1
|
Lin Y, Liu J, Sun Y, Chen S, Chen J, Fu F. Bio-accessibility and bio-availability evaluation of each arsenic species existing in various edible seaweeds in vitro and in vivo for arsenic risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174247. [PMID: 38936725 DOI: 10.1016/j.scitotenv.2024.174247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Seaweeds consumption is one of main internal exposure sources of arsenic for human. However, the absence of representative bio-availabilities of arsenic species makes the accurate assessment of arsenic health risk originating from seaweeds consumption impossible. Herein, the arsenic species in various seaweeds collected from Fujian of China were investigated, and the bio-accessibilities/bio-availabilities of arsenic species existing in seaweeds were evaluated in vitro and in vivo. Results revealed that in vitro bio-availabilities of arsenic species presenting in seaweeds, which obtained with Caco-2 cells, were lower than those of pure arsenic standards, and varied with order of inorganic arsenic (iAs) > dimethylarsinic acid (DMA) ≈ arsenobetaine (AsB) > arsenosugars. During gastrointestinal digestion of mice, As5+ was partly methylated into monomethylarsonic acid (MMA) and DMA, which makes the in vivo bioavailability of iAs (⁓31.8 %) obtained with mouse metabolic experiment is much higher than its in vitro bio-availability (⁓10.3 %). The in vivo bio-availabilities of DMA and total arsenic (tAs) are similar to their in vitro bio-availabilities. As the dominant arsenic species in most seaweeds, arsenosugars have an ⁓0.0 % of in vivo bioavailability and only a ⁓3.7 % of in vitro bioavailability. The simulated calculation of target hazard quotient (THQ) and target cancer risk (TR) revealed that the arsenic risk originating from seaweeds was greatly degraded by taking into consideration of arsenic species and bio-availabilities, and all seaweeds collected from Fujian are safety for consumption. The simulated calculation also revealed that arsenic risk of seaweeds can be also more accurately assessed based on tAs together with bioavailability, which provides a simple but accurate and protective method for the risk assessment of arsenic originating from seaweeds. Our work provides the possible representative bio-availabilities of arsenic species presenting in seaweeds for accurately assessing arsenic risk of seaweeds, and novel insights into the bio-availabilities of arsenic in animal.
Collapse
Affiliation(s)
- Yue Lin
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Junfeng Liu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ying Sun
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Shilong Chen
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jianlang Chen
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - FengFu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
2
|
Mantzourani I, Nikolaou A, Kourkoutas Y, Alexopoulos A, Dasenaki M, Mastrotheodoraki A, Proestos C, Thomaidis N, Plessas S. Chemical Profile Characterization of Fruit and Vegetable Juices after Fermentation with Probiotic Strains. Foods 2024; 13:1136. [PMID: 38611440 PMCID: PMC11011985 DOI: 10.3390/foods13071136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024] Open
Abstract
Lactic acid bacteria (LAB) are widely applied for fermentation purposes in dairy and non-dairy food matrices with beneficial technological and health-promoting properties. This study describes the effect of two lactic acid bacteria, namely, Lactiplantibacillus paracasei SP5 and Pediococcus pentosaceus SP2, on the phenolic profiles, antioxidant activities, total phenolic content (TPC), carotenoid content, and sensorial profile of two different mixed fruit juices. After 48 h of fermentation, both LABs retained viability over 9 Log CFU/mL in both juices. The TPC, zeaxanthin + lutein, β-carotene content, and antioxidant activity (AA) were elevated for both LABs and mixed juices after 48 h of fermentation compared to control samples. Regarding the phenolic profile, both juices exhibited a significant decrease in chlorogenic acid levels, while quinic acid and tyrosol concentrations showed notable increases.
