1
|
Trossolo E, Alabiden Tlais AZ, Tonini S, Filannino P, Gobbetti M, Cagno RD. Fermentation of a wine pomace and microalgae blend to synergistically enhance the functional value of protein- and polyphenol-rich matrices. Food Res Int 2025; 202:115785. [PMID: 39967119 DOI: 10.1016/j.foodres.2025.115785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/26/2024] [Accepted: 01/18/2025] [Indexed: 02/20/2025]
Abstract
This study aimed to generate new functional ingredients from microalgae and wine pomace through starter-assisted fermentation. Five lactic acid bacteria (LAB) and five yeasts were variously chosen for their species diversity, origin, and metabolic potential. During fermentation, the combination of Chlorella vulgaris and wine pomace overcame the limited growth observed in pomace substrate, with all LAB and yeasts effectively utilizing sugars and synthesizing microbial metabolites. Additionally, the synergistic interplay between the substrates, alongside the enzyme specificity of the starter cultures, improved the bioavailability of phenolic compounds, particularly flavanols, flavonols, and procyanidins, while simultaneously generating unique peptides in the formulated ingredients. In some cases, these metabolic changes were associated with enhanced antioxidant activity, improved protein digestibility, and overall protein quality. Our findings highlighted the potential of fermented mixed substrates as new functional ingredients, with promising health-promoting benefits and significant potential for applications in the food industry.
Collapse
Affiliation(s)
- Elisabetta Trossolo
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy
| | - Ali Zein Alabiden Tlais
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; International Center on Food Fermentation, 39100 Bolzano, Italy.
| | - Stefano Tonini
- International Center on Food Fermentation, 39100 Bolzano, Italy
| | - Pasquale Filannino
- International Center on Food Fermentation, 39100 Bolzano, Italy; Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Marco Gobbetti
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; International Center on Food Fermentation, 39100 Bolzano, Italy
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; International Center on Food Fermentation, 39100 Bolzano, Italy
| |
Collapse
|
2
|
Comi L, Giglione C, Klinaku FT, Pialorsi F, Tollemeto V, Zurlo M, Seneci A, Magni P. Valorizing Agro‐Food Waste for Nutraceutical Development: Sustainable Approaches for Managing Metabolic Dysfunction‐Associated Steatotic Liver Disease and Related Co‐Morbidities. FOOD FRONTIERS 2024. [DOI: 10.1002/fft2.535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
ABSTRACTThis comprehensive investigation delves into the interconnectedness of different features of cardiometabolic syndrome, such as metabolic dysfunction‐associated steatotic liver disease (MASLD), atherosclerotic cardiovascular disease (ASCVD), and gut dysbiosis, highlighting the crucial role of nutraceuticals in their management and prevention. Given the significant overlap in the pathophysiology of these conditions, the treatment with nutraceuticals, especially those derived from agro‐food waste, offers a promising, sustainable, and innovative approach to healthcare. The 2030 Agenda for Sustainable Development and the One Health concept are key frameworks for selecting the most interesting supply chain for the production of nutraceuticals from agro‐food waste, ensuring environmental sustainability, and innovative agricultural practices. In this review, the therapeutic potential of kiwifruit and apples has been explored, detailing how their bioactive compounds, like polyphenols, fiber, pectin, kaempferol, phloretin, and phlorizin, may contribute to the management of MASLD, ASCVD, and gut dysbiosis. Various extraction methods for active ingredients, including chemical, water, and enzyme extractions, are analyzed for their respective benefits and drawbacks. By integrating scientific research, sustainable agricultural practices, and innovative extraction methods, we can develop effective strategies to combat these pervasive health issues. This holistic approach not only enhances individual health outcomes but also supports broader environmental and societal goals, promoting a healthier future for all.
