1
|
Zhang Y, Lv X, Wang D, Zheng C, Chen H, Yuan Y, Wei F. Metabolomics combined with biochemical analyses revealed phenolic profiles and antioxidant properties of rapeseeds. Food Chem 2025; 466:142250. [PMID: 39615359 DOI: 10.1016/j.foodchem.2024.142250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/15/2024] [Accepted: 11/23/2024] [Indexed: 12/14/2024]
Abstract
Phenolic compounds, one of the most crucial lipid concomitants in rapeseed, have garnered heighten attention due to their numerous health benefits. Therefore, efficiently characterizing the phenolic profile of rapeseed is paramount for discerning their potential bioactivities. This study employed untargeted metabolomics in conjunction with molecular networking to trace the phenolic composition across three rapeseed genotypes. A total of 117 phenolic compounds were identified in rapeseed by mass spectrometry under positive and negative ionization modes, including 36 flavonoids, 23 coumarins, 12 phenolic acids, 10 lignans, 4 stilbenes, 4 diarylheptanes, 1 tannin, and several other phenolic constituents. Biochemical analyses revealed that Brassica napus rapeseed typically exhibited the highest total phenolic content and total flavonoid content as well as the strongest antioxidant capacity among three rapeseed genotypes. Through correlation analysis, 17 potential antioxidant phenolic compounds were tentatively screened from rapeseed, supporting the development and utilization of natural antioxidants from rapeseed.
Collapse
Affiliation(s)
- Yao Zhang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China; College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xin Lv
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Dan Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Chang Zheng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Hong Chen
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Yongjun Yuan
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Fang Wei
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
2
|
Zhou S, Tang X, Hegyi F, Nagy A, Takács K, Zalán Z, Chen G, Du M. In vitro digestion and fermentation characteristics of soluble dietary fiber from adlay (Coix lacryma-jobi L. var. ma-yuen Staft) bran modified by steam explosion. Food Res Int 2024; 192:114747. [PMID: 39147484 DOI: 10.1016/j.foodres.2024.114747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
Adlay bran is known for its nutrient-rich profile and multifunctional properties, and steam explosion (SE) is an emerging physical modification technique. However, the specific effects of SE on the activity composition and antioxidant capacity of adlay bran soluble dietary fiber (SDF) during in vitro digestion, as well as its influence on gut microbiota during in vitro fermentation, remain inadequately understood. This paper reports the in vitro digestion and fermentation characteristics of soluble dietary fiber from adlay bran modified by SE (SE-SDF). Compared with the untreated samples (0-SDF), most of the phenolic compounds and antioxidant capacity were significantly increased in the SE-SDF digests. Additionally, SE was beneficial for adlay bran SDF to increase the content of acetic acid, propionic acid and total short-chain fatty acids (SCFAs) in fermentation broth during in vitro fermentation. SE-SDF could promote the growth of beneficial bacteria while inhibiting the proliferation of pathogenic microbes. Our research indicates that SE-SDF shows strong antioxidant properties after in vitro digestion and plays a pivotal role in regulating gut microbiota during in vitro fermentation, ultimately enhancing human intestinal health.
