1
|
Chen Y, Wang X, Yang W, Peng G, Chen J, Yin Y, Yan J. An efficient method for chili pepper variety classification and origin tracing based on an electronic nose and deep learning. Food Chem 2025; 479:143850. [PMID: 40101378 DOI: 10.1016/j.foodchem.2025.143850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/17/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025]
Abstract
The quality of chili peppers is closely related to their variety and geographical origin. The market often substitutes high-quality chili peppers with inferior ones, and cross-contamination occurs during processing. The existing methods cannot quickly and conveniently distinguish between different chili varieties or origins, which require expensive experimental equipment and professional skills. Techniques such as energy-dispersive X-ray fluorescence and inductively coupled plasma spectroscopy have been used for chili pepper classification and origin tracing, but these methods are either costly or destructive. To address the challenges of accurately identifying chili pepper varieties and origin tracing of chili peppers, this paper presents a sensor-aware convolutional network (SACNet) integrated with an electronic nose (e-nose) for accurate variety classification and origin traceability of chili peppers. The e-nose system collects gas samples from various chili peppers. We introduce a sensor attention module that adaptively focuses on the importance of each sensor in gathering gas information. Additionally, we introduce a local sensing and wide-area sensing structure to specifically capture gas information features, enabling high-precision identification of chili pepper gases. In comparative experiments with other networks, SACNet demonstrated excellent performance in both variety classification and origin traceability, and it showed significant advantages in terms of parameter quantity. Specifically, SACNet achieved 98.56 % accuracy in variety classification with Dataset A, 97.43 % accuracy in origin traceability with Dataset B, and 99.31 % accuracy with Dataset C. In summary, the combination of SACNet and an e-nose provides an effective strategy for identifying the varieties and origins of chili peppers.
Collapse
Affiliation(s)
- Yong Chen
- College of Artificial Intelligence, Southwest University, Chongqing 400715, China
| | - Xueya Wang
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Wenzheng Yang
- College of Artificial Intelligence, Southwest University, Chongqing 400715, China
| | - Guihua Peng
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Ju Chen
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Yong Yin
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Jia Yan
- College of Artificial Intelligence, Southwest University, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China; Chongqing Key Laboratory of Brain-inspired Computing and Intelligent Chips, Chongqing 400715, China.
| |
Collapse
|
2
|
Li X, Liu X, Su S, Yao Z, Zhu Z, Chen X, Lao F, Li X. Impact of Oil Temperature and Splashing Frequency on Chili Oil Flavor: Volatilomics and Lipidomics. Foods 2025; 14:1006. [PMID: 40231999 PMCID: PMC11941942 DOI: 10.3390/foods14061006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
In this study, headspace gas chromatography-ion mobility spectrometry, headspace gas chromatography-mass spectrometry, and lipidomics were used to explore the effects of three oil temperatures (210 °C, 180 °C, 150 °C) with single- and traditional triple-oil-splashing processes (210 °C → 180 °C → 150 °C) on the formation of key chili oil aromas. A total of 31 key aroma compounds were identified, with 2,4-nonadienal, α-pinene, α-phellandrene, and β-ocimene being found in all treatment groups. Lipidomics suggested that oleic acid, linoleic acid, and α-linolenic acid were highly positively correlated with key chili oil key aroma compounds, such as (E)-2-heptenal, 2-methylbutyraldehyde, limonene, (E, E)-2,4-heptadienal, 2,4-nonadienal, and 2,4-decadienal. The temperature and frequency of oil splashing significantly affected the chili oil aroma profile (p < 0.05). The citrus, woody, and grassy notes were richer in chili oil prepared at 150 °C, malty and fatty aromas were more prominent at 180 °C, and the nutty aroma was stronger in 210 °C prepared and triple-splashed chili oil. The present study reveals how sequential oil splashing processes synergistically activate distinct lipid degradation pathways compared to single-temperature treatments, providing new insights into lipid-rich condiment preparation, enabling chefs and food manufacturers to target specific aroma profiles.
Collapse
Affiliation(s)
- Xiaoping Li
- College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
| | - Xiaopeng Liu
- College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Shiting Su
- College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Zhao Yao
- School of Health Industry, Sichuan Tourism University, Chengdu 610100, China
| | - Zhenhua Zhu
- College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
| | - Xingyou Chen
- College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006, China
| | - Fei Lao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Xiang Li
- College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Ithaí Ángeles-López Y, José Martínez-Cano D, Villa-Ruano N. What Do We Know About Capsicum Volatilome? Chem Biodivers 2025; 22:e202401444. [PMID: 39422289 DOI: 10.1002/cbdv.202401444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/19/2024]
Abstract
The Capsicum genus includes several cultivated species that release complex blends of volatile organic compounds (VOCs) associated with their unique aroma. These VOCs are essential info-chemicals in ecological interactions. In this review, we describe how the volatilomic profiling naturally varies based on specific plant organs and genotypes as well as how non-beneficial organisms affect VOCs biosynthesis and accumulation in pepper plants. Also, we show evidence about VOCs variation under the pressure of different abiotic factors such as water stress, soil type and nutrient availability. The contribution of specific metabolic pathways and gene expression related to the biosynthesis of particular VOCs is addressed. We highlighted the utility of VOCs as chemical markers for quality control in the food industry, breeding programs to generate resistant plants and to improve aroma innovation. Herein we present a database containing 2734 VOCs, revealing 113 as the basic core of the volatilome from five Capsicum species.
Collapse
Affiliation(s)
- Yesenia Ithaí Ángeles-López
- Dirección de Innovación y Transferencia de Conocimiento, Benemérita Universidad Autónoma de Puebla, Prolongación de la 24 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel C.P., 72570, Puebla, México
| | - David José Martínez-Cano
- Colegio de la Frontera Sur, Departamento de Ciencias de la Sustentabilidad, Unidad Tapachula., Carretera Antiguo Aeropuerto km 2.5, 30700, Tapachula, Chiapas, México
| | - Nemesio Villa-Ruano
- CONAHCYT - Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, Prolongación de la 24 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel C.P,., 72570, Puebla, México
| |
Collapse
|
4
|
Liu N, Yang Q, Liu Z, Hou Y, Qin L, Bao A, Qin W, Miao S. Regulation of the quality, flavour, and microbial community of industrially fermented split red sour soup by Lentilactobacillus buchneri and Pediococcus ethanolidurans. Food Res Int 2025; 203:115850. [PMID: 40022371 DOI: 10.1016/j.foodres.2025.115850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 03/03/2025]
Abstract
In order to study the changes in physicochemical properties, microbial diversity, and flavour substances during the industrial fermentation of split red sour soup (RSS) inoculated with lactic acid bacteria (LAB), two groups of samples from natural and inoculated fermentation were analyzed. The physicochemical properties in inoculated fermentation group were better than those of natural fermentation group. Compared to natural fermentation, inoculated fermentation led to rapid acidification, and the increased contents of key volatile compounds (isoamyl acetate, ethyl acetate, phenylethanol, acetic acid, etc.) in sour soup. The dominant bacterial genera in the inoculation group included Lentilactobacillus, Pediococcus, Lactobacillus and Lactiplantibacillus. The dominant bacterial genera in the natural fermentation group were Pediococcus, Lentilactobacillus, Levilactobacillus, and Weissella. The dominant fungal genera in the inoculated fermentation samples of tomato sour soup were Pichia and Hanseniaspora. The dominant genera in the remaining sour soup samples were Kazachstania. Spearman correlation analysis showed that Lentilactobacillus, Levilactobacillus, and other bacterial genera were positively correlated with phenylethanol, isoamyl acetate, and terpenoids in tomato sour soup, whereas Kazachstania, Pichia, Hanseniaspora, Candida, and other fungal spp. were positively correlated with alcohols 2-undecanol, cis-3-hexenyl acetate, etc. In chilli sour soup, most of the bacterial genera were negatively correlated with volatile flavour compounds. Acetic acid was positively correlated with Hanseniaspora and negatively correlated with Candida. This study revealed the effects of LAB fermentation on the flavour quality and microbial community of split RSS and laid the basis for the industrial production of split RSS.
Collapse
Affiliation(s)
- Na Liu
- School of Liquor and Food Engineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China
| | - Qinghua Yang
- School of Liquor and Food Engineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China
| | - Ziyi Liu
- School of Liquor and Food Engineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China
| | - Yuxin Hou
- School of Liquor and Food Engineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China
| | - Likang Qin
- School of Liquor and Food Engineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China.
| | - Aiming Bao
- Guizhou Nanshanpo Food Processing Co., Ltd, China
| | - Weijun Qin
- Guizhou Nanshanpo Food Processing Co., Ltd, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
5
|
Liu Z, Dong G, Liu J, Wang L, Chen Q, Wang Z, Zeng M, He Z, Chen J, Hu W, Pan H. Screening of strains from pickles and evaluation of characteristics of different methods of fast and low salt fermented mustard leaves (Brassica juncea var. multiceps). Food Res Int 2025; 201:115557. [PMID: 39849706 DOI: 10.1016/j.foodres.2024.115557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/17/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
The aim of this study was to isolate strains with excellent fermentation performance from pickles, thus enhancing the quality of rapid, low-salt fermented mustard leaves (Brassica juncea var. multiceps) through process optimization and inoculation fermentation. A high-throughput screening method for acid-producing strains was developed, significantly improving screening efficiency. Lactiplantibacillus plantarum CS8 and Saccharomyces cerevisiae CX1, were selected for their superior fermentation performance and used in subsequent fermentation. Four fermentation methods (spontaneous fermentation, optimized spontaneous fermentation, co-fermentation, and two-phase fermentation) were compared for fermenting fresh mustard leaves at 30 °C for 5 days. Compared to spontaneous fermentation, the other methods resulted in lower pH, higher acid production, and reduced nitrite content, thereby enhancing food safety. Significant variations in metabolites (volatiles, organic acids, and free amino acids) were observed among the groups, with the two-phase fermentation method showing the most favorable changes. Sensory evaluation and microbial community analysis further indicated that the two-phase fermentation achieved higher scores for flavor, taste and overall acceptability, while also shortening the fermentation period and improving both flavor and safety. Therefore, inoculation with these two strains using the two-phase fermentation method can efficiently produce high-quality pickle products in a short time. This research contributes to the industrial production of fermented vegetables, enhancing both pickle quality and economic benefits.
Collapse
Affiliation(s)
- Zhenheng Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Gaofeng Dong
- Technology Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming 650202, China
| | - Jing Liu
- Technology Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming 650202, China
| | - Lei Wang
- Technology Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming 650202, China
| | - Qiuming Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weiyao Hu
- Technology Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming 650202, China.
| | - Hongyang Pan
- Analysis and Testing Center, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Aihaiti A, Zhao L, Maimaitiyiming R, Wang L, Liu R, Mu Y, Chen K, Wang Y. Changes in volatile flavors during the fermentation of tomato (Solanum lycopersicum L.) juice and its storage stabilization. Food Chem 2025; 463:141077. [PMID: 39243620 DOI: 10.1016/j.foodchem.2024.141077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/16/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Flavor is a crucial indicators of the quality of fermented tomato juice; however, there has been limited research in this area. Herein, headspace solid-phase microextraction gas chromatography-mass spectrometry was used to analyze the volatile metabolites at different stages during FTJ fermentation. 131 volatile organic compounds (VOCs) were identified, with alcohols, acids, and esters as the main compounds. The content of superoxide dismutase (SOD) and lycopene (LYC) had a positive correlation with methyl salicylate, ethyl acetate, and linalyl acetate. Subsequently, the storage stability of FTJ was evaluated at temperatures of 4 °C, 25 °C, and 37 °C over a period of 45 d, revealing that the quality of FTJ decreased with increasing storage temperature. The shelf life of FTJ under different storage conditions was determined using SOD activity and LYC content as quality indicators. The final shelf life was 47 d at 37 °C, 69 d at 25 °C, and 123 d at 4 °C.