Collapse
Affiliation(s)
- Laura Comi
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
| | - Claudia Giglione
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
| | - Fationa Tolaj Klinaku
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
| | | | | | | | | | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
- IRCCS MultiMedica, Sesto San Giovanni Milan Italy
| |
Collapse
|
3
|
Tonini S, Tlais AZA, Filannino P, Di Cagno R, Gobbetti M. Apple Blossom Agricultural Residues as a Sustainable Source of Bioactive Peptides through Microbial Fermentation Bioprocessing. Antioxidants (Basel) 2024; 13:837. [PMID: 39061905 PMCID: PMC11273824 DOI: 10.3390/antiox13070837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
This study explored the impact of starter-assisted fermentation on apple blossoms to enhance their potential as a source of antioxidant and antifungal molecules. Fructobacillus fructosus PL22 and Wickerhamomyces anomalus GY1 were chosen as starters owing to their origin and promising ability to modify plant secondary metabolites. An initial assessment through microbiological and physicochemical analyses showed superior outcomes for starter-assisted fermentation compared to the spontaneous process. Enzymatic hydrolysis of proteins, primarily controlled by starters, orchestrated the generation of new low-molecular-weight peptides. W. anomalus GY1 also induced modifications in the phenolic profile, generating a diverse array of bioactive metabolites. These metabolic changes, particularly the release of potentially bioactive peptides, were associated with significant antioxidant activity and marked antifungal efficacy against three common mold species. Our results shed light on the potential of microbial starters to valorize agricultural wastes and convert them into a valuable resource for industry.
Collapse
Affiliation(s)
- Stefano Tonini
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.T.); (R.D.C.); (M.G.)
| | - Ali Zein Alabiden Tlais
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.T.); (R.D.C.); (M.G.)
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.T.); (R.D.C.); (M.G.)
- International Center on Food Fermentation, 39100 Bolzano, Italy
| | - Marco Gobbetti
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.T.); (R.D.C.); (M.G.)
| |
Collapse
|
4
|
Domínguez-Avila JA, Salazar-López NJ, Montiel-Herrera M, Corella-Salazar DA, Rodrigo-Garcia J, Astiazaran-Garcia H, Villegas-Ochoa MA, González-Aguilar GA. Avocado Paste Phenolics Mitigate a High-Fat Diet-Induced Plasma HDL Decrease in Male Wistar Rats, by Altering the mRNA Expression of Hepatic SCARB1. Cell Biochem Biophys 2024; 82:119-126. [PMID: 37831306 DOI: 10.1007/s12013-023-01190-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Avocado paste (AP) is the main industrial byproduct of its processing, and retains various phenolic compounds (PCs). PCs are known to normalize the plasma lipid profile, but those from avocado byproducts have been minimally studied. We report the normalizing effects of an AP-derived phenolic extract (PE) on the plasma lipid profile of male Wistar rats. A standard (SD) and high-fat diet (HFD) were formulated, and the same diets were supplemented with 1 g/kg of diet of PE (SD + PE and HFD + PE). Rats were fed these diets during an 8-week period. The HFD induced signs of dyslipidemia, but PE treatment countered the decrease in HDL. Relative mRNA expression (real-time PCR) of the hepatic HDL receptor (SCARB1) increased in both groups (SD + PE and HFD + PE), while the LDR receptor (LDLR) increased in SD + PE group. The mRNA expression of apolipoproteins APOA1 and APOB was unaffected. We conclude that PCs from AP can counter a diet-induced decrease in plasma HDL by acting on the mRNA expression of its hepatic receptor.
Collapse
Affiliation(s)
- J Abraham Domínguez-Avila
- CONAHCYT-Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304, Hermosillo, Sonora, Mexico.
| | - Norma J Salazar-López
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304, Hermosillo, Sonora, Mexico
- Facultad de Medicina de Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés S/N, Centro Cívico, 21000, Mexicali, Baja California, Mexico
| | - Marcelino Montiel-Herrera
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Avenida Luis Donaldo Colosio y Calle de la Reforma, Centro, 83000, Hermosillo, Sonora, Mexico
| | - Diana A Corella-Salazar
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304, Hermosillo, Sonora, Mexico
| | - Joaquín Rodrigo-Garcia
- Departamento de Ciencias de la Salud. Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo s/n, 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Humberto Astiazaran-Garcia
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304, Hermosillo, Sonora, Mexico
| | - Mónica A Villegas-Ochoa
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304, Hermosillo, Sonora, Mexico
| | - Gustavo A González-Aguilar
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304, Hermosillo, Sonora, Mexico
| |
Collapse
|
5
|
Ameur H, Tlais AZA, Paganoni C, Cozzi S, Suman M, Di Cagno R, Gobbetti M, Polo A. Tailor-made fermentation of sourdough reduces the acrylamide content in rye crispbread and improves its sensory and nutritional characteristics. Int J Food Microbiol 2024; 410:110513. [PMID: 38043376 DOI: 10.1016/j.ijfoodmicro.2023.110513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/13/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Thirty strains of lactic acid bacteria (LAB) and Saccharomyces cerevisiae E8.9 (wild type) were used to formulate fifteen combinations of starters by mixing two or three LAB with the yeast (ratio LAB: yeast, 10: 1). Such combinations were used to prepare rye sourdough and their performance in term of acidification and biochemical characteristics during fermentation at two temperatures (30 and 37 °C) and duration (4 and 8 h) were screened. The best thirteen sourdough formulations were selected and used for rye crispbread making. The analysis of acrylamide concentration demonstrated that 11 out 13 formulations resulted in significant decreases of concentration compared to the baker's yeast (control), with reductions up to 79.6 %. The rye sourdough crispbreads showed also higher amount of volatile organic compounds (VOCs) compared to the baker's yeast control. Two rye sourdough crispbreads, selected to represent the opposite extremes within the thirteen formulations in term of VOC profiles and fermentation performances, demonstrated better sensory and nutritional features, such as phytic acid reduction (up to 47.3 %), and enhanced total free amino acid compared to the control. These evidences suggest the potential of tailored sourdough fermentations as alternative and suitable biotechnological strategy for lowering acrylamide levels in rye crispbread.