Collapse
Affiliation(s)
- Shuxin Zhou
- College of Food Science, Southwest University, 2# Tian Sheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Xinjing Tang
- College of Food Science, Southwest University, 2# Tian Sheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Ferenc Hegyi
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary
| | - András Nagy
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary
| | - Krisztina Takács
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary
| | - Zsolt Zalán
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary
| | - Guangjing Chen
- College of Food Science and Engineering, Guiyang University, Guiyang, 550005, PR China
| | - Muying Du
- College of Food Science, Southwest University, 2# Tian Sheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| |
Collapse
|
3
|
Lyu W, Yin Z, Xie L, Pasinetti GM, Murrough JW, Marchidan M, Karpman E, Dobbs M, Ferruzzi MG, Simon JE, Wu Q. Method development with high-throughput enhanced matrix removal followed by UHPLC-QqQ-MS/MS for analysis of grape polyphenol metabolites in human urine. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1242:124189. [PMID: 38880055 DOI: 10.1016/j.jchromb.2024.124189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
Grape and grape derived products contain many bioactive phenolics which have a variety of impacts on health. Following oral ingestion, the phenolic compounds and their metabolites may be detectable in human urine. However, developing a reliable method for the analysis of phenolic compounds in urine is challenging. In this work, we developed and validated a new high-throughput, sensitive and reproducible analytical method for the simultaneous analysis of 31 grape phenolic compounds and metabolites using Oasis PRiME HLB cleanup for sample preparation combined with ultra-performance liquid chromatography with triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS). Using this new method, the accuracy achieved was 69.3 % ∼ 134.9 % (except for six compounds), and the recovery achieved was 52.4 % ∼ 134.7 % (except for two very polar compounds). For each of the 31 target analytes, the value of intra-day precision was less than 14.3 %. The value of inter-day precision was slightly higher than intra-day precision, with a range of 0.7 % ∼ 19.1 %. We report for the first time on the effect of gender and BMI on the accuracy and recovery of human urine samples, and results from analysis of variance (ANOVA), and principal component analysis (PCA) indicated there was no difference in the value of accuracy and recovery between different gender or BMI (>30) using our purposed cleanup and UHPLC-QqQ-MS/MS method. Overall, this newly developed method could serve as a powerful tool for analyzing grape phenolic compounds and metabolites in human urine samples.
Collapse
Affiliation(s)
- Weiting Lyu
- New Use Agriculture & Natural Plant Products Program, Department of Plant Biology, Rutgers University Core Facility for Natural Products & Bioanalysis, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA; Department of Medicinal Chemistry, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Zhiya Yin
- New Use Agriculture & Natural Plant Products Program, Department of Plant Biology, Rutgers University Core Facility for Natural Products & Bioanalysis, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA; Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Lingjun Xie
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Giulio M Pasinetti
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - James W Murrough
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Maxine Marchidan
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Elizabeth Karpman
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Matthew Dobbs
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Mario G Ferruzzi
- Arkansas Children's Nutrition Center, Department of Pediatrics, University of Arkansas for Medical Science, Little Rock, AR, USA
| | - James E Simon
- New Use Agriculture & Natural Plant Products Program, Department of Plant Biology, Rutgers University Core Facility for Natural Products & Bioanalysis, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA; Department of Medicinal Chemistry, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Qingli Wu
- New Use Agriculture & Natural Plant Products Program, Department of Plant Biology, Rutgers University Core Facility for Natural Products & Bioanalysis, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA; Department of Medicinal Chemistry, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
4
|
Bai B, Shen D, Meng S, Guo Y, Feng B, Bo T, Zhang J, Yang Y, Fan S. Separation and Detection of Catechins and Epicatechins in Shanxi Aged Vinegar Using Solid-Phase Extraction and Hydrophobic Deep Eutectic Solvents Combined with HPLC. Molecules 2024; 29:2344. [PMID: 38792205 PMCID: PMC11124522 DOI: 10.3390/molecules29102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This research presents a new, eco-friendly, and swift method combining solid-phase extraction and hydrophobic deep eutectic solvents (DES) with high-performance liquid chromatography (SPE-DES-HPLC) for extracting and quantifying catechin and epicatechin in Shanxi aged vinegar (SAV). The parameters, such as the elution solvent type, the XAD-2 macroporous resin dosage, the DES ratio, the DES volume, the adsorption time, and the desorption time, were optimized via a one-way experiment. A central composite design using the Box-Behnken methodology was employed to investigate the effects of various factors, including 17 experimental runs and the construction of three-dimensional response surface plots to identify the optimal conditions. The results show that the optimal conditions were an HDES (tetraethylammonium chloride and octanoic acid) ratio of 1:3, an XAD-2 macroporous resin dosage of 188 mg, and an adsorption time of 11 min. Under these optimal conditions, the coefficients of determination of the method were greater than or equal to 0.9917, the precision was less than 5%, and the recoveries ranged from 98.8% to 118.8%. The environmentally friendly nature of the analytical process and sample preparation was assessed via the Analytical Eco-Scale and AGREE, demonstrating that this method is a practical and eco-friendly alternative to conventional determination techniques. In summary, this innovative approach offers a solid foundation for the assessment of flavanol compounds present in SAV samples.