Collapse
Affiliation(s)
| | - Lei Zhao
- School of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | | | - Liang Wang
- School of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Ruoqing Liu
- School of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Ying Mu
- School of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Keping Chen
- Xinjiang Huize Food Limited Liability Company, Urumqi 830000, China
| | - Yu Wang
- School of Life Science and Technology, Xinjiang University, Urumqi 830000, China.
| |
Collapse
|
7
|
Li Y, He W, Liu S, Hu X, He Y, Song X, Yin J, Nie S, Xie M. Innovative omics strategies in fermented fruits and vegetables: Unveiling nutritional profiles, microbial diversity, and future prospects. Compr Rev Food Sci Food Saf 2024; 23:e70030. [PMID: 39379298 DOI: 10.1111/1541-4337.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 10/10/2024]
Abstract
Fermented fruits and vegetables (FFVs) are not only rich in essential nutrients but also contain distinctive flavors, prebiotics, and metabolites. Although omics techniques have gained widespread recognition as an analytical strategy for FFVs, its application still encounters several challenges due to the intricacies of biological systems. This review systematically summarizes the advances, obstacles and prospects of genomics, transcriptomics, proteomics, metabolomics, and multi-omics strategies in FFVs. It is evident that beyond traditional applications, such as the exploration of microbial diversity, protein expression, and metabolic pathways, omics techniques exhibit innovative potential in deciphering stress response mechanisms and uncovering spoilage microorganisms. The adoption of multi-omics strategies is paramount to acquire a multidimensional network fusion, thereby mitigating the limitations of single omics strategies. Although substantial progress has been made, this review underscores the necessity for a comprehensive repository of omics data and the establishment of universal databases to ensure precision in predictions. Furthermore, multidisciplinary integration with other physical or biochemical approaches is imperative, as it enriches our comprehension of this intricate process.
Collapse
Affiliation(s)
- Yuhao Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Weiwei He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Shuai Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Xiaoyi Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Yuxing He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Xiaoxiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Junyi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Li Y, Wang H, Liu G, Shi B, Zhu B, Gao L, Zhong K, Zhang Y, Zhao L, Li R, Shan B, Wang C, Wang S. An assessment of the sensory drivers influencing consumer preference in infant formula, assessed via sensory evaluation and GC-O-MS. Food Chem 2024; 455:139881. [PMID: 38823136 DOI: 10.1016/j.foodchem.2024.139881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Consumer partiality for food products is related to purchase and consumption behavior, and are influenced by sensory preferences. The sensory and chemical drivers behind consumer preference in the infant formula (IF) were analyzed. A total of 31 aroma-active compounds were identified, playing an important role in the production of off-flavors (especially fishy). Combined with the correlation analysis, the key aroma substances affecting the sensory attributes of IF were initially identified. A21, A22, B9 represented the key substances responsible for producing milky and creamy, while A2, A5, A11, A12, B5, C15, H5 primarily produced fishy. In addition, the two sensory attributes namely milky and creamy, and the T-sweet were more strongly correlated with consumer preference. Therefore, it can be concluded that consumers are more interested in the main flavor of the product than the off-flavor. These findings will inform the quality control of IF and the maintenance of sensory quality.
Collapse
Affiliation(s)
- Yilin Li
- Key Laboratory of Food Sensory Analysis for State Market Regulation, 102200, China; Heilongjiang Feihe Dairy Industrial Co. Ltd., Qiqihar 161000, China
| | - Houyin Wang
- Key Laboratory of Food Sensory Analysis for State Market Regulation, 102200, China; China National Institute of Standardization, Beijing 102200, China
| | - Guirong Liu
- Heilongjiang Feihe Dairy Industrial Co. Ltd., Qiqihar 161000, China
| | - Bolin Shi
- Key Laboratory of Food Sensory Analysis for State Market Regulation, 102200, China; China National Institute of Standardization, Beijing 102200, China
| | - Baoqing Zhu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100091, China
| | - Lipeng Gao
- Heilongjiang Feihe Dairy Industrial Co. Ltd., Qiqihar 161000, China
| | - Kui Zhong
- Key Laboratory of Food Sensory Analysis for State Market Regulation, 102200, China; China National Institute of Standardization, Beijing 102200, China
| | - Yongjiu Zhang
- Heilongjiang Feihe Dairy Industrial Co. Ltd., Qiqihar 161000, China
| | - Lei Zhao
- Key Laboratory of Food Sensory Analysis for State Market Regulation, 102200, China; China National Institute of Standardization, Beijing 102200, China
| | - Ruotong Li
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100091, China
| | - Bingqi Shan
- Heilongjiang Feihe Dairy Industrial Co. Ltd., Qiqihar 161000, China
| | - Chunguang Wang
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100091, China
| | - Sisi Wang
- Key Laboratory of Food Sensory Analysis for State Market Regulation, 102200, China; China National Institute of Standardization, Beijing 102200, China.
| |
Collapse
|
9
|
Cui S, Adamowski JF, Wu M, Zhang P, Yue Q, Cao X. An integrated framework for improving green agricultural production sustainability in human-natural systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174153. [PMID: 38906292 DOI: 10.1016/j.scitotenv.2024.174153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/26/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Water scarcity, land pollution, and global warming are serious challenges and crises facing the development of sustainable or green agriculture and need to be addressed using efficient and environmentally friendly management strategies. This paper proposed an integrated framework appropriate for agricultural green total factor productivity (AGTFP) assessment coupled with microscopic and mesoscopic perspectives under water-energy-food (WEF) nexus, which generated scientific and reasonable strategies for green and low-carbon agriculture from internal core factors and peripheral environmental impacts to improve green agricultural production sustainability. Taking the Lianshui irrigation district (LID) with three sub-areas as the object, internal core factors were explored by partial least squares regression (PLSR) and the external impact path through partial least squares structural equation modeling (PLS-SEM). Results indicated that AGTFP in LID was the smallest (0.818) compared to the three sub-areas and was in a fluctuating state. Meanwhile, AGTFP which was calculated considering undesirable outputs, was closer to tangible productivity. Resource endowments and technical facilities will promote agricultural production, desirable outputs will stimulate green production, and undesirable outputs can inhibit green production. The external influence pathway was shown to be primary environment - > secondary environment - > economic aspects - > social aspects - > AGTFP. The innovative perspectives presented in this study can facilitate preferable decisions and avoid unintended consequences for human-natural systems.
Collapse
Affiliation(s)
- Simeng Cui
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 210098, China
| | - Jan F Adamowski
- Department of Bioresource Engineering, Faculty of Agricultural & Environmental Sciences, McGill University, Québec H9X 3V9, Canada
| | - Mengyang Wu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 210098, China
| | - Pingping Zhang
- College of Water Conservancy and Civil Engineering, South China Agricultural University, Guangzhou 510642, China
| | - Qiong Yue
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 210098, China
| | - Xinchun Cao
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Department of Bioresource Engineering, Faculty of Agricultural & Environmental Sciences, McGill University, Québec H9X 3V9, Canada; College of Water Conservancy and Civil Engineering, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Xian S, Zhao F, Huang X, Liu X, Zhang Z, Zhou M, Shen G, Li M, Chen A. Effects of Pre-Dehydration Treatments on Physicochemical Properties, Non-Volatile Flavor Characteristics, and Microbial Communities during Paocai Fermentation. Foods 2024; 13:2852. [PMID: 39272618 PMCID: PMC11395261 DOI: 10.3390/foods13172852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
The paocai industry faces challenges related to the production of large volumes of high-salinity and acidic brine by-products. Maintaining paocai quality while reducing brine production is crucial. This study utilized high-throughput sequencing technology to analyze microbial changes throughout the fermentation process, along with the non-volatile flavor compounds and physicochemical properties, to assess the impact of hot-air and salt-pressing pre-dehydration treatments on paocai quality. The findings indicate that pre-dehydration of raw material slowed the fermentation process but enhanced the concentration of non-volatile flavor substances, including free amino acids and organic acids. Hot-air pre-dehydration effectively reduced initial salinity to levels comparable to those in high-salinity fermentation of fresh vegetables. Furthermore, pre-dehydration altered microbial community structures and simplified inter-microbial relationships during fermentation. However, the key microorganisms such as Lactobacillus, Weissella, Enterobacter, Wallemia, Aspergillus, and Kazachstania remained consistent across all groups. Additionally, this study found that biomarkers influenced non-volatile flavor formation differently depending on the treatment, but these substances had minimal impact on the biomarkers and showed no clear correlation with high-abundance microorganisms. Overall, fermenting pre-dehydrated raw materials presents an environmentally friendly alternative to traditional paocai production.
Collapse
Affiliation(s)
- Shuang Xian
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Feng Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xinyan Huang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xingyan Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Man Zhou
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Guanghui Shen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Meiliang Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Anjun Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
11
|
Li Z, Zhao W, Wang P, Zhao S, Wang D, Zhao X. Evolution of microbial community and the volatilome of fresh-cut chili pepper during storage under different temperature conditions: Correlation of microbiota and volatile organic compounds. Food Chem 2024; 451:139401. [PMID: 38685178 DOI: 10.1016/j.foodchem.2024.139401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/07/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
The effect of temperature conditions on the evolution of microbial communities and volatile organic compounds (VOCs) in fresh-cut chili peppers during storage was investigated. Results showed that Proteobacteria and Actinobacteriota were the dominant phyla in fresh-cut chili peppers. During storage, bacterial communities changed more dramatically than fungi. Different temperature conditions significantly affected the shift of bacteria at the genus level. At the beginning of storage, Rhodococcus, Pantoea, and Pseudomonas dominated the bacteria. However, on day 8, Pantoea and Enterobacter became the predominant genera at 5 °C and high temperatures (10, 15 °C, dynamic temperature), respectively. No significant variability in bacterial species was observed between different batches. Additionally, 140 VOCs were determined in fresh-cut chili peppers. Twenty-two VOCs were screened and could be recommended as potential spoilage markers. Based on Spearman's correlation analysis results, Enterobacter and Enterococcus were the most positive microorganisms correlated with spoilage markers.
Collapse
Affiliation(s)
- Zudi Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Wenting Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China.
| | - Pan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China.
| | - Shuang Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China.
| | - Dan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China.
| | - Xiaoyan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China.
| |
Collapse
|
12
|
Liang L, Li Y, Mao X, Wang Y. Metabolomics applications for plant-based foods origin tracing, cultivars identification and processing: Feasibility and future aspects. Food Chem 2024; 449:139227. [PMID: 38599108 DOI: 10.1016/j.foodchem.2024.139227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/03/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Metabolomics, the systematic study of metabolites, is dedicated to a comprehensive analysis of all aspects of plant-based food research and plays a pivotal role in the nutritional composition and quality control of plant-based foods. The diverse chemical compositions of plant-based foods lead to variations in sensory characteristics and nutritional value. This review explores the application of the metabolomics method to plant-based food origin tracing, cultivar identification, and processing methods. It also addresses the challenges encountered and outlines future directions. Typically, when combined with other omics or techniques, synergistic and complementary information is uncovered, enhancing the classification and prediction capabilities of models. Future research should aim to evaluate all factors affecting food quality comprehensively, and this necessitates advanced research into influence mechanisms, metabolic pathways, and gene expression.