Collapse
Affiliation(s)
- Ioanna Mantzourani
- Laboratory of Food Processing, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Anastasios Nikolaou
- Laboratory of Food Processing, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece
- Laboratory of Applied Microbiology & Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology & Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Athanasios Alexopoulos
- Laboratory of Microbiology, Biotechnology & Hygiene, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Marilena Dasenaki
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Artemis Mastrotheodoraki
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Stavros Plessas
- Laboratory of Food Processing, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece
| |
Collapse
|
3
|
Zhou B, Zeng X, Wang Q, Liu Y, Liu X, Wu Y, Gong Z, Fang M. Exposure and Health Risk Assessment of Heavy Metal in Crayfish from the Middle and Lower Reaches of the Yangtze River. Biol Trace Elem Res 2024; 202:332-345. [PMID: 37086355 DOI: 10.1007/s12011-023-03672-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/16/2023] [Indexed: 04/23/2023]
Abstract
Red swamp crayfish (Procambarus clarkia) is an exposed species to heavy metals due to their lifestyle of direct contact with sediments. Based on the complete crayfish industry, we focus on the presence of heavy metals in crayfish from different circulation links, which provides a new idea for the investigation of heavy metals in food. To analyze the exposure levels of heavy metals in crayfish during aquaculture and circulation, the five elements (Cd, Pb, Hg, Cr, Cu) in crayfish from 126 sampling sites were investigated. Cultured environmental samples were collected for Spearman correlation analysis. Monte Carlo simulation was used to analyze the uncertain health risks of heavy metals in crayfish. The results indicated that the average heavy metal concentrations in crayfish were all below the limit threshold values. The hepatopancreas was the main target organ for heavy metal accumulation (Cd: 0.3132 mg/kg; Pb: 0.0258 mg/kg; Hg: 0.0072 mg/kg; Cr: 0.1720 mg/kg; Cu: 10.6816 mg/kg). The positive correlation of heavy metal content between crayfish and sediments was not significant under the crayfish-rice coculture model. The 95th HI values for adults and children ranged from 0.022 to 0.042 and 0.071 to 0.137, well below 1, indicating that heavy metals do not pose a noncarcinogenic risk to humans. The potential carcinogenic risk of Cd and Cr in crayfish should be taken seriously, as the 95th CR values for children have reached 4.299 × 10-5 and 6.509 × 10-5, respectively.
Collapse
Affiliation(s)
- Bingjie Zhou
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xiaoyu Zeng
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Qiao Wang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yan Liu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xin Liu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yongning Wu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese, Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Zhiyong Gong
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Min Fang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
4
|
de Paiva EL, Ali S, Vasco ER, Alvito PC, de Oliveira CAF. Bioaccessibility data of potentially toxic elements in complementary foods for infants: A review. Food Res Int 2023; 174:113485. [PMID: 37986492 DOI: 10.1016/j.foodres.2023.113485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 11/22/2023]
Abstract
The introduction of complementary foods (CFs) is a critical step in an infant's transition to solid foods, providing essential nutrients beyond breast milk. However, CFs may contain potentially toxic elements (PTEs), such as arsenic and cadmium that pose health risks to infants. In this context, understanding the bioaccessibility of PTEs is vital as it determines the fraction of a contaminant released from the food matrix and available for absorption in the gastrointestinal tract. Efforts have been made to standardize the assessment methodology for bioaccessibility, ensuring consistent and reliable data. Moreover, regulatory agencies have established guidelines for PTEs levels in food. However, important gaps still exist, which motivates many research opportunities on this topic.
Collapse
Affiliation(s)
- Esther Lima de Paiva
- Faculty of Animal Science and Food Engineering - University of São Paulo (FZEA/USP), Rua Duque de Caxias, 13635-900 Pirassununga, SP, Brazil.
| | - Sher Ali
- Faculty of Animal Science and Food Engineering - University of São Paulo (FZEA/USP), Rua Duque de Caxias, 13635-900 Pirassununga, SP, Brazil
| | - Elsa Reis Vasco
- National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | - Paula Cristina Alvito
- National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | | |
Collapse
|
5
|
Li M, Chen Z, Xiong Q, Mu Y, Xie Y, Zhang M, Ma LQ, Xiang P. Refining health risk assessment of arsenic in wild edible boletus from typical high geochemical background areas: The role of As species, bioavailability, and enterotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122148. [PMID: 37419204 DOI: 10.1016/j.envpol.2023.122148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/04/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Arsenic (As) is easily accumulated in wild Boletus. However, the accurate health risks and adverse effects of As on humans were largely unknown. In this study, we analyzed the total concentration, bioavailability, and speciation of As in dried wild boletus from some typical high geochemical background areas using an in vitro digestion/Caco-2 model. The health risk assessment, enterotoxicity, and risk prevention strategy after consumption of As-contaminated wild Boletus were further investigated. The results showed that the average concentration of As was 3.41-95.87 mg/kg dw, being 1.29-56.3 folds of the Chinese food safety standard limit. DMA and MMA were the dominant chemical forms in raw and cooked boletus, while their total (3.76-281 mg/kg) and bioaccessible (0.69-153 mg/kg) concentrations decreased to 0.05-9.27 mg/kg and 0.01-2.38 mg/kg after cooking. The EDI value of total As was higher than the WHO/FAO limit value, while the bioaccessible or bioavailable EDI suggested no health risks. However, the intestinal extracts of raw wild boletus triggered cytotoxicity, inflammation, cell apoptosis, and DNA damage in Caco-2 cells, indicating existing health risk assessment models based on total, bioaccessible, or bioavailable As may be not accurate enough. Given that, the bioavailability, species, and cytotoxicity should be systematically considered in accurate risk assessment. In addition, cooking mitigated the enterotoxicity along with decreasing the total and bioavailable DMA and MMA in wild boletus, suggesting that cooking could be a simple and effective way to decrease the health risks of consumption of As-contaminated wild boletus.