Collapse
Affiliation(s)
- Hana Ameur
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, Piazza Universitá, 5, 39100 Bolzano, Italy
| | - Ali Zein Alabiden Tlais
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, Piazza Universitá, 5, 39100 Bolzano, Italy
| | | | - Serena Cozzi
- Barilla G. e R. Fratelli S.p.A., via Mantova, 166, 43122 Parma, Italy
| | - Michele Suman
- Barilla G. e R. Fratelli S.p.A., via Mantova, 166, 43122 Parma, Italy; Department for Sustainable Food Process, Catholic University Sacred Heart, via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, Piazza Universitá, 5, 39100 Bolzano, Italy
| | - Marco Gobbetti
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, Piazza Universitá, 5, 39100 Bolzano, Italy
| | - Andrea Polo
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, Piazza Universitá, 5, 39100 Bolzano, Italy.
| |
Collapse
|
6
|
Teslić N, Pojić M, Stupar A, Mandić A, Pavlić B, Mišan A. PhInd-Database on Polyphenol Content in Agri-Food By-Products and Waste: Features of the Database. Antioxidants (Basel) 2024; 13:97. [PMID: 38247521 PMCID: PMC10812704 DOI: 10.3390/antiox13010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Timely access to topic-relevant datasets is of paramount importance for the development of any successful strategy (food waste reduction strategy), since datasets illuminate opportunities, challenges and development paths. PhInd is the first comprehensive database on polyphenol content in plant-based by-products from the agri-food sector or the wastewater sector and was developed using peer-reviewed papers published in the period of 2015-2021. In total, >450 scientific manuscripts and >6000 compound entries were included. Database inclusion criteria were polyphenol contents = determined using HPLC/UHPLC quantitative methods. PhInd can be explored through several criteria which are either 'open' or checkboxes. Criteria are given in subsections: (a) plant source; (b) by-product industrial processing; (c) pre-treatment of by-products before the isolation of polyphenols; and (d) the extraction step of polyphenols. Database search results could be explored on the website directly or by downloading Excel files and graphs. This unique database content is beneficial to stakeholders-the food industry, academia, government and citizens.
Collapse
Affiliation(s)
- Nemanja Teslić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (M.P.); (A.S.); (A.M.); (A.M.)
| | - Milica Pojić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (M.P.); (A.S.); (A.M.); (A.M.)
| | - Alena Stupar
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (M.P.); (A.S.); (A.M.); (A.M.)
| | - Anamarija Mandić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (M.P.); (A.S.); (A.M.); (A.M.)
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Aleksandra Mišan
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (M.P.); (A.S.); (A.M.); (A.M.)