Collapse
Affiliation(s)
- Lu Liang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 30047, China
| | - Yuhao Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 30047, China
| | - Xuejin Mao
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 30047, China.
| | - Yuanxing Wang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 30047, China.
| |
Collapse
|
13
|
Zheng Y, Qu G, Yang Q, Chen S, Tang J, Yang S, Wu Q, Xu Y. Developing defined starter culture for reproducible profile of flavour compound in Chinese xiaoqu baijiu fermentation. Food Microbiol 2024; 121:104533. [PMID: 38637092 DOI: 10.1016/j.fm.2024.104533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
Defined starter cultures, containing selected microbes could reduce the complexity of natural starter, are beneficial for controllable food fermentations. However, there are challenges in identifying key microbiota and constructing synthetic microbiota for traditional food fermentations. Here, we aimed to develop a defined starter culture for reproducible profile of flavour compounds, using Chinese Xiaoqu Baijiu fermentation as a case. We classified all microbes into 4 modules using weighted correlation network analysis. Module 3 presented significant correlations with flavour compounds (P < 0.05) and the highest gene abundance related with flavour compound production. 13 dominant species in module 3 were selected for mixed culture fermentation, and each species was individually deleted to analyse the effect on flavour compound production. Ten species, presenting significant effects (P < 0.05) on flavour compound production, were selected for developing the starter culture, including Rhizopus oryzae, Rhizopus microsporus, Saccharomyces cerevisiae, Pichia kudriavzevii, Wickerhamomyces anomalus, Lactobacillus acetotolerans, Levilactobacillus brevis, Weissella paramesenteroides, Pediococcus acidilactici, and Leuconostoc pseudomesenteroides. After optimising the structure of the starter culture, the profile similarity of flavour compounds produced by the starter culture reached 81.88% with that by the natural starter. This work indicated feasibility of reproducible profile of flavour compounds with defined starter culture for food fermentations.
Collapse
Affiliation(s)
- Yifu Zheng
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guanyi Qu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiang Yang
- Hubei Provincial Key Laboratory for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Company, Limited, Daye, Hubei 435100, China
| | - Shenxi Chen
- Hubei Provincial Key Laboratory for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Company, Limited, Daye, Hubei 435100, China
| | - Jie Tang
- Hubei Provincial Key Laboratory for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Company, Limited, Daye, Hubei 435100, China
| | - Shengzhi Yang
- Hubei Provincial Key Laboratory for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Company, Limited, Daye, Hubei 435100, China
| | - Qun Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
14
|
Li D, Chu B, Li B, Wang X, Chen X, Gu Q. The difference analysis of physicochemical indexes and volatile flavor compounds of chili oil prepared from different varieties of chili pepper. Food Res Int 2024; 190:114657. [PMID: 38945630 DOI: 10.1016/j.foodres.2024.114657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/15/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
Because of its peculiar flavor, chili oil is widely used in all kinds of food and is welcomed by people. Chili pepper is an important raw material affecting its quality, and commercial chili oil needs to meet various production needs, so it needs to be made with different chili peppers. However, the current compounding method mainly relies on the experience of professionals and lacks the basis of objective numerical analysis. In this study, the chroma and capsaicinoids of different chili oils were analyzed, and then the volatile components were determined by gas chromatography-mass spectrometry (GC-MS) and gas chromatography-ion migration spectrometer (GC-IMS) and electronic nose (E-nose). The results showed that Zidantou chili oil had the highest L*, b*, and color intensity (ΔE) (52.76 ± 0.52, 88.72 ± 0.89, and 118.84 ± 1.14), but the color was tended to be greenyellow. Xinyidai chili oil had the highest a* (65.04 ± 0.2). But its b* and L* were relatively low (76.17 ± 0.29 and 45.41 ± 0.16), and the oil was dark red. For capsaicinoids, Xiaomila chili oil had the highest content of capsaicinoids was 2.68 ± 0.07 g/kg, Tianjiao chili oil had the lowest content of capsaicinoids was 0.0044 ± 0.0044 g/kg. Besides, 96 and 54 volatile flavor substances were identified by GC-MS and GC-IMS respectively. And the main volatile flavor substances of chili oil were aldehydes, alcohols, ketones, and esters. A total of 11 key flavor compounds were screened by the relative odor activity value (ROAV). Moguijiao chili oil and Zidantou chili oil had a prominent grass aroma because of hexanal, while Shizhuhong chili oil, Denglongjiao chili oil, Erjingtiao chili oil, and Zhoujiao chili oil had a prominent floral aroma because of 2, 3-butanediol. Chili oils could be well divided into 3 groups by the partial least squares discriminant analysis (PLS-DA). According to the above results, the 10 kinds of chili oil had their own characteristics in color, capsaicinoids and flavor. Based on quantitative physicochemical indicators and flavor substances, the theoretical basis for the compounding of chili oil could be provided to meet the production demand more scientifically and accurately.
Collapse
Affiliation(s)
- Dingding Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Anhui Wangxiaolu Food Technology Company Limited, Anhui 239000, PR China; Beijing Wangxiaolu Network Technology Company Limited, Beijing 100000, PR China
| | - Beibei Chu
- Anhui Wangxiaolu Food Technology Company Limited, Anhui 239000, PR China; Beijing Wangxiaolu Network Technology Company Limited, Beijing 100000, PR China
| | - Bo Li
- Langfang Customs of the People's Republic of China, PR China
| | - Xiong Wang
- Anhui Wangxiaolu Food Technology Company Limited, Anhui 239000, PR China; Beijing Wangxiaolu Network Technology Company Limited, Beijing 100000, PR China
| | - Xingguang Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Qianhui Gu
- Anhui Wangxiaolu Food Technology Company Limited, Anhui 239000, PR China; Beijing Wangxiaolu Network Technology Company Limited, Beijing 100000, PR China; School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China.
| |
Collapse
|
15
|
Chen J, Huang Y, Wang X, He J, Li W, Lu M, Sun X, Yin Y. Revealing core functional microorganisms in the fermentation process of Qicaipaojiao (Capsicum annuum L.) based on microbial metabolic network. Food Res Int 2024; 187:114315. [PMID: 38763628 DOI: 10.1016/j.foodres.2024.114315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Paojiao, a typical Chinese traditional fermented pepper, is favored by consumers for its unique flavor profile. Microorganisms, organic acids, amino acids, and volatile compounds are the primary constituents influencing the development of paojiao's flavor. To elucidate the key flavor compounds and core microorganisms of Qicaipaojiao (QCJ), this study conducted a comprehensive analysis of the changes in taste substances (organic acids and amino acids) and volatile flavor compounds during QCJ fermentation. Key flavor substances in QCJ were identified using threshold aroma value and odor activity value and the core microorganisms of QCJ were determined based on the correlation between dominant microorganisms and the key flavor substances. During QCJ fermentation, 16 key taste substances (12 free amino acids and 4 organic acids) and 12 key aroma substances were identified. The fermentation process involved 10 bacteria and 7 fungal genera, including Lactiplantibacillus, Leuconostoc, Klebsiella, Pichia, Wickerhamomyces, and Candida. Correlation analysis revealed that the core functional microorganisms encompassed representatives from 8 genera, including 5 bacterial genera (Lactiplantibacillus, Weissella, Leuconostoc, Klebsiella, and Kluyvera) and 3 fungal genera (Rhodotorula, Phallus, and Pichia). These core functional microorganisms exhibited significant correlations with approximately 70 % of the key flavor substances (P < 0.05). This study contributes to an enhanced understanding of flavor formation mechanisms and offers valuable insight into flavor quality control in food fermentation processes.
Collapse
Affiliation(s)
- Ju Chen
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Yubing Huang
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Xueya Wang
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China.
| | - Jianwen He
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China.
| | - Wenxin Li
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Min Lu
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Xiaojing Sun
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Yong Yin
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| |
Collapse
|
16
|
Liu M, Deng N, Hou X, Zhang B, Li H, Wang J. Characterisation of flavour profiles and microbial communities of fermented peppers with different fermentation years by combining flavouromics and metagenomics. Food Chem 2024; 443:138550. [PMID: 38277936 DOI: 10.1016/j.foodchem.2024.138550] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
The changes in flavours, volatile aromas and microbial communities of fermented peppers with different fermentation years and their relationships were investigated in this study. Results indicated a gradual increase in organic acids during fermentation, whereas free amino acids and capsaicinoids reached stability after 1 year of fermentation. Overall, the analysis detected 340 volatile compounds in fermented peppers and regarded 69 of them as differential compounds. Peppers fermented for 2 (FY2) and 4 years (FY4) possessed a greater number of differential volatiles with large odour activity values, thus endowing them with more favourable flavours. Hence, metagenomic analysis compared their microbial communities and functional annotations. Results revealed that Lactiplantibacillus plantarum and Zygosaccharomyces rouxii were the dominant bacterium and fungus, and metabolism was the main Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway in FY2. Correlation analysis demonstrated that Hyphopichia, Kazachstania and Clavispora were highly positively correlated with 12 key aroma flavours.
Collapse
Affiliation(s)
- Miao Liu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Prepared Dishes Modern Industrial College, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Centre of Prepared Dishes, Changsha 410114, China
| | - Na Deng
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Prepared Dishes Modern Industrial College, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Centre of Prepared Dishes, Changsha 410114, China
| | - Xiaoyi Hou
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Prepared Dishes Modern Industrial College, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Centre of Prepared Dishes, Changsha 410114, China
| | - Bo Zhang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Prepared Dishes Modern Industrial College, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Centre of Prepared Dishes, Changsha 410114, China
| | - Hui Li
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Prepared Dishes Modern Industrial College, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Centre of Prepared Dishes, Changsha 410114, China
| | - Jianhui Wang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Prepared Dishes Modern Industrial College, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Centre of Prepared Dishes, Changsha 410114, China.
| |
Collapse
|
17
|
Hao H, Nie Z, Wu Y, Liu Z, Luo F, Deng F, Zhao L. Probiotic Characteristics and Anti-Inflammatory Effects of Limosilactobacillus fermentum 664 Isolated from Chinese Fermented Pickles. Antioxidants (Basel) 2024; 13:703. [PMID: 38929142 PMCID: PMC11200572 DOI: 10.3390/antiox13060703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Limosilactobacillus fermentum (L. fermentum) is widely used in industrial food fermentations, and its probiotic and health-promoting roles attracted much attention in the past decades. In this work, the probiotic potential of L. fermentum 664 isolated from Chinese fermented pickles was assessed. In addition, the anti-inflammatory properties and mechanisms were investigated using lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Results indicated that L. fermentum 664 demonstrated excellent acid and bile salt tolerance, adhesion capability, antimicrobial activity, and safety profile. L. fermentum 664 downregulated the release of inflammatory mediators, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and cyclooxygenase-2 (COX-2) stimulated with LPS. Moreover, L fermentum 664 inhibited the nuclear translocation of the nuclear factor κB (NF-κB) and the activation of mitogen-activated protein kinases (MAPKs) induced by LPS. This action was associated with a reduction in reactive oxygen species (ROS) levels and an enhanced expression of heme oxygenase-1 (HO-1) protein. Additionally, whole genome sequencing indicated that L. fermentum 664 contained genes that encode proteins with antioxidant and anti-inflammatory functions, including Cytochrome bd ubiquinol oxidase subunit I (CydA), Cytochrome bd ubiquinol oxidase subunit II (CydB), and NAD(P)H dehydrogenase quinone 1 (NQO1). In conclusion, our study suggested that L. fermentum 664 has the potential to become a probiotic and might be a promising strategy for the prevention of inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Fangming Deng
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.H.); (Z.N.); (Y.W.)
| | - Lingyan Zhao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.H.); (Z.N.); (Y.W.)
| |
Collapse
|
18
|
Luo H, Wu Y, Jin J, Zhang L, Tong S, Li C, Tan Q, Han Q. Characterization of key aroma compounds of fried pepper sauce under different pretreatment processes. RSC Adv 2024; 14:16368-16378. [PMID: 38769966 PMCID: PMC11103562 DOI: 10.1039/d4ra02343a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
Fried pepper sauce (FPS) is renowned among consumers for its distinct aroma profile and rich nutritional composition. However, the primary aroma components of FPSs, crucial for quality assurance, remain unclear. Therefore, this study aimed to delve deeper into the unique aroma profile of FPSs by analyzing samples subjected to various pretreatment methods (including three heat-moisture treatment processes: soaking at 60 °C, soaking at 100 °C, and steaming, and three crushing processes: mashing, mincing, and horizontal knife cutting). FPS samples were analyzed by quantitative descriptive sensory analysis (QDA), gas chromatography-olfactometry-mass spectrometry (GC-O-MS), relative odor activity value analysis (rOAV), principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA) and partial least squares regression analysis (PLSR). The QDA results revealed that the overall aroma profile of FPS products was characterized by chili-like, fatty, and herbal notes. GC-MS identified 115 volatile components in FPSs, primarily alkenes, ketones, and acids, with varying concentrations across samples. According to the rOAV (>1) and GC-O, 11 compounds were identified as key aroma contributors to FPS aroma, including 2-methylpropanal, acetic acid, 3-methylbutanal, methional, eucalyptol, benzeneacetaldehyde, linalool, (E)-2-nonenal, (2E)-2-decenal, (2E,4E)-deca-2,4-dienal, and (E,Z)-2,4-decadienal. PCA and PLS-DA were employed to assess aroma differences among nine FPS samples. Screening for VIP > 1 and p < 0.05 identified 8 and 12 key marker compounds influenced by different crushing methods or heat-moisture treatments, respectively. PLSR indicated that the sensory attributes were greatly related to most aroma-active compounds. These findings provide novel insights into FPS aroma attributes, facilitating precise processing and quality control of fried pepper sauce products.
