfs.2022.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 01/06/2023] Open
Abstract
Flubendiamide (FBD) is the first commercially available phthalic acid diamide that targets ryanodine receptors (RyRs) in insects, which play a major role in lepidoptera control. However, excessive use of FBD can influence the quality of treated products leading to toxic effects on human health. The availability of rapid and convenient methods for evaluating FBD amount in the environment is necessary. Therefore, analytical methods were developed for the determination of residues of FBD and its metabolite desiodo in different food matrices like tomato, cabbage, pigeon pea, apple, chilli and rice. The current review carries forward methods for FBD residues analysis in foods by using several chromatographic techniques including sample preparation steps. The comparison between the different methods employed for quantitative and qualitative analysis of food quality and safety is also discussed. Liquid chromatography (LC) is the predominant analytical method for assessing the quality of foods treated with FBD. Studies related to LC coupled multichannel detector (Ultraviolet (UV), Mass spectrometry (MS)) are also applied to detect pesticide residues. Extraction and clean up steps are essential to obtain reliable results. Moreover, this review reports the allowed limits of residues for the safety of consuming products treated with FBD.
Collapse
Affiliation(s)
- S. Aghris
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - O. Tahiri Alaoui
- Moulay Ismail University, Laboratory of Physical Chemistry, Materials and Environment, Sciences and Technologies Faculty, Errachidia, Morocco
| | - F. Laghrib
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
- Sidi Mohamed Ben Abdellah University, Engineering Laboratory of Organometallic, Molecular Materials, and Environment, Faculty of sciences, Fes, Morocco
| | - A. Farahi
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - M. Bakasse
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
- Chouaib Doukkali University, Organic Micropollutants Analysis Team, Faculty of Sciences, Morocco
| | - S. Saqrane
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - S. Lahrich
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - M.A. El Mhammedi
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| |
Collapse
|
24
|
Ma W, Li J, Li X, Liu H. Enrichment of diamide insecticides from environmental water samples using metal-organic frameworks as adsorbents for determination by liquid chromatography tandem mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126839. [PMID: 34411959 DOI: 10.1016/j.jhazmat.2021.126839] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
A series of metal-organic frameworks composed of different metal ions and organic linkers were facilely synthesized and used as adsorbents for five diamide insecticides for the first time. Among them, MIL-101-NH2 performed much better than other materials due to extraordinarily high specific surface area, strong water stability, specific interaction with analytes. A sensitive method was developed with MIL-101-NH2 based dispersive solid phase extraction combining with liquid chromatography tandem mass spectrometry (dSPE-LC-MS/MS). Important parameters including adsorbent amount, enrichment time, elution solvent and volume, pH and salt effect were investigated to achieve the best enrichment efficiency. At selected conditions, the proposed method showed ultrahigh sensitivity with limits of detection low to 0.01-0.03 ng/mL, which was 2-3 orders of magnitude lower than reported methods. Wide linearity in the range of 0.03-1000 ng/mL (chlorantraniliprole, cyantraniliprole) and 0.1-2000 ng/mL (flubendiamide, cyclaniliprole, tetrachlorantraniliprole) were established with satisfactory coefficient of determination. The method was successfully used for analyzing of diamide insecticides in environmental water samples and flubendiamide was detected in several samples. This work demonstrated the first example of developing novel nanomaterials in trace amount diamide insecticide enrichment from practical samples, which opens a new perspective in establishing nanomaterial-based sample preparation method for diamide insecticide analysis.
Collapse
Affiliation(s)
- Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Jun Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xianjiang Li
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China.
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
25
|
Xu X, Guo L, Kuang H, Xu L, Xu C, Liu L. Preparation of a broad-specific monoclonal antibody and development of an immunochromatographic assay for monitoring of anthranilic diamides in vegetables and fruits. Analyst 2022; 147:5149-5160. [DOI: 10.1039/d2an01366e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A mAb-based lateral flow immunochromatographic strip for the detection of anthranilic diamides in vegetables and fruits was developed. The strip provided cut-off values of 2.5, 5, 10, and 10 ng g−1 for CHL, CYA, CYC, and TEA, respectively.