Collapse
Affiliation(s)
- Baoqing Bai
- School of Life Science, Shanxi University, Taiyuan 030006, China; (B.B.); (D.S.); (S.M.); (Y.G.); (T.B.); (J.Z.)
- Xinghuacun College, Shanxi University, Taiyuan 030006, China
| | - Dan Shen
- School of Life Science, Shanxi University, Taiyuan 030006, China; (B.B.); (D.S.); (S.M.); (Y.G.); (T.B.); (J.Z.)
| | - Siyuan Meng
- School of Life Science, Shanxi University, Taiyuan 030006, China; (B.B.); (D.S.); (S.M.); (Y.G.); (T.B.); (J.Z.)
| | - Yanli Guo
- School of Life Science, Shanxi University, Taiyuan 030006, China; (B.B.); (D.S.); (S.M.); (Y.G.); (T.B.); (J.Z.)
| | - Bin Feng
- Inspection and Testing Center of Shanxi Province, Taiyuan 030031, China;
- Shanxi Key Laboratory of Food and Drug Safety Prevention and Control, Taiyuan 030031, China
| | - Tao Bo
- School of Life Science, Shanxi University, Taiyuan 030006, China; (B.B.); (D.S.); (S.M.); (Y.G.); (T.B.); (J.Z.)
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Jinhua Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China; (B.B.); (D.S.); (S.M.); (Y.G.); (T.B.); (J.Z.)
- Xinghuacun College, Shanxi University, Taiyuan 030006, China
| | - Yukun Yang
- School of Life Science, Shanxi University, Taiyuan 030006, China; (B.B.); (D.S.); (S.M.); (Y.G.); (T.B.); (J.Z.)
- Xinghuacun College, Shanxi University, Taiyuan 030006, China
| | - Sanhong Fan
- School of Life Science, Shanxi University, Taiyuan 030006, China; (B.B.); (D.S.); (S.M.); (Y.G.); (T.B.); (J.Z.)
- Xinghuacun College, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
5
|
Hu X, Liu L, Peng M, Zheng D, Xia H, Zhou Y, Peng L, Peng X. One-Pot Preparation of Mixed-Mode Reversed-Phase Anion-Exchange Silica Sorbent and its Application in the Detection of Cyclopiazonic Acid in Feeds and Agricultural Products. Foods 2024; 13:1499. [PMID: 38790799 PMCID: PMC11119939 DOI: 10.3390/foods13101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
A novel co-bonded octyl and pyridine silica (OPS) sorbent was prepared and applied for the solid phase extraction (SPE) of cyclopiazonic acid (CPA, a type of mycotoxin) in feed and agricultural products for the first time. A simple mixed-ligand one-pot reaction strategy was employed for OPS sorbent preparation. Nitrogen adsorption-desorption measurements, elemental analysis (EI), thermal gravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FT-IR) analysis demonstrated the successful immobilization of octyl and quaternary ammonium groups onto the surface of silica gel. The large specific surface area, high-density functional groups, and mixed-mode anion-exchange characteristics of these silica particles made them the ideal material for the efficient extraction of CPA. Additionally, the OPS sorbents displayed excellent batch-to-batch reproducibility, satisfactory reusability, and low cost. The SPE parameters were optimized to explore the ionic and hydrophobic interactions between CPA and the functional groups, and the ultra-high performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UPLC-MS/MS) parameters were optimized to obtain a desirable extraction efficiency and high sensitivity to CPA. Meanwhile, the OPS sorbent presented a satisfactory extraction selectivity and low matrix effect. Under the optimized conditions, our developed CPA detection method was used to determine CPA level in rice, wheat flour, corn flour, peanut, and feed samples, exhibiting a lower detection limit, better linearity, higher sensitivity, and satisfactory extraction recovery rate than previously reported methods. Therefore, our method can be preferentially used as a method for the detection of CPA in agricultural products and feeds.
Collapse
Affiliation(s)
- Xuan Hu
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.H.); (L.L.); (M.P.); (D.Z.); (H.X.); (Y.Z.)
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Wuhan 430064, China
| | - Li Liu
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.H.); (L.L.); (M.P.); (D.Z.); (H.X.); (Y.Z.)