| |
Collapse
|
7
|
Dulf FV, Vodnar DC, Dulf EH. Solid-state fermentation with Zygomycetes fungi as a tool for biofortification of apple pomace with γ-linolenic acid, carotenoid pigments and phenolic antioxidants. Food Res Int 2023; 173:113448. [PMID: 37803774 DOI: 10.1016/j.foodres.2023.113448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/31/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
In the last few years, there has been a growing interest in the more efficient utilization of agricultural and food by-products. Apples are among the most processed fruits in the world that generate huge quantities of processing waste biomasses. Therefore, the objective of this study was to improve the nutritional value of apple pomaces with γ-linolenic acid (GLA) and carotenoid pigments by solid-state fermentation (SSF) using two Zygomycetes fungi (Actinomucor elegans and Umbelopsis isabellina). The impact of fermentation periods on the polyphenol content and antioxidant capacity of the bioprocessed apple pomace was also investigated. The accumulated lipids were composed primarily of neutral fractions (mostly triacylglycerols). SSF with U. isabellina yielded a 12.72% higher GLA content than with A. elegans (3.85 g GLA/kg DW of pomace). Contrary to the lipogenic capacity, A. elegans showed higher carotenoids and phenolic antioxidants productivity than U. isabellina. The maximum concentrations for β-carotene (433.11 μg/g DW of pomace-SSF with A. elegans and 237.68 μg/g DW of pomace-SSF with U. isabellina), lutein (374.48 μg/g DW- A. elegans and 179.04 μg/g DW- U. isabellina) and zeaxanthin (247.35 μg/g DW- A. elegans and 120.41 μg/g DW- U. isabellina) were registered on the 12th day of SSFs. In the case of SSF with A. elegans, the amount of total phenolics increased significantly (27%) by day 4 from the initial value (2670.38 μg of gallic acid equivalents/g DW) before slowly decreasing for the remaining period of the fungal growth. The experimental findings showed that a prolonged fermentation (between 8 and 12 days) should be applied to obtain value-added apple pomaces (rich in GLA and carotenoids) with potential pharmaceutical and functional food applications. Moreover, the SSF processes of simultaneous bioaccumulation of valuable fatty acids, carotenoids and phenolic antioxidants proposed in the present study may open up new challenges for biotechnological production of industrially important biomolecules using abundant and unexploited apple pomaces.
Collapse
Affiliation(s)
- Francisc Vasile Dulf
- Department of Environmental and Plant Protection, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, Cluj-Napoca, Romania
| | - Eva-Henrietta Dulf
- Department of Environmental and Plant Protection, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania; Department of Automation, Technical University of Cluj-Napoca, Romania
| |
Collapse
|
8
|
Tian ZX, Li YF, Long MX, Liang Q, Chen X, Huang DM, Ran YQ. Effects of six different microbial strains on polyphenol profiles, antioxidant activity, and bioaccessibility of blueberry pomace with solid-state fermentation. Front Nutr 2023; 10:1282438. [PMID: 37899841 PMCID: PMC10602741 DOI: 10.3389/fnut.2023.1282438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
To explore the effect of different microbial strains on blueberry pomace with solid-state fermentation (SSF), three fungi strains and three lactic acid bacteria (LAB) strains were utilized to investigate with respect to polyphenol profiles, antioxidant capacities, and bioaccessibility. Different strains exhibited different capacities for metabolizing polyphenolic compounds in blueberry pomace. The contents of 10 phenolic acids and 6 flavonoids (except (+)-catechin) were increased in blueberry pomace fermented by Lactobacillus acidophilus (LA). A similar tendency was observed in blueberry pomace fermented by Aspergillus niger (AN) and Lactobacillus plantarum (LP), where the concentration of 8 phenolic acids and 5 flavonoids was enhanced, with the following exceptions: (+)-catechin, ferulic acid, vanillic acid, and quercitrin. Chlorogenic acid and quercetin were the maximum phenolic acids and flavonoids in blueberry pomace with SSF, upgraded at 22.96 and 20.16%, respectively. Contrary to the growth of phenolic acids and flavonoid compounds, all individual anthocyanins showed a decreased trend. Only in the blueberry pomace fermented by AN, all anthocyanidins exhibit a rising trend. After SSF, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenylpicrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) radical scavenging abilities were increased by up to 33.56, 59.89, and 87.82%, respectively. Moreover, the simulated gastrointestinal digestion system revealed that SSF improved the bioaccessibility of polyphenolic compounds. Compared with other strains, LA, LP, and AN showed better excellent capacities for metabolizing polyphenolic compounds, which led to a greater increase in antioxidant activity and bioaccessibility in fermented blueberry pomace.