Collapse
Affiliation(s)
- Xinxin Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Lingling Guo
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Liqiang Liu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
26
|
Ma H, Yang M, Wang X, Yang B, Zhang F, Zhang F, Li Y, Liu T, He M, Wang Q. Sulfonamide-Selective Ambient Mass Spectrometry Ion Source Obtained by Modification of an Iron Sheet with a Hydrophilic Molecularly Imprinted Polymer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15425-15433. [PMID: 34898196 DOI: 10.1021/acs.jafc.1c06623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We have described a sulfonamide-selective ambient ion source coupled with electrospray ionization mass spectrometry (ESI-MS) for selective extraction and determination of trace sulfonamide antibiotics. It is obtained by modifying an iron sheet with a sulfadiazine-templated hydrophilic molecularly imprinted polymer (SF-HMIP). It behaves as both an online extractor and a MS ion source. Five sulfonamide antibiotics, including sulfamethoxazole (SMZ), sulfamerazine (SMR), sulfisoxazole (SIZ), sulfathiazole (ST), and sulfameter (SMD), were chosen to evaluate SF-HMIP coupled with ESI-MS, which showed good linearity in the range of 0.2-1000 ng/mL with correlation coefficient values (R2) over 0.9946. The limits of detection (LODs) for analysis of pure water and honey were in the range of 0.1-0.2 and 0.2-1.5 ng/mL, respectively. Limits of quantitation (LOQs) for analysis of pure water and honey were in the range of 0.3-0.5 and 1.0-5.0 ng/mL, respectively. The results demonstrated that SF-HMIP combined with ESI-MS could be applied for the direct analysis of five trace sulfonamide compounds in honey and pure water with recoveries ranging from 76 to 129%.
Collapse
Affiliation(s)
- Hongyue Ma
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Minli Yang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Xiujuan Wang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Bingcheng Yang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feifang Zhang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Yinlong Li
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Tong Liu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Muyi He
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Qian Wang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
27
|
Lin T, Chen X, Wang L, Fang H, Li M, Li Y, Liu H. Determination of new generation amide insecticide residues in complex matrix agricultural food by ultrahigh performance liquid chromatography tandem mass spectrometry. Sci Rep 2021; 11:23208. [PMID: 34853353 PMCID: PMC8636469 DOI: 10.1038/s41598-021-02645-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/22/2021] [Indexed: 11/09/2022] Open
Abstract
Eight new generation amide insecticide residues analysis by multiwalled carbon nanotubes (MWCNs) cleanup, combined with QuEChERS and ultrahigh performance liquid chromatography tandem mass spectrometry has been developed and successfully applied in complex matrix such as orange, celery, onion, litchi, mango, shallot, chives, avocado, garlic. The matric effect of MWCNs is optimized and compared with ordinary cleanup materials. The results show that the performance of MWCNs is fine and effectively reduce matrix interference. Through chemical structure skeletons analyzed, chlorantraniliprole, bromoantraniliprole, and cyantraniliprole can cause same product ions of m/z 286.0 or 177.1 in the ESI+ mode, then tetrachlorantraniliprole and cyclaniliprole can produce collective ions of m/z 146.9 in the ESI- mode. The coefficients (R2) were greater than 0.9990, the limit of quantification ranges from 0.03 to 0.80 μg/kg, the recovery rate ranges from 71.2 to 120%, and the relative standard deviation (RSD) ranges from 3.8 to 9.4%. The method is fast, simple, sensitive, and suitable for the rapid determination of amide pesticides in complex matrix agricultural food.
Collapse
Affiliation(s)
- Tao Lin
- Quality Standards and Testing Technology Research Institute, Yunnan Academy of Agricultural Science, Beijing Road 2238 Number, Kunming, 650205, People's Republic of China.,Laboratory of Quality & Safety Risk Assessment for Agro-Products (Kunming), Ministry of Agriculture and Rural Affairs, Kunming, 650205, People's Republic of China
| | - Xinglian Chen
- Quality Standards and Testing Technology Research Institute, Yunnan Academy of Agricultural Science, Beijing Road 2238 Number, Kunming, 650205, People's Republic of China
| | - Li Wang
- Quality Standards and Testing Technology Research Institute, Yunnan Academy of Agricultural Science, Beijing Road 2238 Number, Kunming, 650205, People's Republic of China
| | - Haixian Fang
- Quality Standards and Testing Technology Research Institute, Yunnan Academy of Agricultural Science, Beijing Road 2238 Number, Kunming, 650205, People's Republic of China
| | - Maoxuan Li
- Quality Standards and Testing Technology Research Institute, Yunnan Academy of Agricultural Science, Beijing Road 2238 Number, Kunming, 650205, People's Republic of China
| | - Yangang Li
- Quality Standards and Testing Technology Research Institute, Yunnan Academy of Agricultural Science, Beijing Road 2238 Number, Kunming, 650205, People's Republic of China
| | - Hongcheng Liu
- Quality Standards and Testing Technology Research Institute, Yunnan Academy of Agricultural Science, Beijing Road 2238 Number, Kunming, 650205, People's Republic of China. .,Laboratory of Quality & Safety Risk Assessment for Agro-Products (Kunming), Ministry of Agriculture and Rural Affairs, Kunming, 650205, People's Republic of China.