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Wuhan 430064, China
| | - Maomin Peng
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.H.); (L.L.); (M.P.); (D.Z.); (H.X.); (Y.Z.)
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Wuhan 430064, China
| | - Dan Zheng
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.H.); (L.L.); (M.P.); (D.Z.); (H.X.); (Y.Z.)
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Wuhan 430064, China
| | - Hong Xia
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.H.); (L.L.); (M.P.); (D.Z.); (H.X.); (Y.Z.)
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Wuhan 430064, China
| | - Youxiang Zhou
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.H.); (L.L.); (M.P.); (D.Z.); (H.X.); (Y.Z.)
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Wuhan 430064, China
| | - Lijun Peng
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.H.); (L.L.); (M.P.); (D.Z.); (H.X.); (Y.Z.)
| | - Xitian Peng
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Wuhan 430064, China
| |
Collapse
|
6
|
Ma F, Guo Q, Zhang Z, Ding X, Zhang L, Li P, Yu L. Simultaneous removal of aflatoxin B 1 and zearalenone in vegetable oils by hierarchical fungal mycelia@graphene oxide@Fe 3O 4 adsorbent. Food Chem 2023; 428:136779. [PMID: 37413832 DOI: 10.1016/j.foodchem.2023.136779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Physical adsorbents for detoxification are widely used in vegetable oil industry. So far, the high-efficiency and low-cost adsorbents have not been well explored. Here, a hierarchical fungal mycelia@graphene oxide@Fe3O4 (FM@GO@Fe3O4) was fabricated as an efficient adsorbent for simultaneous removal of aflatoxin B1 (AFB1) and zearalenone (ZEN). The morphological, functional and structural characteristics of the prepared adsorbents were systematic investigated. Batch adsorption experiments in both single and binary systems were conducted, and the adsorption behaviours and mechanism were explored. The results indicated that the adsorption process occurred spontaneously and the mycotoxin adsorption could be described as physisorption through hydrogen bonding, π-π stacking, electrostatic and hydrophobic interactions. Due to good biological safety, magnetic manipulability, scalability, recyclability and easy regeneration, FM@GO@Fe3O4 performance is suitable for application as a detoxification adsorbent in vegetable oil industry. Our study addresses a novel green strategy for removing multiple mycotoxins by integrating the toxigenic isolates with advanced nanomaterials.
Collapse
Affiliation(s)
- Fei Ma
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Qi Guo
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Xiaoxia Ding
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Liangxiao Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Hubei Hongshan Laboratory, Wuhan 430070, PR China; Zhejiang Xianghu Laboratory, Hangzhou 311231, PR China
| | - Li Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China.
| |
Collapse
|
7
|
Mei F, Wang H, Zhang Y, Zhang M, Zhou S, Shi H, Jiang Y. Development and Validation of a Stable Isotope Dilution Headspace-SPME-GC/MS Method for the Determination of Vanillin in Fragrant Vegetable Oils. Molecules 2023; 28:7288. [PMID: 37959708 PMCID: PMC10650462 DOI: 10.3390/molecules28217288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
It has been reported that vanillin has been intentionally added to enhance the taste and flavor of low-quality vegetable oils. Therefore, it is crucial to investigate the accurate concentrations of vanillin in three types of fragrant vegetable oils commonly consumed in China. In this study, a method has been developed for the quantification of vanillin in commercial fragrant vegetable oils using the stable isotope dilution assay (SIDA) and headspace-solid-phase microextraction (HS-SPME) coupled with gas chromatography/mass spectrometry (GC/MS). The limit of detection (LOD) and limit of quantification (LOQ) of the analyte were determined to be 20 µg kg-1 and 50 µg kg-1, respectively. The validation study demonstrated that the recoveries ranged from 89% to 101%, with intra-day and inter-day precision being less than 7.46%. A survey of 80 commercially available fragrant vegetable oils was performed using the present method. Vanillin was found to be widely present in fragrant vegetable oils, with sesame oils showing the highest average content (842.6 µg kg-1), followed by rapeseed oils (262.1 µg kg-1) and peanut oils (115.0 µg kg-1). The results indicate that the proposed method is a simple, accurate, and eco-friendly approach for determining the presences of vanillin in fragrant vegetable oils.