Collapse
Affiliation(s)
- Mengying Li
- Yunnan Provincial Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Zheng Chen
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Qing Xiong
- Environmental Health Institute, Center for Disease Control and Prevention of Yunnan Province, Kunming, 650022, China
| | - Yunzhen Mu
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Yumei Xie
- Yunnan Provincial Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Mengyan Zhang
- Yunnan Provincial Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ping Xiang
- Yunnan Provincial Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
6
|
Shah MM, Ahmad K, Boota S, Jensen T, La Frano MR, Irudayaraj J. Sensor technologies for the detection and monitoring of endocrine-disrupting chemicals. Front Bioeng Biotechnol 2023; 11:1141523. [PMID: 37051269 PMCID: PMC10083357 DOI: 10.3389/fbioe.2023.1141523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are a class of man-made substances with potential to disrupt the standard function of the endocrine system. These EDCs include phthalates, perchlorates, phenols, some heavy metals, furans, dimethoate, aromatic hydrocarbons, some pesticides, and per- and polyfluoroalkyl substances (PFAS). EDCs are widespread in the environment given their frequent use in daily life. Their production, usage, and consumption have increased many-fold in recent years. Their ability to interact and mimic normal endocrine functions makes them a potential threat to human health, aquatics, and wild life. Detection of these toxins has predominantly been done by mass spectroscopy and/or chromatography-based methods and to a lesser extent by advanced sensing approaches such as electrochemical and/or colorimetric methods. Instrument-based analytical techniques are often not amenable for onsite detection due to the lab-based nature of these detecting systems. Alternatively, analytical approaches based on sensor/biosensor techniques are more attractive because they are rapid, portable, equally sensitive, and eco-friendly. Advanced sensing systems have been adopted to detect a range of EDCs in the environment and food production systems. This review will focus on advances and developments in portable sensing techniques for EDCs, encompassing electrochemical, colorimetric, optical, aptamer-based, and microbial sensing approaches. We have also delineated the advantages and limitations of some of these sensing techniques and discussed future developments in sensor technology for the environmental sensing of EDCs.
Collapse
Affiliation(s)
- Muhammad Musaddiq Shah
- Department of Biological Sciences, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Khurshid Ahmad
- College of Food Sciences and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Sonia Boota
- Department of Biological Sciences, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Tor Jensen
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, United States
| | - Michael R. La Frano
- Metabolomics Core Facility, Roy J Carver Biotechnology Center, The University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Joseph Irudayaraj
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, United States
- Department of Bioengineering, The University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Micro and Nanotechnology Laboratory, The University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Joseph Irudayaraj,
| |
Collapse
|
7
|
Song R, Li W, Deng S, Zhao Y, Tao N. Assessment of lipid composition and eicosapentaenoic acid/docosahexaenoic acid bioavailability in fish oil obtained through different enrichment methods. Front Nutr 2023; 10:1136490. [PMID: 36998903 PMCID: PMC10043196 DOI: 10.3389/fnut.2023.1136490] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
In this study, we analyzed the eicosapentaenoic acid/docosahexaenoic acid (EPA/DHA) lipid composition of fish oil obtained through enzymatic treatment, fractional distillation and silica gel column purification, and further assessed EPA/DHA bioavailability. Lipid subclass composition information was obtained through ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS), and bioavailability tests were performed using the Caco-2 cell monolayer model. Results showed that enzymatic treatment improved the incorporation of EPA/DHA as diacylglycerol (DG) while silica gel column chromatography enriched the content of EPA/DHA as phosphatidylglycerol (PG) (12.58%) and phosphatidylethanolamine (PE) (4.99%). Furthermore, increasing the purity of EPA/DHA could improve its bioavailability and after 24 incubation, binding forms of triglyceride (TG) was superior to ethyl ester (EE) (p < 0.05) at the same purity level. Those findings are helpful to provide research basis for exploring the bioactivity of fish oil.