Collapse
Affiliation(s)
| | - Yong-Fu Li
- Guizhou Institute of Integrated Agricultural Development, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | | | | | | | | | | |
Collapse
|
9
|
Fiorino GM, Tlais AZA, Losito I, Filannino P, Gobbetti M, Di Cagno R. Triacylglycerols hydrolysis and hydroxy- and epoxy-fatty acids release during lactic fermentation of plant matrices: An extensive study showing inter- and intra-species capabilities of lactic acid bacteria. Food Chem 2023; 412:135552. [PMID: 36716627 DOI: 10.1016/j.foodchem.2023.135552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023]
Abstract
This study aims to show that lactic fermentation by selected starters can enrich plant matrices with hydroxy- and oxo-fatty acids. The behavior of 31 lactic acid bacteria strains was investigated during the fermentation of Persian walnut, which was selected as a model growth substrate due to its inherent lipids content. The content of the following free fatty acids increased in the majority of the fermented walnut samples: linoleic, α-linolenic, palmitic, and oleic acids. The increase of diacylglycerols and, especially, monoacylglycerols levels in fermented walnuts confirmed that strain-specific bacterial lipolytic activities hydrolyzed triacylglycerols during walnut fermentation. Twelve hydroxylated or epoxidized derivatives arising from oleic, linoleic, and linolenic fatty acids, in five groups of isomeric compounds, were also identified. In addition to the better-known lactobacilli, certain strains of Weissella cibaria, Leuconostoc mesenteroides, and Enterococcus faecalis emerged for their lipolytic activities and ability to release hydroxy- and epoxy-fatty acids during walnut fermentation.
Collapse
Affiliation(s)
| | | | - Ilario Losito
- Department of Chemistry and SMART Inter-department Research Center, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy.
| | - Marco Gobbetti
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy
| | - Raffaella Di Cagno
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy
| |
Collapse
|
10
|
Tlais AZA, Trossolo E, Tonini S, Filannino P, Gobbetti M, Di Cagno R. Fermented Whey Ewe's Milk-Based Fruit Smoothies: Bio-Recycling and Enrichment of Phenolic Compounds and Improvement of Protein Digestibility and Antioxidant Activity. Antioxidants (Basel) 2023; 12:antiox12051091. [PMID: 37237957 DOI: 10.3390/antiox12051091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to recycle whey milk by-products (protein source) in fruit smoothies (phenolic compounds source) through started-assisted fermentation and delivering sustainable and healthy food formulations capable of providing nutrients that are unavailable due to an unbalanced diet or incorrect eating habits. Five lactic acid bacteria strains were selected as best starters for smoothie production based on the complementarity of pro-technological (kinetics of growth and acidification) traits, exopolysaccharides and phenolics release, and antioxidant activity enhancement. Compared to raw whey milk-based fruit smoothies (Raw_WFS), fermentation led to distinct profiles of sugars (glucose, fructose, mannitol, and sucrose), organic acids (lactic acid and acetic acid), ascorbic acid, phenolic compounds (gallic acid, 3-hydroxybenzoic acid, chlorogenic acid, hydrocaffeic acid, quercetin, epicatechin, procyanidin B2, and ellagic acid) and especially anthocyanins (cyanidin, delphinidin, malvidin, peonidin, petunidin 3-glucoside). Protein and phenolics interaction enhanced the release of anthocyanins, notably under the action of Lactiplantibacillus plantarum. The same bacterial strains outperformed other species in terms of protein digestibility and quality. With variations among starters culture, bio-converted metabolites were most likely responsible for the increase antioxidant scavenging capacity (DPPH, ABTS, and lipid peroxidation) and the modifications in organoleptic properties (aroma and flavor).
Collapse
Affiliation(s)
| | - Elisabetta Trossolo
- Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy
| | - Stefano Tonini
- Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy
| | - Raffaella Di Cagno
- Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy
| |
Collapse
|
11
|
Alonazi M, Ben Bacha A, Alharbi MG, Khayyat AIA, Al-Ayadhi L, El-Ansary A. Bee Pollen and Probiotics' Potential to Protect and Treat Intestinal Permeability in Propionic Acid-Induced Rodent Model of Autism. Metabolites 2023; 13:metabo13040548. [PMID: 37110206 PMCID: PMC10143803 DOI: 10.3390/metabo13040548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Rodent models may help investigations on the possible link between autism spectrum disorder (ASD) and gut microbiota since autistic patients frequently manifested gastrointestinal troubles as co-morbidities. Thirty young male rats were divided into five groups: Group 1 serves as control; Group 2, bee pollen and probiotic-treated; and Group 3, propionic acid (PPA)-induced rodent model of autism; Group 4 and Group 5, the protective and therapeutic groups were given bee pollen and probiotic combination treatment either before or after the neurotoxic dose of PPA, respectively. Serum occludin, zonulin, lipid peroxides (MDA), glutathione (GSH), glutathione-S-transferase (GST), glutathione peroxidase (GPX), catalase, and gut microbial composition were assessed in all investigated groups. Recorded data clearly indicated the marked elevation in serum occludin (1.23 ± 0.15 ng/mL) and zonulin (1.91 ± 0.13 ng/mL) levels as potent biomarkers of leaky gut in the PPA- treated rats while both were normalized to bee pollen/probiotic-treated rats. Similarly, the high significant decrease in catalase (3.55 ± 0.34 U/dL), GSH (39.68 ± 3.72 µg/mL), GST (29.85 ± 2.18 U/mL), and GPX (13.39 ± 1.54 U/mL) concomitant with a highly significant increase in MDA (3.41 ± 0.12 µmoles/mL) as a marker of oxidative stress was also observed in PPA-treated animals. Interestingly, combined bee pollen/probiotic treatments demonstrated remarkable amelioration of the five studied oxidative stress variables as well as the fecal microbial composition. Overall, our findings demonstrated a new approach to the beneficial use of bee pollen and probiotic combination as a therapeutic intervention strategy to relieve neurotoxic effects of PPA, a short-chain fatty acid linked to the pathoetiology of autism.