Collapse
Affiliation(s)
- Fangyi Mei
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China (S.Z.)
| | - Hongling Wang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China (S.Z.)
| | - Yuquan Zhang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China (S.Z.)
| | - Mei Zhang
- Yihai Kerry (Qingdao) Oils & Grains Industries Co., Ltd., Qingdao 266321, China
| | - Shuai Zhou
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China (S.Z.)
| | - Haiming Shi
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China (S.Z.)
| | - Yuanrong Jiang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China (S.Z.)
| |
Collapse
|
8
|
Xu H, Zhang W, Zhou Y, Yue Z, Yan T, Zhang Y, Liu Y, Hong Y, Liu S, Zhu F, Tao L. Systematic Description of the Content Variation of Natural Products (NPs): To Prompt the Yield of High-Value NPs and the Discovery of New Therapeutics. J Chem Inf Model 2023; 63:1615-1625. [PMID: 36795011 DOI: 10.1021/acs.jcim.2c01459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Natural products (NPs) have long been associated with human production and play a key role in the survival of species. Significant variations in NP content may severely affect the "return on investment" of NP-based industries and render ecological systems vulnerable. Thus, it is crucial to construct a platform that relates variations in NP content to their corresponding mechanisms. In this study, a publicly accessible online platform, NPcVar (http://npcvar.idrblab.net/), was developed, which systematically described the variations of NP contents and their corresponding mechanisms. The platform comprises 2201 NPs and 694 biological resources, including plants, bacteria, and fungi, curated using 126 diverse factors with 26,425 records. Each record contains information about the species, NP, and factors involved, as well as NP content data, parts of the plant that produce NPs, the location of the experiment, and reference information. All factors were manually curated and categorized into 42 classes which belong to four mechanisms (molecular regulation, species factor, environmental condition, and combined factor). Additionally, the cross-links of species and NP to well-established databases and the visualization of NP content under various experimental conditions were provided. In conclusion, NPcVar is a valuable resource for understanding the relationship between species, factors, and NP contents and is anticipated to serve as a promising tool for improving the yield of high-value NPs and facilitating the development of new therapeutics.
Collapse
Affiliation(s)
- Hongquan Xu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Wei Zhang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Affiliated Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Ying Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, China
| | - Zixuan Yue
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Tianci Yan
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuanyuan Zhang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuhong Liu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yanfeng Hong
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Shuiping Liu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Feng Zhu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Affiliated Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
9
|
Zhang Y, Xiao H, Lv X, Zheng C, Wu Z, Wang N, Wang J, Chen H, Wei F. Profiling and spatial distribution of phenolic compounds in rapeseed by two-step extraction strategy and targeted metabolomics combined with chemometrics. Food Chem 2023; 401:134151. [DOI: 10.1016/j.foodchem.2022.134151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/23/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
|
10
|
Component Characterization, In Vitro Activities and Molecular Mechanism of Cydonia oblonga Mill. against Diabetic. Pharmaceuticals (Basel) 2022; 15:ph15121566. [PMID: 36559019 PMCID: PMC9783571 DOI: 10.3390/ph15121566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Cydonia Oblonga Mill. is widely distributed in Turkey, Uzbekistan and China and commonly used by the food industry to produce jam, jelly and candies. The aim of this study was to investigate the in vitro antidiabetic activity and anti-diabetic mechanism of Cydonia Oblonga Mill. fruit (COMF). The chemical compositions were further characterized in COMF by UPLC-Q-Orbitrap/MS and 65 components including 22 flavonoids, 16 organic acids, 11 polyphenols, 5 amino acids, 3 pentacyclic triterpenoids and 8 other compounds were identified. The antioxidant activity by DPPH scavenging method and α-glucosidase inhibitory activity were tested. Furthermore, we detected the effects of COMF extract on the proliferation activity of HUVECs, cell viability of HUVECs under H2O2-induced oxidative stress, and NO production. Then, molecular docking activity and α-glucosidase inhibitory activity of seven key flavonoid components selected by bioinformatics analysis and literature in the COMF were studied. Among them, quercetin showed potent inhibitory activity, kaempferol, isorhamnetin, luteolin and apigenin demonstrated moderate inhibitory activity, while rutin and epicatechin exhibited poor inhibitory activity. Subsequently, the effects of quercetin, kaempferol, isorhamnetin, leteolin and apigenin on the gene expression levels of AKT1, IL-6 and VEGFA were verified by real-time fluorescence quantification (RT-qPCR). Molecular biology result showed that different active ingredients can significantly recover the levels of AKT1, IL-6 and VEGFA in HUVECs injured by high glucose.