Collapse
Affiliation(s)
- Rongzhen Song
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Wen Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ningping Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- *Correspondence: Ningping Tao,
| |
Collapse
|
8
|
Xu J, Zhu Z, Zhong B, Gong W, Du S, Zhang D, Chen Y, Li X, Zheng Q, Ma J, Sun L, Lu S. Health risk assessment of perchlorate and chlorate in red swamp crayfish (Procambarus clarkii) in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156889. [PMID: 35753452 DOI: 10.1016/j.scitotenv.2022.156889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Perchlorate and chlorate are both strong oxidants and thyroid toxicants that are widely distributed in soil, water and human foods. The red swamp crayfish (Procambarus clarkii) is a common aquatic organism that is popular in Chinese culinary dishes. Dietary intake is the main route of human exposure to perchlorate and chlorate, though the health risks of crayfish consumption are unknown. Thus, this study investigated the quantities of perchlorate and chlorate in red swap crayfish from sampling sites in five provinces located near the Yangtze River in China, along with the associated health risks of consuming this species. Perchlorate was detected in 55.6-100 % of crayfish samples in each sampling location, and chlorate was found in 100 % of samples cross all sites. Concentrations of perchlorate in crayfish from upstream provinces (Hubei, Hunan and Jiangxi) were higher than those from downstream provinces (Anhui and Jiangsu). Perchlorate and chlorate concentrations were positively correlated in crayfish, suggesting that chlorate may be a degradation byproduct of perchlorate. The quantities of both pollutants in hepatopancreas tissue were higher than in muscle tissues (p < 0.05), such that we do not recommend ingesting crayfish hepatopancreas. Hazard quotient (HQ) values for chlorate in crayfish were <1 across all provinces, suggesting no potential health risk of chlorate exposure through crayfish consumption. However, perchlorate concentrations in crayfish from the Jiangxi province had an associated HQ value >1, suggesting potential risks for human health. These results will be useful in informing mitigation measures aimed at reducing perchlorate exposure associated with crayfish consumption.
Collapse
Affiliation(s)
- Jiayi Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Zhou Zhu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Baisen Zhong
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Weiran Gong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Sijin Du
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yining Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Quanzhi Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Jiaojiao Ma
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Litao Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
9
|
Wang X, Wang M, Zhao H, Liu J, Xing M, Huang H, Cohen Stuart MA, Wang J. Flash nanoprecipitation enables regulated formulation of soybean protein isolate nanoparticles. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Chen M, Wang M, Zhou B, Zhou M, Wang Q, Liu X, Liu Y, Wu Y, Zhao X, Gong Z. Trends in the Exposure, Distribution, and Health Risk Assessment of Perchlorate among Crayfish in the Middle and Lower Reaches of the Yangtze River. Foods 2022; 11:foods11152238. [PMID: 35954009 PMCID: PMC9368539 DOI: 10.3390/foods11152238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Perchlorate is a well-known thyroid-disrupting chemical as well as an extremely stable inorganic pollutant widely distributed in the environment. Therefore, perchlorate posts potential risks to the environment as well as human health. Crayfish is a dominant aquatic food with increasing consumption levels in recent years. It is crucial to evaluate the accumulation of perchlorate with well-water-soluble properties in crayfish and to assess its health risks. In our present study, we obtained crayfish samples from cultivated ponds and markets based on the regions of the Middle and Lower Reaches of the Yangtze River. The perchlorate concentration was measured in all 206 samples using ultra-high performance liquid chromatography coupled with mass spectrometry (UPLC–MS). Monte Carlo simulation was used to perform health risk assessments. The results indicated that perchlorate levels ranged from 7.74–43.71 μg/kg for cultivated crayfish and 4.90–16.73 μg/kg for crayfish sold in markets. The perchlorate accumulation mainly occurred in exoskeleton parts. All the HQ values were remarkable, at less than one—indicating that perchlorate exposure through the ingestion of crayfish does not pose an appreciable risk to human health.