| |
Collapse
|
28
|
Tian F, Qiao C, Wang C, Luo J, Guo L, Pang T, Li J, Wang R, Pang R, Xie H. Development and validation of a method for the analysis of trifludimoxazin, picarbutrazox and pyraziflumid residues in cereals, vegetables and fruits using ultra-performance liquid chromatography/tandem mass spectrometry. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Luo J, Bian C, Rao L, Zhou W, Li Y, Li B. Determination of the residue behavior of isocycloseram in Brassica oleracea and soil using the QuEChERS method coupled with HPLC. Food Chem 2021; 367:130734. [PMID: 34359003 DOI: 10.1016/j.foodchem.2021.130734] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/04/2022]
Abstract
Isocycloseram is a new isoxazoline insecticide that can efficiently control the diamondback moth in cruciferous crops. The aim of this study was to establish a method for the determination of isocycloseram residues in/on cabbage and in the soil using HPLC-UV at 264 nm. A field test was conducted in December 2019 and 2020 to monitor isocycloseram dissipation in Jiangxi, China. Acetonitrile was used to extract isocycloseram from cabbage and soil. C18 and GCB were used to purify cabbage extracts, whereas soil extracts did not require purification. At the addition level of 0.01-1.0 mg/kg, the average recoveries in cabbage and soil were 91.81-109.95% and 89.89-104.08% respectively. After having applied 10% isocycloseram DC, isocycloseram dissipated faster in the cabbage matrix. Isocycloseram residues on cabbage leaves could be removed through simple cleaning methods, especially by soaking in 2% citric acid.
Collapse
Affiliation(s)
- Juan Luo
- College of Agricultural Sciences, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chuanfei Bian
- College of Land Resources and Environment, Jiangxi Agricultural University 330045, China
| | - Lei Rao
- College of Agricultural Sciences, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenwen Zhou
- College of Food Sciences, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuqi Li
- College of Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Baotong Li
- College of Land Resources and Environment, Jiangxi Agricultural University 330045, China.
| |
Collapse
|
30
|
Le LHT, Tran-Lam TT, Cam TQ, Nguyen TN, Dao YH. Pesticides in edible mushrooms in Vietnam. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2021; 14:139-148. [PMID: 33899691 DOI: 10.1080/19393210.2021.1908434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Maximum residue limits (MRLs) for pesticides have been established for edible mushrooms in order to control quality and ensure benefits of consumers in numerous countries, especially areas comprising Europe. In this study, by means of optimising extract purification conditions, a high sensitivity and reliability method to simultaneously determine 180 pesticides in mushrooms has been proposed. Matrix effects were minimised by combining QuEChERS extraction and a mixed mode of SPE cleaned up with different adsorbent materials after sample preparation. The method was completely validated following the requirements of SANTE/12682/2019. The LOQs ranged from 2 to 5 μg/kg, well below the MRLs as regulated by the EU (10-50 μg/kg). Both relative standard deviation of repeatability (RSDr) and reproducibility (RSDR) were less than 20% and recoveries varied from 70 to 120%. Therefore, this method was considered to be suitable for routine analysis of multi-pesticide residues in edible mushrooms.