Collapse
|
11
|
Badawy MEI, El-Nouby MAM, Kimani PK, Lim LW, Rabea EI. A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. ANAL SCI 2022; 38:1457-1487. [PMID: 36198988 PMCID: PMC9659506 DOI: 10.1007/s44211-022-00190-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022]
Abstract
Analytical processes involving sample preparation, separation, and quantifying analytes in complex mixtures are indispensable in modern-day analysis. Each step is crucial to enriching correct and informative results. Therefore, sample preparation is the critical factor that determines both the accuracy and the time consumption of a sample analysis process. Recently, several promising sample preparation approaches have been made available with environmentally friendly technologies with high performance. As a result of its many advantages, solid-phase extraction (SPE) is practiced in many different fields in addition to the traditional methods. The SPE is an alternative method to liquid-liquid extraction (LLE), which eliminates several disadvantages, including many organic solvents, a lengthy operation time and numerous steps, potential sources of error, and high costs. SPE advanced sorbent technology reorients with various functions depending on the structure of extraction sorbents, including reversed-phase, normal-phase, cation exchange, anion exchange, and mixed-mode. In addition, the commercial SPE systems are disposable. Still, with the continual developments, the restricted access materials (RAM) and molecular imprinted polymers (MIP) are fabricated to be active reusable extraction cartridges. This review will discuss all the theoretical and practical principles of the SPE techniques, focusing on packing materials, different forms, and performing factors in recent and future advances. The information about novel methodological and instrumental solutions in relation to different variants of SPE techniques, solid-phase microextraction (SPME), in-tube solid-phase microextraction (IT-SPME), and magnetic solid-phase extraction (MSPE) is presented. The integration of SPE with analytical chromatographic techniques such as LC and GC is also indicated. Furthermore, the applications of these techniques are discussed in detail along with their advantages in analyzing pharmaceuticals, biological samples, natural compounds, pesticides, and environmental pollutants, as well as foods and beverages.
Collapse
Affiliation(s)
- Mohamed E I Badawy
- Department of Pesticide Chemistry and Technology, Laboratory of Pesticide Residues Analysis, Faculty of Agriculture, Alexandria University, Aflatoun St., 21545-El-Shatby, Alexandria, Egypt.
| | - Mahmoud A M El-Nouby
- Department of Pesticide Chemistry and Technology, Laboratory of Pesticide Residues Analysis, Faculty of Agriculture, Alexandria University, Aflatoun St., 21545-El-Shatby, Alexandria, Egypt
- Department of Engineering, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Paul K Kimani
- Department of Engineering, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Lee W Lim
- International Joint Department of Materials Science and Engineering Between National University of Malaysia and Gifu University, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Entsar I Rabea
- Department of Plant Protection, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt
| |
Collapse
|
12
|
Zhang Y, Xiao H, Lv X, Wang D, Chen H, Wei F. Comprehensive review of composition distribution and advances in profiling of phenolic compounds in oilseeds. Front Nutr 2022; 9:1044871. [PMID: 36386934 PMCID: PMC9650096 DOI: 10.3389/fnut.2022.1044871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
A wide range of phenolic compounds participate in oilseed growth, regulate oxidative stability of corresponding vegetable oil, and serve as important minor food components with health-promoting effects. Composition distribution of phenolic compounds varied in oilseeds. Isoflavones, sinapic acid derivatives, catechin and epicatechin, phenolic alcohols, chlorogenic acid, and lignans were the main phenolic compounds in soybean, rapeseed, peanut skin, olive, sunflower seed, sesame and flaxseed, respectively. Among which, the total isoflavones content in soybean seeds reached from 1,431 to 2,130 mg/100 g; the main phenolic compound in rapeseed was sinapine, representing 70–90%; chlorogenic acid as the predominant phenolic compound in sunflower kernels, represented around 77% of the total phenolic content. With the rapid development of analytical techniques, it is becoming possible for the comprehensive profiling of these phenolic compounds from oilseeds. This review aims to provide recently developments about the composition distribution of phenolic compounds in common oilseeds, advanced technologies for profiling of phenolic compounds by the metabolomics approaches based on mass spectrometry. As there is still limited research focused on the comprehensive extraction and determination of phenolics with different bound-forms, future efforts should take into account the non-targeted, pseudo-targeted, and spatial metabolomic profiling of phenolic compounds, and the construction of phenolic compound database for identifying and quantifying new types of phenolic compounds in oilseeds and their derived products.