Collapse
Affiliation(s)
- Mengyuan Chen
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.C.); (M.W.); (B.Z.); (M.Z.); (Q.W.); (X.L.); (Y.L.); (Y.W.); (X.Z.)
| | - Manman Wang
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.C.); (M.W.); (B.Z.); (M.Z.); (Q.W.); (X.L.); (Y.L.); (Y.W.); (X.Z.)
| | - Bingjie Zhou
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.C.); (M.W.); (B.Z.); (M.Z.); (Q.W.); (X.L.); (Y.L.); (Y.W.); (X.Z.)
| | - Mengxin Zhou
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.C.); (M.W.); (B.Z.); (M.Z.); (Q.W.); (X.L.); (Y.L.); (Y.W.); (X.Z.)
| | - Qiao Wang
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.C.); (M.W.); (B.Z.); (M.Z.); (Q.W.); (X.L.); (Y.L.); (Y.W.); (X.Z.)
| | - Xin Liu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.C.); (M.W.); (B.Z.); (M.Z.); (Q.W.); (X.L.); (Y.L.); (Y.W.); (X.Z.)
| | - Yan Liu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.C.); (M.W.); (B.Z.); (M.Z.); (Q.W.); (X.L.); (Y.L.); (Y.W.); (X.Z.)
| | - Yongning Wu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.C.); (M.W.); (B.Z.); (M.Z.); (Q.W.); (X.L.); (Y.L.); (Y.W.); (X.Z.)
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Xiaole Zhao
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.C.); (M.W.); (B.Z.); (M.Z.); (Q.W.); (X.L.); (Y.L.); (Y.W.); (X.Z.)
| | - Zhiyong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.C.); (M.W.); (B.Z.); (M.Z.); (Q.W.); (X.L.); (Y.L.); (Y.W.); (X.Z.)
- Correspondence: ; Tel./Fax: +86-27-83924790
| |
Collapse
|
11
|
Wang Q, Song W, Tian Y, Hu P, Liu X, Xu L, Gong Z. Targeted Lipidomics Reveal the Effect of Perchlorate on Lipid Profiles in Liver of High-Fat Diet Mice. Front Nutr 2022; 9:837601. [PMID: 35360694 PMCID: PMC8964020 DOI: 10.3389/fnut.2022.837601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023] Open
Abstract
Perchlorate, commonly available in drinking water and food, acts on the iodine uptake by the thyroid affecting lipid metabolism. High-fat diets leading to various health problems continually raise public concern. In the present study, liver lipid metabolism profiles and metabolic pathways were investigated in C57BL/6J mice chronically exposed to perchlorate using targeted metabolomics. Mice were fed a high-fat diet and treated orally with perchlorate at 0.1 mg/kg bw (body weight), 1 mg/kg bw and 10 mg/kg bw daily for 12 weeks. Perchlorate induced disorders of lipid metabolism in vivo and hepatic lipid accumulation confirmed by serum biochemical parameters and histopathological examination. There were 34 kinds of lipid in liver detected by UHPLC-MS/MS and key metabolites were identified by multivariate statistical analysis evaluated with VIP > 1, p-value < 0.05, fold change > 1.2 or < 0.8. Perchlorate low, medium and high dose groups were identified with 11, 7 and 8 significantly altered lipid metabolites compared to the control group, respectively. The results of the metabolic pathway analysis revealed that the differential metabolites classified into different experimental groups contribute to the glycerophospholipid metabolic pathway. These findings provide insights into the effects of perchlorate on lipid metabolism during long-term exposure to high-fat diets and contribute to the evaluation of perchlorate liver toxic mechanisms and health effects.