Collapse
Affiliation(s)
- Le Hai Thi Le
- Faculty of Environment, Hanoi University of Natural Resources and Environment, Ministry of Natural Resource and Environment (MONRE), Hanoi, Vietnam
| | - Thanh-Thien Tran-Lam
- Laboratory of Environmental and bioorganic chemistry, Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Department of Mechanics and Marine Environment, Institute of Mechanics and Applied Informatics, Vietnam Academy of Science and Technology, Ho Chi Minh city, Vietnam
| | - Thuy Quan Cam
- Department of Analytical Engineering, Viet Tri University of Industry (VUI), Viet TrI, Phu Tho, Vietnam
| | - Tung Ngoc Nguyen
- Technology Development and Measurement Services Department, Center for Research and Technology Transfer (CRETECH), Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Yen Hai Dao
- Laboratory of Environmental and bioorganic chemistry, Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
31
|
Bagheri AR, Aramesh N, Bilal M. New frontiers and prospects of metal-organic frameworks for removal, determination, and sensing of pesticides. ENVIRONMENTAL RESEARCH 2021; 194:110654. [PMID: 33359702 DOI: 10.1016/j.envres.2020.110654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Pesticides have been widely used in agriculture to control, reduce, and kill insects. Humans are also being using pesticides to control insidious animals in daily life. By these practices, a huge volume of pesticides is introduced to the environment. Despite broad-spectrum applicability, pesticides also have hazardous effects on both humans and animals at high and low concentrations. Long-term exposure to pesticides can cause different diseases, like leukemia, lymphoma, and cancers of the brain, breasts, prostate, testis, and ovaries. Reproductive disorders from pesticides include birth defects, stillbirth, spontaneous abortion, sterility, and infertility. Therefore, the application of determination and treatment methods for pre-concentration and removal of these toxic materials from the environment appears a vital concern. To date, different materials and approaches have been employed for these purposes. Among these approaches, multifunctional metal-organic frameworks (MOFs)-assisted adsorption and determination processes have always been in the spotlight. These facts are due to exclusive properties of MOFs in terms of the crystallinity, large surface area, high chemical, and physical stability, and controllable structure as well as unique features of adsorption and determination process in terms of simple, easy, cheap, available method and ability to use in large and industrial scales. In the present work, we illustrate the exceptional features of MOFs as well as the possible mechanism for the adsorption of pesticides by MOFs. The use of these fantastic materials for pre-concentration and removal of pesticides are extensively explored. In addition, the performance of MOFs was compared with other adsorbents. Finally, the new frontiers and prospects of MOFs for the determination, sensing, and removal of pesticides are presented.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Chemistry Department, Yasouj University, Yasouj, 75918-74831, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
32
|
Xu B, Wang K, Vasylieva N, Zhou H, Xue X, Wang B, Li QX, Hammock BD, Xu T. Development of a nanobody-based ELISA for the detection of the insecticides cyantraniliprole and chlorantraniliprole in soil and the vegetable bok choy. Anal Bioanal Chem 2021; 413:2503-2511. [PMID: 33580830 DOI: 10.1007/s00216-021-03205-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
Cyantraniliprole and chlorantraniliprole are anthranilic diamide insecticides acting on ryanodine receptors. In this study, two camel-derived nanobodies (Nbs, named C1 and C2) recognizing cyantraniliprole as well as chlorantraniliprole were generated. C1-based enzyme-linked immunosorbent assays (ELISAs) for the detection of the two insecticides were developed. The half-maximum signal inhibition concentrations (IC50) of cyantraniliprole and chlorantraniliprole by ELISA were 1.2 and 1.5 ng mL-1, respectively. This assay was employed to detect these two insecticides in soil and vegetables. The average recoveries of cyantraniliprole from both bok choy (Brassica chinensis L.) and soil samples were 90-129%, while those of chlorantraniliprole were in a range of 89-120%. The insecticide residues in soil and bok choy, which were collected from plots sprayed with cyantraniliprole and chlorantraniliprole, were simultaneously detected by the resulting ELISA and a high-performance liquid chromatography (HPLC) method, showing a satisfactory correlation. Higher concentrations of chlorantraniliprole than cyantraniliprole were detected in soil and vegetables, which indicates the longer persistence of chlorantraniliprole in the environment.