Collapse
Affiliation(s)
- Hao Luo
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University Guiyang 550025 Guizhou Province China
| | - Yongjun Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University Guiyang 550025 Guizhou Province China
| | - Jing Jin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University Guiyang 550025 Guizhou Province China
| | - Lincheng Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University Guiyang 550025 Guizhou Province China
| | - Shuoqiu Tong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University Guiyang 550025 Guizhou Province China
| | - Cen Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University Guiyang 550025 Guizhou Province China
| | - Qibo Tan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University Guiyang 550025 Guizhou Province China
| | - Qiqin Han
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University Guiyang 550025 Guizhou Province China
| |
Collapse
|
19
|
Wu Q, Xu Z, Feng S, Shi X, Qin L, Zeng H. Correlation Analysis between Microbial Communities and Flavor Compounds during the Post-Ripening Fermentation of Traditional Chili Bean Paste. Foods 2024; 13:1209. [PMID: 38672882 PMCID: PMC11048965 DOI: 10.3390/foods13081209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Chili bean paste is a traditional flavor sauce, and its flavor compounds are closely related to its microflora. This study focused on investigating the content of bioactive compounds, flavor compounds, and microbial communities during the post-ripening fermentation of chili bean paste, aiming to provide a reference for improving the flavor of chili bean paste by regulating microorganisms. Compared to no post-ripening fermentation, the content of organic acids increased significantly (p < 0.05), especially that of citric acid (1.51 times). Glutamic acid (Glu) was the most abundant of the 17 free amino acids at 4.0 mg/g. The aroma profiles of the samples were significantly influenced by fifteen of the analyzed volatile compounds, especially methyl salicylate, methyl caproate, and 2-octanol (ROAV > 1). Latilactobacillus (27.45%) and Pseudomonas (9.01%) were the dominant bacterial genera, and Starmerella (32.95%) and Pichia (17.01%) were the dominant fungal genera. Weissella, Lacticaseibacillus, Pichia, and Kazachstania had positive effects on volatile flavoring compounds, which enriched the texture and flavor of the chili bean paste. Therefore, the microbial-community activity during the post-ripening fermentation is the key to enhance the flavor quality of the product.
Collapse
Affiliation(s)
- Quanye Wu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (Q.W.); (Z.X.); (L.Q.)
| | - Zhaona Xu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (Q.W.); (Z.X.); (L.Q.)
- Sichuan Gulin Langjiu Distillery (Luzhou) Co., Ltd., Luzhou 646601, China
| | - Shirong Feng
- Zunyi Zhongyuanyuan Food Co., Zunyi 563125, China;
| | - Xunzhu Shi
- Majiang Mingyang Food Co., Majiang 557600, China;
| | - Likang Qin
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (Q.W.); (Z.X.); (L.Q.)
| | - Haiying Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (Q.W.); (Z.X.); (L.Q.)
| |
Collapse
|
20
|
Liu M, Deng N, Li H, Hou X, Zhang B, Wang J. Characterization and comparison of flavors in fresh and aged fermented peppers: Impact of different varieties. Food Res Int 2024; 182:114187. [PMID: 38519195 DOI: 10.1016/j.foodres.2024.114187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
The flavor profiles of fresh and aged fermented peppers obtained from four varieties were thoroughly compared in this study. A total of 385 volatile compounds in fermented pepper samples were detected by flavoromics (two-dimensional gas chromatography-time-of-flight mass spectrometry). As fermentation progressed, both the number and the total concentration of volatile compounds changed, with esters, alcohols, acids, terpenoids, sulfur compounds, and funans increasing, whereas hydrocarbons and benzenes decreased. In contrast to the fresh fermented peppers, the aged fermented samples exhibited lower values of pH, total sugars, and capsaicinoids but higher contents of organic acids and free amino acids. Furthermore, the specific differences and characteristic aroma substances among aged fermented peppers were unveiled by multivariate statistical analysis. Overall, 64 volatiles were screened as differential compounds. In addition, Huanggongjiao samples possessed the most abundant differential volatiles and compounds with odor activity values > 1, which were flavored with fruity, floral, and slightly phenolic odors. Correlation analysis demonstrated that the levels of 23 key aroma compounds (e.g., ethyl 2-methylbutyrate, 1-butanol, and ethyl valerate) showed a significantly positive correlation with Asp, Glu and 5 organic acids. By contrast, there is a negative association between the pH value and total sugar. Overall, aging contributed significantly to the flavor attributes of fermented peppers.
Collapse
Affiliation(s)
- Miao Liu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Prepared Dishes Modern Industrial College, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Center of Prepared Dishes, Changsha, 410114, China
| | - Na Deng
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Prepared Dishes Modern Industrial College, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Center of Prepared Dishes, Changsha, 410114, China
| | - Hui Li
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Prepared Dishes Modern Industrial College, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Center of Prepared Dishes, Changsha, 410114, China
| | - Xiaoyi Hou
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Prepared Dishes Modern Industrial College, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Center of Prepared Dishes, Changsha, 410114, China
| | - Bo Zhang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Prepared Dishes Modern Industrial College, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Center of Prepared Dishes, Changsha, 410114, China
| | - Jianhui Wang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Prepared Dishes Modern Industrial College, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Center of Prepared Dishes, Changsha, 410114, China.
| |
Collapse
|
21
|
Chen Y, Zhang X, Liu X, Liu Y, Hou A, Wang Y, Li L, Peng X, Xiao Y. Discrimination and characterization of volatile organic compounds and nutritional values of three varieties of chopped pepper seeds. Food Chem X 2024; 21:101150. [PMID: 38312485 PMCID: PMC10837493 DOI: 10.1016/j.fochx.2024.101150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Fermented-chopped pepper is a widely consumed condiment in China due to its attractive flavor. Chopped pepper seed (CPS) is the byproduct generated during the production of chopped pepper and is generally discarded as waste. In this study, the volatile organic compounds (VOCs) and nutritional value of three varieties of CPS were investigated. Results indicated that the nutritional compositions of the three CPS varieties exhibited significant differences. All CPS samples contained 17 amino acids and were rich in fatty acids, with unsaturated fatty acids being predominant and accounting for 79 % of the total fatty acids. A total of 53 VOCs were identified by gas chromatography-ion mobility spectrometry, which could be classified into 9 groups, with aldehydes, esters, and alcohols comprising the three largest groups. The three varieties of CPS had remarkably varied aromas whereas there are five key VOCs (i.e., 2-pentylfuran, methional, ethyl 3-methylbutanoate, dimethyl disulfide, and nonanal) in all CPS samples. Network correlation analysis revealed that VOCs are closely correlated with amino and fatty acids. Thus, this study provides a useful basis for understanding the nutritional values and flavor characteristics of different CPS varieties, which could be used as an ingredient and might have great potential in the food industry.
Collapse
Affiliation(s)
- Yulian Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xilu Zhang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xin Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yida Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Aixiang Hou
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Luoming Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaozhen Peng
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, China
| | - Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
22
|
Li M, Lao F, Pan X, Yuan L, Zhang D, Wu J. Insights into the mechanisms driving microbial community succession during pepper fermentation: Roles of microbial interactions and endogenous environmental changes. Food Res Int 2024; 179:114033. [PMID: 38342553 DOI: 10.1016/j.foodres.2024.114033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/13/2024]
Abstract
Elucidating the driving mechanism of microbial community succession during pepper fermentation contributes to establishing efficient fermentation regulation strategies. This study utilized three-generation high-throughput sequencing technology, microbial co-occurrence network analysis, and random forest analysis to reveal microbial community succession processes and driving mechanisms during pepper fermentation. The results showed that more positive correlations than negative correlations were observed among microorganisms, with positive correlation proportions of 60 %, 51.03 %, and 71.43 % between bacteria and bacteria, fungi and fungi, and bacteria and fungi in sipingtou peppers, and 69.23 %, 54.93 %, and 79.44 % in zhudachang peppers, respectively. Microbial interactions, mainly among Weissella hellenica, Lactobacillus plantarum, Hanseniaspora opuntiae, and Kazachstania humillis, could drive bacterial and fungal community succession. Notably, the bacterial community successions during the fermentation of two peppers were similar, showing the transition from Leuconostoc pseudomesenteroides, Lactococcus lactis, Weissella ghanensis to Weissella hellenica and Lactobacillus plantarum. However, the fungal community successions in the two fermented peppers differed significantly, and the differential biomarkers were Dipodascus geotrichum and Kazachstania humillis. Differences in autochthonous microbial composition and inherent constituents brought by pepper varieties resulted in different endogenous environmental changes, mainly in fructose, malic acid, and citric acid. Furthermore, endogenous environmental factors could also drive microbial community succession, with succinic acid, lactic acid, and malic acid being the main potential drivers of bacterial community succession, whereas fructose, glucose, and succinic acid were the main drivers of fungal community succession. These results will provide insights into controlling fermentation processes by raw material combinations, optimization of environmental parameters, and microbial interactions.
Collapse
Affiliation(s)
- Meilun Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Xin Pan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Lin Yuan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Donghao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| |
Collapse
|
23
|
Tadesse M, Ajibade FO, Minale M, Mekonnen A, Guadie A. Physicochemical and microbial community dynamics of Kocho fermented from different enset varieties in South West Ethiopia. Heliyon 2024; 10:e25621. [PMID: 38863879 PMCID: PMC11165236 DOI: 10.1016/j.heliyon.2024.e25621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 06/13/2024] Open
Abstract
Enset (Ensete ventricosum (Welw.) Cheesman) is an indigenous multipurpose plant in Ethiopia. More than 20 % of people in Ethiopia rely on enset for their subsistence livelihood. Its fermentation produces a starchy food named Kocho, which is yet poorly studied. In this study, physicochemical and microbial community dynamics of Kocho fermented from different enset varieties (Maziya, Genna, and Arkiya) were collected at Dawro Zone (Southern Ethiopia). Samples were collected at various fermentation times (days 1-60) for physicochemical and microbial (culture-dependent and culture-independent) characterization. Results showed that increasing fermentation time has a significantly strong positive (R2 = 0.768, p = 0.004) correlation between titrable acidity, and a significantly strong negative association with pH (R2 = -0.715, p = 0.009), moisture (R2 = -0.982, p < 0.05), ash (R2 = -0.932, p < 0.05), fat (R2 = -0.861, p < 0.05), fiber (R2 = -0.981, p < 0.05) and carbohydrate (R2 = -0.994, p < 0.001) contents. An increasing or decreasing trend of physicochemical parameters observed during enset fermentation is significantly associated with microbial community dynamics. Shifts of microbial community observed during culture-dependent analysis were also confirmed by metagenomic results. During fermentation, Firmicutes (39-68 %) > Proteobacteria (7-53 %) > Cyanobacteria (7-24 %) were dominant phyla in the three enset varieties. Gamma (traditional starter culture) is dominated by Lactobacillus plantrum and Lactobacillus manihotivorans most probably the two species that play a significant role in initiating enset fermentation.