Collapse
Affiliation(s)
- Qiao Wang
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Wanying Song
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yimei Tian
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Peihao Hu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Xin Liu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Lin Xu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zhiyong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
12
|
Calderón R, Jara C, Albornoz F, Palma P, Arancibia-Miranda N, Karthikraj R, Zhu H. Accumulation and distribution of perchlorate in spinach and chard growing under greenhouse: Implications for food safety in baby foods commodities. Food Chem 2022; 370:131101. [PMID: 34537427 DOI: 10.1016/j.foodchem.2021.131101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/04/2022]
Abstract
Very little information is available with regards to the bioavailability of perchlorate in spinach or chard used in the production of baby foods commodities. In the present study, the uptake and accumulation of perchlorate were compared under two different treatments (T1: 1 and T2: 10 mg L-1 ClO4-). Our results indicate that spinach has a higher capacity to accumulate perchlorate than chard (p < 0.0185). Concentrations of perchlorate in leaves, stems and roots (leaves > stem > roots) all gradually increased (p < 0.0001) as vegetable growing and treatment (T2 > T1). No significant differences were found between the control and T1. The daily intake for perchlorate (control) is below the proposed international standard, however, it was exceeded in T1 and T2. The results suggested that perchlorate is actively accumulate in high concentrations in vegetables used in the production of baby food commodities and the exposure of perchlorate via the food consumption (baby foods) was evaluated as not safe.
Collapse
Affiliation(s)
- R Calderón
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Fabrica 1990, Segundo Piso, Santiago, Chile.
| | - C Jara
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago de Chile, Chile
| | - F Albornoz
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - P Palma
- Laboratorio de Salud Pública, Ambiental y Laboral, Servicio Regional Ministerial, Ministerio de Salud, Región Metropolitana, Santiago, Chile
| | - N Arancibia-Miranda
- Facultad de Química and Biología, Universidad de Santiago de Chile, USACH, Casilla 40, C.P. 33, Santiago 9170022, Chile; Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago 9170124, Chile
| | - R Karthikraj
- Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA
| | - H Zhu
- Department of Pediatrics, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
13
|
Wang L, Fu Z, Zheng J, Wang S, Ping Y, Gao B, Mo X, Liang P, Huang J. Exposure to perchlorate, nitrate and thiocyanate was associated with the prevalence of cardiovascular diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113161. [PMID: 34999343 DOI: 10.1016/j.ecoenv.2022.113161] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
AIMS To determine the association between urinary levels of perchlorate, nitrate and thiocyanate, and the prevalence of cardiovascular diseases (CVD) among general population. METHODS A total of 16, 570 participants were enrolled from the National Health and Nutrition Examination Surveys (NHANES). Urinary levels of perchlorate, nitrate and thiocyanate were measured using ion chromatography coupled with electrospray tandem mass spectrometry. Multivariable linear regressions and logistic regressions were performed to explore the associations of exposure to perchlorate, nitrate and thiocyanate, and the prevalence of total and specific CVD, including chronic heart failure (CHF), coronary heart disease (CHD), angina, heart failure and stroke. Restricted cubic splines were used to explore the nonlinearity. RESULTS Participants with CVD had a lower urinary level of nitrate and thiocyanate (all P < 0.001). A null association between urinary perchlorate and total CVD or specific CVD was observed. Comparing with the lowest quartile, the highest quartile of urinary nitrate was independently associated with a decreased presence of total CVD (odds ratio [OR] 0.66, 95% confidence interval [CI] [0.53, 0.82]), CHF (OR 0.48, 95% CI [0.33, 0.71]), and stroke (OR 0.63, 95%CI [0.45, 0.88]). In addition, per one-fold increasement of urinary nitrate decreased a 0.15-fold prevalence of total CVD, 0.29-fold prevalence of CHF, and 0.16-fold prevalence of stroke. However, for urinary thiocyanate, we found that the 2nd and 3rd quartile were associated with total CVD, the 2nd quartile associated with heart attack, and the 2nd, 3rd and 4th quartile associated with stroke. What's more, restricted cubic splines confirmed that the relation between urinary nitrate and CVD was linear (P for nonlinearity = 0.242) and the inverse relation between urinary thiocyanate and CVD was nonlinear (P for nonlinearity < 0.001). CONCLUSION In the general population, low levels of nitrate were linearly while thiocyanate were nonlinearly associated with an increased presence of cardiovascular diseases.