Collapse
Affiliation(s)
- Bojie Xu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Kai Wang
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Natalia Vasylieva
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, California, 95616, USA
| | - Hang Zhou
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Xianle Xue
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Baomin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, Hawaii, 96822, USA
| | - Bruce D Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, California, 95616, USA
| | - Ting Xu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
33
|
Tian F, Qiao C, Wang C, Luo J, Guo L, Pang T, Li J, Wang R, Pang R, Xie H. Simultaneous determination of spirodiclofen, spiromesifen, and spirotetramat and their relevant metabolites in edible fungi using ultra-performance liquid chromatography/tandem mass spectrometry. Sci Rep 2021; 11:1547. [PMID: 33452378 PMCID: PMC7810688 DOI: 10.1038/s41598-021-81013-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/01/2021] [Indexed: 11/09/2022] Open
Abstract
A fast, sensitive, and reliable analytical method was developed and validated for simultaneous identification and quantification of spirodiclofen, spiromesifen, and spirotetramat and their relevant metabolites in edible fungi by ultra-performance liquid chromatography/tandem mass spectrometry (UHPLC–MS/MS). First, sample extraction was done with acetonitrile containing 1% formic acid followed by phase separation with the addition of MgSO4:NaOAc. Then, the supernatant was purified by primary secondary amine (PSA), octadecylsilane (C18), and graphitized carbon black (GCB). The linearities of the calibrations for all analytes were excellent (R2 ≥ 0.9953). Acceptable recoveries (74.5–106.4%) for all analytes were obtained with good intra- and inter- relative standard deviations of less than 14.5%. The limit of quantification (LOQs) for all analytes was 10 μg kg−1. For accurate quantification, matrix-matched calibration curve was applied to normalize the matrix effect. The results indicated that the method was suitable for detecting the three acaricides and their relevant metabolites in edible fungi.
Collapse
Affiliation(s)
- Fajun Tian
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Chengkui Qiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Caixia Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jing Luo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Linlin Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Tao Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jun Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Ruiping Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Rongli Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| | - Hanzhong Xie
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| |
Collapse
|
34
|
Lu Z, Pan H. Preparative isolation of the major metabolite NK-1375 of diamide insecticide cyclaniliprole and its application to pertinent residue analysis in plant-origin foods using UHPLC-MS/MS. Biomed Chromatogr 2020; 35:e5056. [PMID: 33341091 DOI: 10.1002/bmc.5056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 11/07/2022]
Abstract
NK-1375 is a major metabolite of the diamide insecticide cyclaniliprole (CYCP) with toxicological significance. It is formed in various transformation pathways of CYCP, including photolysis and plant metabolism. In the present study, NK-1375 was produced employing the liquid-phase photolysis of CYCP followed by isolation using preparative liquid chromatography. The structure of the isolated substance was confirmed using MS and 1 H NMR spectroscopy, and its purity was measured to be 95.9% using HPLC. As its application, a residue analysis method was first developed for the simultaneous determination of CYCP and NK-1375 in six representative plant-origin foods using fast multi-plug filtration cleanup and UHPLC-MS/MS. Excellent linearity (r > 0.999) was obtained over the calibration range from 0.001 to 0.1 μg mL-1 . The recoveries (intra-day and inter-day) of CYCP and NK-1375 from different matrices ranged from 74 to 112%, with corresponding relative standard deviations less than 13%. The limits of quantitation of these two compounds were defined at 0.01 mg kg-1 . This study can be useful for the subsequent analytical or toxicological research on this important pesticide metabolite.
Collapse
Affiliation(s)
- Zhou Lu
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
35
|
Ozone treatment pak choi for the removal of malathion and carbosulfan pesticide residues. Food Chem 2020; 337:127755. [PMID: 32777567 DOI: 10.1016/j.foodchem.2020.127755] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/01/2020] [Accepted: 08/01/2020] [Indexed: 01/15/2023]
Abstract
Since the beginning of the widespread use of pesticides, their removal from food has become a serious concern. In this study, the removal of residual pesticides (malathion and carbosulfan) from pak choi via treatment with ozonated water was investigated. Under the optimal treatment conditions, i.e., 2.0 mg/L ozonated water and a treatment duration of 15 min, malathion and carbosulfan were degraded by 53.0 and 33.0%, respectively, without any significant changes in color. Even though there was a slight decrease in vitamin C content (~7.9 mg/100 g) following the treatments, a significant decrease in the microbial colonies on the vegetables was observed. Additionally, the pesticide degradation mechanism showed good fitting with a "first + first"-order kinetic model (R2 > 0.9), and the slope (k) indicated that ozone had a more prominent degradation effect on malathion than on carbosulfan. Therefore, this study provides a theoretical basis for controlling agricultural pesticide residues in household applications.
Collapse
|