Collapse
Affiliation(s)
- Melesse Tadesse
- Department of Biology, College of Natural Sciences, Arba Minch University, Arba Minch, 21, Ethiopia
- Department of Biotechnology, College of Natural Sciences, Wolaita Sodo University, Wolaita, 138, Ethiopia
| | - Fidelis Odedishemi Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, Akure PMB, 704, Nigeria
| | - Mengist Minale
- Depertment of Natural Resources Management, College of Agriculture, Food, Environment and Climate Sciences, Injibara University, Injibara, 40, Ethiopia
| | - Addisu Mekonnen
- Department of Microbial, Cellular and Molecular Biology, College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Wildlife and Ecotourism Management, Bahir Dar University, Bahir Dar, Ethiopia
| | - Awoke Guadie
- Department of Biology, College of Natural Sciences, Arba Minch University, Arba Minch, 21, Ethiopia
| |
Collapse
|
24
|
Zhang Q, Tang J, Deng J, Cai Z, Jiang X, Zhu C. Effect of Capsaicin Stress on Aroma-Producing Properties of Lactobacillus plantarum CL-01 Based on E-Nose and GC-IMS. Molecules 2023; 29:107. [PMID: 38202690 PMCID: PMC10780002 DOI: 10.3390/molecules29010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Capsaicin stress, along with salt stress, could be considered the main stressors for lactic acid bacteria in traditional fermented pepper products. Until now, insufficient attention has been paid to salt stress, while the effect of capsaicin on the aroma-producing properties of Lactobacillus plantarum (L. plantarum) is unclear. The present study attempted to illustrate the effect of capsaicin stress on the aroma-producing properties of L. plantarum CL-01 isolated from traditionally fermented peppers based on E-nose and GC-IMS. The results showed that E-nose could clearly distinguish the overall flavor differences of L. plantarum CL-01 under capsaicin stress. A total of 48 volatile compounds (VOCs) were characterized by means of GC-IMS, and the main VOCs belonged to acids and alcohols. Capsaicin stress significantly promoted L. plantarum CL-01 to produce alpha-pinene, ethyl crotonate, isobutyric acid, trans-2-pentenal, 2-methyl-1-butanol, 3-methyl-3-buten-1-ol, 1-penten-3-one, 2-pentanone, 3-methyl-1-butanol-D, and 2-heptanone (p < 0.05). In addition, under capsaicin stress, the contents of 1-penten-3-one, 3-methyl-3-buten-1-ol, 5-methylfurfuryl alcohol, isobutanol, 2-furanmethanethiol, 2,2,4,6,6-pentamethylheptane, 1-propanethiol, diethyl malonate, acetic acid, beta-myrcene, 2-pentanone, ethyl acetate, trans-2-pentenal, 2-methylbutyl acetate, and 2-heptanone produced by L. plantarum CL-01 were significantly increased along with the fermentation time (p < 0.05). Furthermore, some significant correlations were observed between the response values of specific E-nose sensors and effective VOCs.
Collapse
Affiliation(s)
- Qian Zhang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (Q.Z.); (J.T.); (Z.C.)
| | - Junni Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (Q.Z.); (J.T.); (Z.C.)
| | - Jing Deng
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China;
| | - Zijian Cai
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (Q.Z.); (J.T.); (Z.C.)
| | - Xiaole Jiang
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China;
| | - Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (Q.Z.); (J.T.); (Z.C.)
| |
Collapse
|
25
|
Li Y, Luo X, Guo H, Bai J, Xiao Y, Fu Y, Wu Y, Wan H, Huang Y, Gao H. Metabolomics and metatranscriptomics reveal the influence mechanism of endogenous microbe (Staphylococcus succinus) inoculation on the flavor of fermented chili pepper. Int J Food Microbiol 2023; 406:110371. [PMID: 37659279 DOI: 10.1016/j.ijfoodmicro.2023.110371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
This study integrated metabolomic and metatranscriptomic techniques to examine how the endogenous microbe, Staphylococcus succinus, influenced the essential flavor of fermented chili peppers. The mechanisms governing spontaneous fermentation and S. succinus-inoculated fermentation were also elucidated. Esters (e.g., ethyl undecanoate, isoamyl acetate, and methyl salicylate), terpenes (e.g., terpinen-4-ol), and alcohols (e.g., α-terpineol, linalool, and 4-methyl-3-heptanol) were found to be the key aroma-active compounds, aspartic acid (Asp) and glutamic acid (Glu) were identified as primary flavoring free amino acids. Notably, during the early stages of S. succinus-inoculated fermentation, the production of these essential metabolites was abundant, while their gradual increase over time was observed in the case of spontaneous fermentation. Metatranscriptomic analysis revealed that S. succinus inoculation could up-regulate genes related to glycolysis, amino acid metabolism, and aroma compound synthesis. These changes sequentially boosted the production of sweet and umami free amino acids, enhanced organic acid levels, increased unique aroma compound generation, and further improved the flavor and quality of the fermented chili peppers. Therefore, S. succinus inoculation can augment the sensory quality of fermented chili peppers, making this strain a promising candidate for Sichuan pickle fermentation starters.
Collapse
Affiliation(s)
- Yumeng Li
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Xiaoqin Luo
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Huan Guo
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Jinrong Bai
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Research Center for Nutrition, Metabolism & Food Safety, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Yue Xiao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Research Center for Nutrition, Metabolism & Food Safety, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Yuan Fu
- Jian Yang City Product Quality Supervision & Testing Institute, Jianyang, China
| | - Yanping Wu
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Hongyu Wan
- Jian Yang City Product Quality Supervision & Testing Institute, Jianyang, China.
| | - Yina Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Research Center for Nutrition, Metabolism & Food Safety, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Hong Gao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
26
|
Li K, Chen T, Shi X, Chen W, Luo X, Xiong H, Tan X, Liu Y, Zhang D. Residue behavior and processing factors of thirteen field-applied pesticides during the production of Chinese traditional fermented chopped pepper and chili powder. Food Chem X 2023; 19:100854. [PMID: 37780331 PMCID: PMC10534233 DOI: 10.1016/j.fochx.2023.100854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
In this study, the fate, processing factors and relationship with physicochemical properties of thirteen pesticides in field-collected pepper samples during Chinese chopped pepper and chili powder production was systematically studied. The washing, air-drying, chopping and salting and fermentation processes reduced 24.8%-62.8%, 0.9%-26.4%, 25.1%-50.3% and 16.3%-90.0% of thirteen pesticide residues, respectively, while the sun-drying processing increased the residues of eleven pesticides by 1.27-5.19 fold. The PFs of thirteen pesticides were < 1 in chopped pepper production and the PFs of eleven pesticides were more than 1 for chili powder production. The chopped pepper processing efficiency have most negative correlation with octanol-water partition coefficient. In contrast, the chili powder processing efficiency have most positive correlation with vapour pressure. Thus, this study can offer important references for assessment the pesticide residue levels in Chinese traditional fermented chopped pepper and chili powder production from fresh peppers.
Collapse
Affiliation(s)
- Kailong Li
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Tongqiang Chen
- Hunan Provincial institute of product and goods quality inspection, Changsha 410007, China
| | - Xiaobin Shi
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Wuying Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Xiangwen Luo
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Hao Xiong
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Xinqiu Tan
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Yong Liu
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Deyong Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| |
Collapse
|
27
|
Huang L, Tang Y, Zheng J, Kan J, Wu Y, Wu Y, Awad S, Ibrahim A, Du M. Relationship between the Dynamics of Flavor Compounds and Microbial Succession in the Natural Fermentation of Zhalajiao, a Popular Traditional Chinese Fermented Chili Paste. Foods 2023; 12:3849. [PMID: 37893743 PMCID: PMC10606277 DOI: 10.3390/foods12203849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023] Open
Abstract
Zhalajiao, a traditional Chinese fermented food, is popular due to its unique flavor. Traditional Zhalajiao fermentation is closely related to flavor compounds production. However, the mechanisms underlying the formation of these crucial flavor components in Zhalajiao remain unclear. Here, we explored the dynamic changes in physical and chemical properties, microbial diversity, and flavor components of Zhalajiao at various fermentation times. In total, 6 organic acids, 17 amino acids, and 21 key volatile compounds were determined as flavor components. In Zhalajiao, Lactobacillus and Cyanobacterium were the main bacteria that were involved in the formation of crucial flavor compounds. Candida showed a significant correlation with 14 key flavor compounds during fermentation (p < 0.05) and was the main fungal genus associated with flavor formation in Zhalajiao. This research offers a theoretical foundation for the flavor regulation and quality assurance of Zhalajiao.
Collapse
Affiliation(s)
- Luhan Huang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chinese-Hungarian Cooperative Research Center for Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yanyan Tang
- Chongqing Houjie Pharmaceutical Group Co., Ltd., Chongqing 404100, China
| | - Jiong Zheng
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing 400715, China
- Chinese-Hungarian Cooperative Research Center for Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yun Wu
- College of Food Science and Pharmaceutical Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yating Wu
- College of Food Science and Pharmaceutical Science, Xinjiang Agricultural University, Urumqi 830052, China
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Sameh Awad
- Faculty of Agriculture, Alexandria University, Alexandria 21500, Egypt
| | - Amel Ibrahim
- Faculty of Agriculture, Alexandria University, Alexandria 21500, Egypt
| | - Muying Du
- College of Food Science, Southwest University, Chongqing 400715, China
- Chinese-Hungarian Cooperative Research Center for Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| |
Collapse
|
28
|
Yuan Y, Yang Y, Xiao L, Qu L, Zhang X, Wei Y. Advancing Insights into Probiotics during Vegetable Fermentation. Foods 2023; 12:3789. [PMID: 37893682 PMCID: PMC10606808 DOI: 10.3390/foods12203789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Fermented vegetables have a long history and are enjoyed worldwide for their unique flavors and health benefits. The process of fermentation improves the nutritional value, taste, and shelf life of foods. Microorganisms play a crucial role in this process through the production of metabolites. The flavors of fermented vegetables are closely related to the evaluation and succession of microbiota. Lactic acid bacteria (LABs) are typically the dominant bacteria in fermented vegetables, and they help inhibit the growth of spoilage bacteria and maintain a healthy gut microbiota in humans. However, homemade and small-scale artisanal products rely on spontaneous fermentation using bacteria naturally present on fresh vegetables or from aged brine, which may introduce external microorganisms and lead to spoilage and substandard products. Hence, understanding the role of LABs and other probiotics in maintaining the quality and safety of fermented vegetables is essential. Additionally, selecting probiotic fermentation microbiota and isolating beneficial probiotics from fermented vegetables can facilitate the use of safe and healthy starter cultures for large-scale industrial production. This review provides insights into the traditional fermentation process of making fermented vegetables, explains the mechanisms involved, and discusses the use of modern microbiome technologies to regulate fermentation microorganisms and create probiotic fermentation microbiota for the production of highly effective, wholesome, safe, and healthy fermented vegetable foods.