Collapse
Affiliation(s)
- Long Wang
- Department of Cardiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Center for Translational Medicine, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Fu
- Department of Cardio-macrovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Jie Zheng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuai Wang
- Department of Cardiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Center for Translational Medicine, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Ping
- Department of Cardiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Center for Translational Medicine, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beibei Gao
- Department of Cardiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Center for Translational Medicine, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, China.
| | - Ping Liang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China.
| | - Jinyu Huang
- Department of Cardiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Center for Translational Medicine, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
14
|
Zhong Y, Bao Y, Ye J, Liu J, Liu H. Combination of unsupervised and supervised models to predict the maturity of peaches during shelf‐life. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yuming Zhong
- College of Environmental Science and Engineering Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Yao Bao
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou Guangdong China
| | - Jiaming Ye
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou Guangdong China
| | - Jianliang Liu
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou Guangdong China
- Modern Agriculture Research Center Zhongkai University of Agriculture and Engineering Guangzhou China
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Huifan Liu
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou Guangdong China
| |
Collapse
|
15
|
Liu X, Zhang H, Tian Y, Fang M, Xu L, Wang Q, Li J, Shen H, Wu Y, Gong Z. Bioavailability Evaluation of Perchlorate in Different Foods In Vivo: Comparison with In Vitro Assays and Implications for Human Health Risk Assessment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5189-5197. [PMID: 33881845 DOI: 10.1021/acs.jafc.1c00539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Perchlorate in various foods continuously arouses public health concern. Bioavailability is a critical parameter to better estimate perchlorate exposure from diets. In this study, perchlorate bioavailability in five foods was determined in an in vivo mouse model and compared with in vitro bioaccessibility/bioavailability. The estimated in vivo perchlorate bioavailability for different foods ranged from 18.01 ± 4.53% to 45.60 ± 7.11%, with the order lettuce > pork > rice > milk powder > soybean. Moisture, fiber, and fat in foods were identified as critical factors affecting perchlorate bioavailability (correlation r = 0.71, 0.52, and -0.67, respectively). Linear regression analysis revealed that the in vitro perchlorate bioavailability determined using the Caco-2 cell model has the potential to estimate the in vivo perchlorate bioavailability in foods (R2 = 0.67, slope = 1.33, and y intercept = 4.99). These findings provide insights into the effects of the food matrices on perchlorate bioavailability and could contribute to decrease the uncertainty regarding perchlorate dietary exposure risk assessment.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Hu Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Yimei Tian
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Min Fang
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Lin Xu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Qiao Wang
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, People's Republic of China
| | - Haitao Shen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, Zhejiang, People's Republic of China
| | - Yongning Wu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, People's Republic of China
| | - Zhiyong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| |
Collapse
|
16
|
Guo Z, Chen P, Wang M, Barimah AO, Chen Q, El-Seedi HR, Zou X. Determination of perchlorate in tea using SERS with a superhydrophobically treated cysteine modified silver film/polydimethylsiloxane substrate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1625-1634. [PMID: 33735352 DOI: 10.1039/d1ay00215e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Perchlorate is a new type of persistent pollutant, which interferes with the synthesis and secretion of thyroxine and affects human health. The EU's limit for perchlorate in tea is 750 μg kg-1. The surface-enhanced Raman scattering (SERS) technique has the characteristics of a simple pretreatment method, rapid detection, high sensitivity, high specificity and great stability in the detection of perchlorate. This study proposed a novel superhydrophobic SERS substrate, which can be used to detect perchlorate in tea. Firstly, a chemical deposition method was used to deposit a silver film on the surface of a thin layer of polydimethylsiloxane. After drying, the substrate was immersed in 1H,1H,2H,2H-perfluorodecyltriethoxysilane aqueous solution for 15 hours to make the surface of the substrate superhydrophobic. Then cysteine molecules were deposited on the surface of the silver film/polydimethylsiloxane by incubation. The superhydrophobic surface has a unique enrichment effect on the highly diluted solution, and perchlorate has a strong affinity for the amino group of cysteine. We collected the Raman spectra of 9 gradient concentrations (1-100 μmol L-1) of perchlorate-spiked tea samples on the hydrophobic substrate, and a linear model of the relationship between the SERS spectral intensity and the concentrations of perchlorate in tea was established. This method reached a good limit of detection of 0.0067 μmol L-1 (0.82 μg kg-1) in tea, which showed that the developed sensor has high sensitivity and could be used as a fast and simple technique for quantitative detection of perchlorate based on SERS technology.
Collapse
Affiliation(s)
- Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | | | | | | | | | | | | |
Collapse
|