Collapse
|
13
|
Hybrid silica material as a mixed-mode sorbent for solid-phase extraction of hydrophobic and hydrophilic illegal additives from food samples. J Chromatogr A 2022; 1672:463049. [DOI: 10.1016/j.chroma.2022.463049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022]
|
14
|
Ma F, Cai X, Mao J, Yu L, Li P. Adsorptive removal of aflatoxin B 1 from vegetable oils via novel adsorbents derived from a metal-organic framework. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125170. [PMID: 33951856 DOI: 10.1016/j.jhazmat.2021.125170] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Vegetable oils are essential daily diet, but they are simply contaminated with aflatoxin B1 (AFB1), a serious toxic compound to human health. Adsorption method due to the easy operation, high efficiency and low costing is set to become a main detoxification technique for AFB1. Unfortunately, previous reported adsorbents were rarely used for detoxification in food industry since they cannot meet the criteria of large-scale production of edible oils. Metal-organic frameworks (MOFs) with unique textural properties could be favorable precursors for synthesis of advanced materials. In this research, three kinds of Cu-BTC MOF-derived porous materials were prepared by different carbonization temperature and characterized by XRD, SEM, FT-IR, and nitrogen adsorption-desorption techniques. Isotherm and kinetic studies on the adsorption behaviour of AFB1 onto the three porous carbonaceous materials have been systematically conducted. The results revealed that the porous carbonaceous materials could act as the excellent adsorbents that were of enough adsorption sites for AFB1, mainly due to the hierarchical porous structure and large surface areas for the enhancement of adsorption capacity. Notably, the porous carbonaceous materials could not only remove more than 90% of AFB1 from real vegetable oils within 30 min, but also remain the treated oils at low cytotoxicity. Meanwhile, the detoxification process could little affect the quality of oils. Thus, the Cu-BTC MOF-derived porous carbonaceous materials with high efficiency, safe, practical and economic characteristics could be novel potential adsorbents used in the application of AFB1 removal from contaminated vegetable oils.
Collapse
Affiliation(s)
- Fei Ma
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Xinfa Cai
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Jin Mao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Li Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China.
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| |
Collapse
|
15
|
Yang J, Wang Y, Pan M, Xie X, Liu K, Hong L, Wang S. Synthesis of Magnetic Metal-Organic Frame Material and Its Application in Food Sample Preparation. Foods 2020; 9:E1610. [PMID: 33172006 PMCID: PMC7694616 DOI: 10.3390/foods9111610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
A variety of contaminants in food is an important aspect affecting food safety. Due to the presence of its trace amounts and the complexity of food matrix, it is very difficult to effectively separate and accurately detect them. The magnetic metal-organic framework (MMOF) composites with different structures and functions provide a new choice for the purification of food matrix and enrichment of trace targets, thus providing a new direction for the development of new technologies in food safety detection with high sensitivity and efficiency. The MOF materials composed of inorganic subunits and organic ligands have the advantages of regular pore structure, large specific surface area and good stability, which have been thoroughly studied in the pretreatment of complex food samples. MMOF materials combined different MOF materials with various magnetic nanoparticles, adding magnetic characteristics to the advantages of MOF materials, which are in terms of material selectivity, biocompatibility, easy operation and repeatability. Combined with solid phase extraction (SPE) technique, MMOF materials have been widely used in the food pretreatment. This article introduced the new preparation strategies of different MMOF materials, systematically summarizes their applications as SPE adsorbents in the pretreatment of food contaminants and analyzes and prospects their future application prospects and development directions.
Collapse
Affiliation(s)
- Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yabin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|