Collapse
Affiliation(s)
- Yingzi Yuan
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China (L.X.)
| | - Yutong Yang
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China (L.X.)
| | - Lele Xiao
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China (L.X.)
| | - Lingbo Qu
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China (L.X.)
- Food Laboratory of Zhongyuan, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoling Zhang
- Food Laboratory of Zhongyuan, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Wei
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China (L.X.)
| |
Collapse
|
29
|
Li H, Guan H, Zhang X, Xing S, Liu W, Kim IC, Gong H. The Impact of Different Cooking Methods on the Flavor Profile of Fermented Chinese Spicy Cabbage. Molecules 2023; 28:6539. [PMID: 37764317 PMCID: PMC10535354 DOI: 10.3390/molecules28186539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Chinese spicy cabbage (CSC) is a common traditional fermented vegetable mainly made of Chinese cabbage. In addition to eating raw, boiling and stir-frying are the most common cooking methods for CSC. To identify the impacts of boiling or stir-frying on the quality of CSC, the physicochemical properties, flavor compounds, and sensory properties of CSC were analyzed. A total of 47 volatile flavor compounds (VFCs) were detected by gas chromatography-mass spectrometry. Sulfide was determined as the main flavor compound of CSC, mainly contributed by cabbage, garlic, and onion odors. The content of sulfide decreased significantly after cooking. Nonanal, geranyl acetate, and linalool were newly generated after boiling with odor activity value (OAV) > 1, and contributed fatty, sweet, fruity, and floral odors to BL-CSC. 1-Octen-3-one, 1-octen-3-ol, octanal, nonanal, and (E)-2-nonenal were newly generated after stir-frying with OAV > 1, and contributed mushroom, fatty, and green odors to SF-CSC. Diallyl trisulfide, nonanal, (E)-β-ionone, β-sesquiphellandrene, and (E)-2-decenal were considered as the potential key aroma compounds (KACs) to distinguish the CSCs after different heat treatment. After cooking, the total titratable acidity of CSC increased and the sensory properties changed significantly. This study provides valuable information and guidance on the sensory and flavor changes of thermal processing fermented vegetables.
Collapse
Affiliation(s)
- Huamin Li
- School of Food Engineering, Ludong University, Yantai 264025, China
- Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Ludong University, Yantai 264025, China
- Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai 264025, China
| | - Hui Guan
- School of Food Engineering, Ludong University, Yantai 264025, China
| | - Xiru Zhang
- School of Food Engineering, Ludong University, Yantai 264025, China
| | - Shaohua Xing
- School of Food Engineering, Ludong University, Yantai 264025, China
| | - Wenli Liu
- School of Food Engineering, Ludong University, Yantai 264025, China
- Department of Food Engineering, Mokpo National University, Jeonnam 534729, Republic of Korea
| | - In-Cheol Kim
- Department of Food Engineering, Mokpo National University, Jeonnam 534729, Republic of Korea
| | - Hansheng Gong
- School of Food Engineering, Ludong University, Yantai 264025, China
- Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Ludong University, Yantai 264025, China
- Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai 264025, China
| |
Collapse
|
30
|
Chen H, Kang X, Wang X, Chen X, Nie X, Xiang L, Liu D, Zhao Z. Potential Correlation between Microbial Diversity and Volatile Flavor Substances in a Novel Chinese-Style Sausage during Storage. Foods 2023; 12:3190. [PMID: 37685124 PMCID: PMC10487076 DOI: 10.3390/foods12173190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
A novel Chinese-style sausage with Chinese traditional fermented condiments used as additional ingredients is produced in this study. The aim of this study was to investigate the microbial community's structure, the volatile flavor substances and their potential correlation in the novel Chinese sausage. High-throughput sequencing (HTS) and solid-phase microextraction-gas chromatography-mass spectrometry (GC-MS) were, respectively, used to analyze the microbial diversity and volatile flavor substances of the novel Chinese-style sausage during storage. The results showed that Firmicutes, Proteobacteria and Actinobacteria were the predominant bacterial genera, and Hyphopichia and Candida were the predominant fungal genera. A total of 88 volatile flavor substances were identified through GC-MS, among which 18 differential flavor compounds were screened (VIP > 1), which could be used as potential biomarkers to distinguish the novel sausages stored for different periods. Lactobacillus exhibited a significant negative correlation with 2,3-epoxy-4,4-dimethylpentane and acetoin and a significant positive correlation with 2-phenyl-2-butenal. Hyphopichia significantly positively correlated with ester. Leuconostoc significantly positively correlated with ethyl caprate, ethyl palmate, ethyl tetradecanoate and ethyl oleate while it negatively correlated with hexanal. This study provides a theoretical basis for revealing the flavor formation mechanisms and the screening of functional strains for improving the flavor quality of the novel Chinese-style sausage.
Collapse
Affiliation(s)
- Hongfan Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| | - Xinyue Kang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xinyi Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xinya Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xin Nie
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610500, China
| | - Lu Xiang
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| | - Dayu Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Zhiping Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
31
|
Wu B, Zhu C, Deng J, Dong P, Xiong Y, Wu H. Effect of Sichuan Pepper ( Zanthoxylum genus) Addition on Flavor Profile in Fermented Ciba Chili ( Capsicum genus) Using GC-IMS Combined with E-Nose and E-Tongue. Molecules 2023; 28:5884. [PMID: 37570854 PMCID: PMC10420873 DOI: 10.3390/molecules28155884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
This study examined the flavor profiles of fermented Ciba chili, comparing samples with Sichuan pepper (HJ) to those without Sichuan pepper (CK), using three analytical techniques: E-tongue, E-nose, and gas chromatography-ion mobility spectrometry (GC-IMS). The results obtained from the E-tongue and E-nose exhibited a clear difference in taste and flavor between CK and HJ. In detail, CK mainly exhibited a sour flavor profile, whereas HJ displayed an intricate and rich flavor. The HS-GC-IMS results identified a total of 60 compounds in the samples, with terpenes, alcohols, and esters being the primary volatile flavor compounds. Additionally, Zanthoxylum was found to significantly enhance the concentration of these compounds in fermented Ciba chili. Through robust principal component analysis (rPCA), 17 distinct flavor compounds were selected. Correlation analysis revealed that most terpenes exhibited positive correlations with LY2/LG, LY2/gCT1, LY2/Gct, LY2/G, LY2/Gh, and terpenes were found in higher concentrations in HJ. This study contributes a theoretical basis and provides data support for optimizing the fermentation process and elucidating the underlying mechanism of characteristic aroma formation in Ciba chili after fermentation.
Collapse
Affiliation(s)
- Baozhu Wu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (B.W.); (J.D.); (P.D.); (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China;
| | - Jing Deng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (B.W.); (J.D.); (P.D.); (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Ping Dong
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (B.W.); (J.D.); (P.D.); (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Yiling Xiong
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (B.W.); (J.D.); (P.D.); (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Huachang Wu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (B.W.); (J.D.); (P.D.); (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| |
Collapse
|
32
|
Zou J, Chen X, Wang C, Liu Y, Li M, Pan X, Chang X. Microbial Communities and Correlation between Microbiota and Volatile Compounds in Fermentation Starters of Chinese Sweet Rice Wine from Different Regions. Foods 2023; 12:2932. [PMID: 37569201 PMCID: PMC10419015 DOI: 10.3390/foods12152932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Chinese sweet rice wines (CSRW) are traditional, regionally distinct alcoholic beverages that are generally brewed with glutinous rice and fermentation starters. This study aimed to characterize microbial communities and volatile compounds of CSRW starters and explore correlations between them. The major volatiles in starters include 1-heptanol, 1-octanol, 2-nonanol, phenylethyl alcohol, 2-nonanone, acetophenone, and benzaldehyde. Microbiological analysis based on high-throughput sequencing (HTS) technology demonstrated that starter bacterial communities are dominated by Weissella, Pediococcus, and Lactobacillus, while Saccharomycopsis and Rhizopus predominate in fungal communities. Carbohydrate and amino acid metabolism are the most active metabolic pathways in starters. Spearman correlation analysis revealed that 15 important volatile compounds including alcohols, acids, aldehydes and esters were significantly positively correlated with nine microbial genera (|r| > 0.7, p < 0.05), including five bacterial genera (i.e., Weissella, Pediococcus, Lactobacillus, Bacillus, and Nocardiopsis) and four fungal genera (i.e., Saccharomycopsis, Rhizopus, Wickerhamomyces, and Cyberlindnera), spanning 19 distinct relationships and these microorganisms were considered the core functional microorganisms in CSRW starters. The most important positive correlations detected between phenylethyl alcohol and Weissella or Saccharomycopsis and between 2-nonanol and Pediococcus. This study can serve as a reference to guide the development of defined starter cultures for improving the aromatic quality of CSRW.
Collapse
Affiliation(s)
- Jing Zou
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066104, China; (X.C.); (C.W.); (Y.L.); (M.L.); (X.P.); (X.C.)
- Engineering Research Center of the Ministry of Education of Chestnut Industry Technology, Qinhuangdao 066000, China
| | - Xiaohui Chen
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066104, China; (X.C.); (C.W.); (Y.L.); (M.L.); (X.P.); (X.C.)
| | - Chenyu Wang
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066104, China; (X.C.); (C.W.); (Y.L.); (M.L.); (X.P.); (X.C.)
| | - Yang Liu
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066104, China; (X.C.); (C.W.); (Y.L.); (M.L.); (X.P.); (X.C.)
| | - Miao Li
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066104, China; (X.C.); (C.W.); (Y.L.); (M.L.); (X.P.); (X.C.)
| | - Xinyuan Pan
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066104, China; (X.C.); (C.W.); (Y.L.); (M.L.); (X.P.); (X.C.)
| | - Xuedong Chang
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066104, China; (X.C.); (C.W.); (Y.L.); (M.L.); (X.P.); (X.C.)
- Engineering Research Center of the Ministry of Education of Chestnut Industry Technology, Qinhuangdao 066000, China
| |
Collapse
|
33
|
Chen Z, Liu L, Du H, Lu K, Chen C, Xue Q, Hu Y. Microbial community succession and their relationship with the flavor formation during the natural fermentation of Mouding sufu. Food Chem X 2023; 18:100686. [PMID: 37168719 PMCID: PMC10164778 DOI: 10.1016/j.fochx.2023.100686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/13/2023] Open
Abstract
Mouding sufu, a traditional fermented soybean product in China, has been recognized by the public in the southwestern regions of China. To reveal the microbial community succession and their relationship with the flavor formation during the natural fermentation of Mouding sufu, microbial community, non-volatile flavor compounds and volatile flavor compounds were analyzed by high-throughput sequencing, high-performance liquid chromatography, gas chromatography ion migration spectroscopy, respectively. The results showed that Lactobacillus and Klebsiella were the most abundant bacterial genus, whereas the main fungal genera were unclassified-f-Dipodascaeae and Issatchenkia. In addition, Glutamic acid, Aspartic acid, Alanine, Valine, Lysine, Histidine, lactic acid, succinic acid, and acetic acid were the main non-volatile flavor substances. Furthermore, the taste activity values of glutamic acid, aspartic acid and lactic acid reached 132, 68.9, 18.18 at H60, respectively, meaning that umami and sour were the key taste compounds. Simultaneously, ethyl 3-methylbutanoate-M, ethyl propanoate, methyl 2-methylbutanoate, ethyl 2-methylbutanoate, ethyl 3-methylbutanoate-D, ethyl isobutyrate, linalool-M, linalool-D, cis-4-heptenal, 2-methylpropanal were the characteristic volatile flavor of Mouding sufu. Finally, correlation analysis showed that g__Erwinia and g__Acremonium correlated with most of the key aroma compounds. 20 bacteria and 21 fungi were identified as core functional microbe for Mouding sufu production.
Collapse
Affiliation(s)
- Zhongai Chen
- College of Food Science and Technology, Yunnan Agricultural University, NO. 452 Fengyuan Road, Panlong District, Kunming, Yunnan 650000, China
- Institute of Food Processing, Guizhou Academy of Agricultural Sciences, NO. 1 Jinnong Road, Huaxi District, Guiyang 550006, China
| | - Lijing Liu
- College of Food Science and Technology, Yunnan Agricultural University, NO. 452 Fengyuan Road, Panlong District, Kunming, Yunnan 650000, China
| | - Huan Du
- College of Food Science and Technology, Yunnan Agricultural University, NO. 452 Fengyuan Road, Panlong District, Kunming, Yunnan 650000, China
| | - Kaixiang Lu
- College of Food Science and Technology, Yunnan Agricultural University, NO. 452 Fengyuan Road, Panlong District, Kunming, Yunnan 650000, China
| | - Cong Chen
- College of Food Science and Technology, Yunnan Agricultural University, NO. 452 Fengyuan Road, Panlong District, Kunming, Yunnan 650000, China
| | - Qiaoli Xue
- Editorial Department of Journal of Yunnan Agricultural University, Yunnan Agricultural University, Kunming 650000, China
- Corresponding authors.
| | - Yongjin Hu
- College of Food Science and Technology, Yunnan Agricultural University, NO. 452 Fengyuan Road, Panlong District, Kunming, Yunnan 650000, China
- Corresponding authors.
| |
Collapse
|
34
|
Islam K, Rawoof A, Kumar A, Momo J, Ahmed I, Dubey M, Ramchiary N. Genetic Regulation, Environmental Cues, and Extraction Methods for Higher Yield of Secondary Metabolites in Capsicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37289974 DOI: 10.1021/acs.jafc.3c01901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Capsicum (chili pepper) is a widely popular and highly consumed fruit crop with beneficial secondary metabolites such as capsaicinoids, carotenoids, flavonoids, and polyphenols, among others. Interestingly, the secondary metabolite profile is a dynamic function of biosynthetic enzymes, regulatory transcription factors, developmental stage, abiotic and biotic environment, and extraction methods. We propose active manipulable genetic, environmental, and extraction controls for the modulation of quality and quantity of desired secondary metabolites in Capsicum species. Specific biosynthetic genes such as Pun (AT3) and AMT in the capsaicinoids pathway and PSY, LCY, and CCS in the carotenoid pathway can be genetically engineered for enhanced production of capsaicinoids and carotenoids, respectively. Generally, secondary metabolites increase with the ripening of the fruit; however, transcriptional regulators such as MYB, bHLH, and ERF control the extent of accumulation in specific tissues. The precise tuning of biotic and abiotic factors such as light, temperature, and chemical elicitors can maximize the accumulation and retention of secondary metabolites in pre- and postharvest settings. Finally, optimized extraction methods such as ultrasonication and supercritical fluid method can lead to a higher yield of secondary metabolites. Together, the integrated understanding of the genetic regulation of biosynthesis, elicitation treatments, and optimization of extraction methods can maximize the industrial production of secondary metabolites in Capsicum.
Collapse
Affiliation(s)
- Khushbu Islam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abdul Rawoof
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ajay Kumar
- Department of Plant Sciences, School of Biological Sciences, Central University of Kerala, Kasaragod 671316, Kerala, India
| | - John Momo
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ilyas Ahmed
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Meenakshi Dubey
- Department of Biotechnology, Delhi Technological University, New Delhi 110042, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
35
|
Zhang X, Li Y, Zhao Y, Guan H, Jin C, Gong H, Sun X, Wang P, Li H, Liu W. Effect of Levilactobacillus brevis as a starter on the flavor quality of radish paocai. Food Res Int 2023; 168:112780. [PMID: 37120226 DOI: 10.1016/j.foodres.2023.112780] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 05/01/2023]
Abstract
The aim of this study was to investigate the effectiveness of Levilactobacillus brevis on the fermentation kinetics and flavor quality of radish paocai. Compared with spontaneous fermentation (SF), the radish paocai of inoculated fermentation (IF) using Levilactobacillus brevis PL6-1 as a starter could rapidly utilize sugar to produce acid, thus accelerating the fermentation process. The texture including hardness, chewiness, and springiness of the IF were all higher than that of the SF, and the IF paocai showed higher L value in color. L. brevis PL6-1 as a starter could increase the final levels of metabolites of mannitol (5.43 mg/g), lactic acid (543.44 mg/100 g) and acetic acid (87.79 mg/100 g). Fifteen volatile organic compounds (VOCs) were identified as key aroma-active compounds in radish paocai and 8 differential VOCs were considered as the potential markers. L. brevis PL6-1 could improve the levels of 1,8-cineole, 1-hexanol, hexanoic acid, 2-methoxy-4-vinylphenol, and eugenol, giving the radish paocai floral, sweet, and sour aroma, and reduce the unpleasant odor of garlic, onion, and pungent, contributed by erucin, diallyl disulfide, and allyl trisulfide. Sensory evaluation results showed that the appearance, taste, texture, and overall acceptability of IF paocai were all better than the SF group. Therefore, L. brevis PL6-1 could be a potential starter to improve the flavor and sensory quality for radish paocai fermentation.
Collapse
Affiliation(s)
- Xiru Zhang
- School of Food Engineering, Ludong University, Yantai 264025, China
| | - Yaxin Li
- School of Food Engineering, Ludong University, Yantai 264025, China
| | - Yaran Zhao
- School of Food Engineering, Ludong University, Yantai 264025, China
| | - Hui Guan
- School of Food Engineering, Ludong University, Yantai 264025, China
| | - Chengwu Jin
- School of Food Engineering, Ludong University, Yantai 264025, China
| | - Hansheng Gong
- School of Food Engineering, Ludong University, Yantai 264025, China
| | - Xuemei Sun
- School of Food Engineering, Ludong University, Yantai 264025, China
| | - Ping Wang
- Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai 264025, China
| | - Huamin Li
- School of Food Engineering, Ludong University, Yantai 264025, China; Yantai Engineering Research Center of Green Food Processing and Quality Control, Yantai 264025, China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai 264025, China.
| | - Wenli Liu
- School of Food Engineering, Ludong University, Yantai 264025, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Yantai Engineering Research Center of Green Food Processing and Quality Control, Yantai 264025, China.
| |
Collapse
|
36
|
Shi Q, Tang H, Mei Y, Chen J, Wang X, Liu B, Cai Y, Zhao N, Yang M, Li H. Effects of endogenous capsaicin stress and fermentation time on the microbial succession and flavor compounds of chili paste (a Chinese fermented chili pepper). Food Res Int 2023; 168:112763. [PMID: 37120214 DOI: 10.1016/j.foodres.2023.112763] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Chili paste, is a popular traditional product derived from chili pepper, and its fermentation system is affected by the variable concentration of capsaicin, which originates from the peppers. In the present study, the effects of capsaicin and fermentation time on the microbial community and flavor compounds of chili paste were investigated. After capsaicin supplementation, the total acid was significantly decreased (p < 0.05) along with lower total bacteria, especially lactic acid bacteria. Lactiplantibacillus, Lactobacillus, Weissella, Issatchenkia, Trichoderma, and Pichia were the shared and predominant genera; whereas, the Bacteroides and Kazachstania abundance was significantly increased due to the selection effect of capsaicin over time. Additionally, alterations of the microbial interaction networks and their metabolic preferences led to less lactic acid content with greater accumulation of ethyl nonanoate, methyl nonanoate, etc. This study will provide a perspective for selecting chili pepper varieties and improving the quality of fermented chili paste.
Collapse
|
37
|
Chen T, Wang H, Su W, Mu Y, Tian Y. Analysis of the formation mechanism of volatile and non-volatile flavor substances in corn wine fermentation based on high-throughput sequencing and metabolomics. Food Res Int 2023; 165:112350. [PMID: 36869445 DOI: 10.1016/j.foodres.2022.112350] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
The purpose of this study was to reveal the relationship between core microorganisms and flavor substances in the fermentation process of corn wine. Microbial diversity, volatile and non-volatile flavor substances were detected by high-throughput sequencing (HTS), headspace solid phase micro-extraction gas chromatography-mass spectrometry (HS-SPME/GC-MS) and gas chromatography time of flight mass spectrometry (GC-TOF-MS). High performance liquid chromatography (HPLC) was used to detect organic acids in corn wine fermentation, and its physiochemical properties were tracked. The results showed that physiochemical factors changed obviously with fermentation time. Bacillus, Prevotella_9, Acinetobacter and Gluconobacter were the predominant bacterial. Rhizopus and Saccharomyces were the dominant fungi. Acetic acid and succinic acid were important organic acids in corn wine. According to variable importance of projection (VIP) > 1 and P < 0.05, 24 volatile flavor substances with significant difference were screened out from 52 volatile flavor substances. Similarly, 25 non-volatile flavor substances with significant differences were screened out from the 97 reliable metabolites identified by 223 chromatographic peaks. Eight key metabolic pathways were enriched from 25 non-volatile flavor substances according to path influence values > 0.1 and P < 0.05. Based on Two-way Orthogonal Partial Least Squares (O2PLS) model and Pearson correlation coefficient, Saccharomyces, Rhizopus, uncultured_bacterium, Aneurinibacillus, Wickerhamomyces and Gluconobacter may be the potential volatile flavor-contributing microorganism genus in corn wine. The Pearson correlation coefficient showed that Saccharomyces was significantly positively correlated with malic acid, oxalic acid, valine and isoleucine, and Rhizopus was positively correlated with glucose-1-phosphate and alanine. These findings enhanced our understanding of the formation mechanism of flavor substances in corn wine and provided the theoretical basis for stabilizing flavor quality of corn wine.
Collapse
Affiliation(s)
- Tianyan Chen
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Hanyu Wang
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Wei Su
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Key Laboratory for Storage and Processing of Agricultural and Animal Products, Guizhou University, Guiyang, China.
| | - Yingchun Mu
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Yexin Tian
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
38
|
Tian Y, Mu Y, Su W, Qi Q. Correlation between microbiota and volatile flavor compounds during inoculated fermentation of Chinese Pickled pepper (Paojiao). Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
39
|
Study on the quality formation mechanism of Zao chili with enhanced fermentation by Lactipllantbacillus plantarum 5-1. Food Chem X 2023; 17:100626. [PMID: 36974175 PMCID: PMC10039268 DOI: 10.1016/j.fochx.2023.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Zao Chili (ZC) is a traditional fermented pepper, which plays an important role in Chinese cooking. The aim of this study was to elucidate the effect of Lactipllantbacillus plantarum 5-1 on the physicochemical properties, metabolite and microbiota profiling of ZC. The physicochemical factors changed regularly with the fermentation time. In the microbial communities, Lactobacillus, Weissella, Enterobacter, Gibberella, Fusarium, Zygosaccharomyces and Pichia were the dominant genera. 7 kinds of organic acids were detected in the whole fermentation process of ZC, but only 5 kinds changed significantly. Based on the OPLS-DA model with VIP > 1 and ANOVA with P < 0.05, 33 volatile flavor compounds with significant differences were screened out of 89. According to the redundancy analysis (RDA), fungi mainly contributed to soluble solids, while bacteria mainly contributed to pH. Lactobacillus, Weissella, Enterbacter and Zygosaccharomyces may be the potential flavor contributing microorganisms in the fermentation process of ZC by the Spearman correlation coefficient. A total of 11 main metabolic pathways were obtained by KEGG enrichment analysis of 89 volatile flavor compounds and 7 organic acids. Therefore, this study further enhanced our understanding of the flavor quality formation mechanism of Lactipllantbacillus plantarum in ZC, and providing a theoretical basis for improving the flavor quality of ZC.
Collapse
|
40
|
Mei Y, Ge L, Lai H, Wang Y, Zeng X, Huang Y, Yang M, Zhu Y, Li H, Li J, Guo C, Hu T, Zhao N. Decoding the evolution of aromatic volatile compounds and key odorants in Suancai (a Chinese traditional fermented vegetable) during fermentation using stir bar sorptive extraction–gas chromatography–olfactometry–mass spectrometry. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
41
|
Zheng Z, Zhou Q, Chen Q, Gao J, Wu Y, Yang F, Zhong K, Gao H. Improvement of physicochemical characteristics, flavor profiles and functional properties in Chinese radishes via spontaneous fermentation after drying. J Food Sci 2023; 88:1292-1307. [PMID: 36815393 DOI: 10.1111/1750-3841.16486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/13/2022] [Accepted: 01/18/2023] [Indexed: 02/24/2023]
Abstract
Spontaneously dried-fermented radishes have been consumed in China for hundreds of years and are usually fermented for a long time to acquire high quality. In this study, the spontaneously dried-fermented radishes with short-term manufacturing periods were made from five different varieties of radishes that grew in the same environment. In addition, the physicochemical characteristics (i.e., moisture content, soluble solid, and pH value), flavor profiles (i.e., free amino acids, organic acids, and volatile compounds), and functional properties (i.e., total phenolics content, total flavonoids content, sulforaphane content, and γ-aminobutyric acid [GABA] content) of these five raw radishes and spontaneously dried-fermented radishes were analyzed and compared. In detail, the content of volatile and nonvolatile compounds increased, especially in oxalic acid, succinic acid, and umami free amino acids. Furthermore, functional components, such as sulforaphane and GABA, were also enriched via spontaneous fermentation after drying. In addition, the results of principal component analysis, hierarchical clustering analysis, and redundancy analysis showed that there were significant discrepancies appeared when raw radishes were processed via spontaneous fermentation or not. These results suggested that the process of spontaneous fermentation after drying may contribute to improving the quality of fresh radishes. Notably, radishes with red skin and flesh were regarded as exceptional varieties for processing, because of the preferable flavor profiles and affluent functional substances via spontaneous fermentation after drying. Therefore, these findings could deliver a systematical insight into developing processed radishes with high quality. PRACTICAL APPLICATION: The spontaneously dried-fermented radishes were manufactured through the process of spontaneous fermentation after drying, which acquired tasty and healthy characteristics by accumulating the volatile and nonvolatile compounds as well as the functional components, like total phenolics, total flavonoids, sulforaphane, and γ-aminobutyric acid. Importantly, because of the excellent processing properties, the radishes with red skin and flesh could be more appropriate to produce spontaneously dried-fermented radishes. Our findings may provide a practical strategy for developing vegetable relishes with superb flavor profiles and good functional properties in pickled vegetables.
Collapse
Affiliation(s)
- Zimeng Zheng
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Qian Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Qian Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Jia Gao
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yanping Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Feng Yang
- Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Deyang, Sichuan, China.,Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Kai Zhong
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Hong Gao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Goyal N, Jerold F. Biocosmetics: technological advances and future outlook. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25148-25169. [PMID: 34825334 PMCID: PMC8616574 DOI: 10.1007/s11356-021-17567-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/12/2021] [Indexed: 04/16/2023]
Abstract
The paper provides an overview of biocosmetics, which has tremendous potential for growth and is attracting huge business opportunities. It emphasizes the immediate need to replace conventional fossil-based ingredients in cosmetics with natural, safe, and effective ingredients. It assembles recent technologies viable in the production/extraction of the bioactive ingredient, product development, and formulation processes, its rapid and smooth delivery to the target site, and fosters bio-based cosmetic packaging. It further explores industries that can be a trailblazer in supplying raw material for extraction of bio-based ingredients for cosmetics, creating biodegradable packaging, or weaving innovation in fashion clothing. Lastly, the paper discusses what it takes to become the first generation of a circular economy and supports the implementation of strict regulatory guidelines for any cosmetic sold globally.
Collapse
Affiliation(s)
- Nishu Goyal
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India.
| | - Frankline Jerold
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India
| |
Collapse
|
43
|
Zhang L, Hong Q, Yu C, Wang R, Li C, Liu S. Acetobacter sp. improves the undesirable odors of fermented noni (Morinda citrifolia L.) juice. Food Chem 2023; 401:134126. [DOI: 10.1016/j.foodchem.2022.134126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 01/21/2023]
|
44
|
Dynamic changes in the bacterial communities and metabolites of Moringa oleifera leaves during fermentation with or without pyroligneous acid. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
45
|
Identification and validation of core microbes associated with key aroma formation in fermented pepper paste (Capsicum annuumL.). Food Res Int 2023; 163:112194. [PMID: 36596132 DOI: 10.1016/j.foodres.2022.112194] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Fermented peppers are usually obtained by the spontaneous fermentation of microorganisms attached to fresh peppers, and the variable microbial composition would lead to inconsistencies in flavor between batches. To demonstrate the roles of microorganisms in flavor formation, the core microbes closely associated with the key aroma compounds of fermented pepper paste were screened and validated in this study. Lactobacillus was the dominant bacterial genus in fermented pepper paste, whereas the main fungal genera were Alternaria and Kazachstania. Nine strains of the genera Lactobacillus, Weissella, Bacillus, Zygosaccharomyces, Kazachstania, Debaryomyces, and Pichia were isolated from fermented pepper paste. Eleven key aroma compounds were identified using gas chromatography combined with olfactometry and relative odor activity values. Correlation analysis showed that Zygosaccharomyces and Kazachstania were positively correlated with the majority of the key aroma compounds, whereas Lactobacillus was negatively correlated with them. Thus, Zygosaccharomyces and Kazachstania were identified as core genera associated with the key odorants. Finally, Zygosaccharomyces bisporus, Kazachstania humilis, and Lactiplantibacillus plantarum were used as starter cultures for fermented peppers, confirming that Z. bisporus and K. humilis were more beneficial for the key aroma compounds (e.g., acetate, linalool, and phenyl ethanol) rather than L. plantarum. This study contributed to understanding the flavor formation mechanism and provided references for the quality control of food fermentation.
Collapse
|
46
|
Relationship between microbial community and flavor profile during the fermentation of chopped red chili (Capsicum annuum L.). FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
47
|
Huang Y, Ge L, Lai H, Wang Y, Mei Y, Zeng X, Su Y, Shi Q, Yuan H, Li H, Zhu Y, Liao Q, Zuo Y, Zhao N. Seasonal alteration of environmental condition-driven shift in microbiota composition, physicochemical attributes and organic compound profiles in aged Paocai brine during intermittent back-slopping fermentation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Effect of Hanseniaspora uvarum- Saccharomyces cerevisiae Mixed Fermentation on Aroma Characteristics of Rosa roxburghii Tratt, Blueberry, and Plum Wines. Molecules 2022; 27:molecules27228097. [PMID: 36432199 PMCID: PMC9693173 DOI: 10.3390/molecules27228097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Hanseniaspora uvarum, a non-Saccharomyces cerevisiae species, has a crucial effect on the aroma characteristics of fruit wines, thus, attracting significant research interest in recent years. In this study, H. uvarum-Saccharomyces cerevisiae mixed fermentation was used to ferment Rosa roxburghii Tratt, blueberry fruit wine, and plum fruit wines using either a co-inoculated or a sequentially inoculated approach. The three fruit wines' volatile aroma characteristics were analyzed by headspace-solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). The results showed that the mixed inoculation of H. uvarum and S. cerevisiae reduced the alcoholic content of Kongxinli fruit wine. Moreover, H. uvarum-S. cerevisiae fermented Rosa roxburghii Tratt, blueberry, and plum fruit wines and further enriched their flavor compounds. The overall flavor characteristics of sequentially inoculated fruit wines differed significantly from those fermented with S. cerevisiae alone, although several similarities were also observed. Sequential inoculation of H. uvarum and S. cerevisiae positively affected the mellowness of the wine and achieved a better harmony of the overall wine flavors. Therefore, H. uvarum-Saccharomyces cerevisiae mixed fermentation can improve the complexity of the wines' aromatic composition and empower them with a unique identity. In particular, H. uvarum-Saccharomyces cerevisiae blueberry wine produced by mixed fermentation had the widest variety and content of aroma compounds among the fermented wines. Therefore, H. uvarum-Saccharomyces cerevisiae mixed-fermentation inoculation in the three fermented fruit wines significantly increased the aroma compound variety and content, thus, enriching their aroma richness and complexity. This study is the first comparative evaluation of the aroma characteristics of different fruit wines fermented with a mixed inoculation of H. uvarum and S. cerevisiae and provides a preliminary guide for these fruit wines produced with non-Saccharomyces yeast.
Collapse
|
49
|
Liao H, Luo Y, Huang X, Xia X. Dynamics of quality attributes, flavor compounds, and microbial communities during multi-driven-levels chili fermentation: Interactions between the metabolome and microbiome. Food Chem 2022; 405:134936. [DOI: 10.1016/j.foodchem.2022.134936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
|
50
|
Zhou X, Zhou W, He X, Deng Y, Li L, Li M, Feng X, Zhang L, Zhao L. Effects of post-fermentation on the flavor compounds formation in red sour soup. Front Nutr 2022; 9:1007164. [PMID: 36386903 PMCID: PMC9651139 DOI: 10.3389/fnut.2022.1007164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/20/2022] [Indexed: 12/05/2022] Open
Abstract
Red Sour Soup (RSS) is a traditional fermented food in China. After two rounds of fermentation, sour soup has a mellow flavor. However, the microbial composition and flavor formation processes in post-fermentation in RSS are unclear. This study investigates the bacteria composition of RSS during the post-fermentation stage (0–180 days) using high-throughput sequencing. The results show that lactic acid bacteria (LAB) are dominant during the post-fermentation process, and their abundance gradually increases with fermentation time. Additionally, gas chromatography-mass spectrometry was used to detect volatile flavor compounds in the post-fermentation process. Seventy-seven volatile flavor compounds were identified, including 24 esters, 14 terpenes, 9 aromatic hydrocarbons, 9 alkanes, 6 heterocyclic compounds, 3 alcohols, 3 acids, 3 ketones, 2 phenols, 2 aldehydes, 1 amine, and 1 other. Esters and aromatic hydrocarbons are the main volatile compounds in RSS during the post-fermentation process. Orthogonal partial least squares screening and correlation analysis derived several significant correlations, including 48 pairs of positive correlations and 19 pairs of negative correlations. Among them, Acetobacter spp., Clostridium spp. and Sporolactobacillus spp. have 15, 14, 20 significant correlation pairs, respectively, and are considered the most important bacterial genera post-fermentation. Volatile substances become abundant with increasing fermentation time. LAB are excessive after more than 120 days but cause a drastic reduction in volatile ester levels. Thus, the post-fermentation time should be restricted to 120 days, which retains the highest concentrations of volatile esters in RSS. Overall, these findings provide a theoretical basis to determine an optimal post-fermentation time duration, and identify essential bacteria for manufacturing high-quality starter material to shorten the RSS post-fermentation processing time.
Collapse
Affiliation(s)
- Xiaojie Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Wenhua Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha, China
| | - Xiaojie He
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Yaxin Deng
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Liangyi Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha, China
| | - Ming Li
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Xuzhong Feng
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
- Shenzhen Shanggutang Food Development Co., Ltd., Shenzhen, China
| | - Lin Zhang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha, China
- *Correspondence: Lin Zhang,
| | - Liangzhong Zhao
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
- Liangzhong Zhao,
| |
Collapse
|