Collapse
Affiliation(s)
- Mona Alonazi
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Abir Ben Bacha
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Mona G Alharbi
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Arwa Ishaq A Khayyat
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Laila Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| | - Afaf El-Ansary
- Central Laboratory, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| |
Collapse
|
12
|
Identification and Selection of Prospective Probiotics for Enhancing Gastrointestinal Digestion: Application in Pharmaceutical Preparations and Dietary Supplements. Nutrients 2023; 15:nu15061306. [PMID: 36986037 PMCID: PMC10053534 DOI: 10.3390/nu15061306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Our study investigated the effectiveness of 446 strains of lactic acid bacteria (LAB) belonging to different species and isolated from diverse sources (food, human, and animal) as potential probiotic candidates, with the perspective of producing dietary supplements or pharmacological formulations suitable for enhancing gastrointestinal digestion. The survival capability of all the isolates under harsh gastrointestinal tract conditions was evaluated, in which only 44 strains, named high-resistant, were selected for further food digestibility investigations. All 44 strains hydrolyzed raffinose and exhibited amino and iminopeptidase activities but at various extents, confirming species- and strain-specificity. After partial in vitro digestion mimicking oral and gastric digestive phases, food matrices were incubated with single strains for 24 h. Fermented partially digested matrices provided additional functional properties for some investigated strains by releasing peptides and increasing the release of highly bio-accessible free phenolic compounds. A scoring procedure was proposed as an effective tool to reduce data complexity and quantitively characterize the probiotic potential of each LAB strain, which could be more useful in the selection procedure of powerful probiotics.
Collapse
|
13
|
In vitro hypoglycemic and antioxidant activities of steamed Polygonatum cyrtonema Hua with various steaming degrees: Relationship with homoisoflavonoids. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
14
|
Tlais AZA, Rantsiou K, Filannino P, Cocolin LS, Cavoski I, Gobbetti M, Di Cagno R. Ecological linkages between biotechnologically relevant autochthonous microorganisms and phenolic compounds in sugar apple fruit (Annona squamosa L.). Int J Food Microbiol 2023; 387:110057. [PMID: 36563533 DOI: 10.1016/j.ijfoodmicro.2022.110057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/18/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Our study investigated the potential of Annona squamosa (L.) fruit as a reservoir of yeasts and lactic acid bacteria having biotechnological implications, and phenolics capable of modifying the ecology of microbial consortia. Only a single species of lactic acid bacteria (Enterococcus faecalis) was identified, while Annona fruit seemed to be a preferred niche for yeasts (Saccharomyces cerevisiae, Hanseniaspora uvarum), which were differentially distributed in the fruit. In order to identify ecological implications for inherent phenolics, the antimicrobial potential of water- and methanol/water-soluble extracts from peel and pulp was studied. Pulp extracts did not show any antimicrobial activity against the microbial indicators, while some Gram-positive bacteria (Staphylococcus aureus, Staphylococcus saprophyticus, Listeria monocytogenes, Bacillus megaterium) were susceptible to peel extracts. Among lactic acid bacteria used as indicators, only Lactococcus lactis and Weissella cibaria were inhibited. The chemical profiling of methanol/water-soluble phenolics from Annona peel reported a full panel of 41 phenolics, mainly procyanidins and catechin derivatives. The antimicrobial activity was associated to specific compounds (procyanidin dimer type B [isomer 1], rutin [isomer 2], catechin diglucopyranoside), in addition to unidentified catechin derivatives. E. faecalis, which was detected in the epiphytic microbiota, was well adapted to the phenolics from the peel. Peel phenolics had a growth-promoting effect toward the autochthonous yeasts S. cerevisiae and H. uvarum.
Collapse
Affiliation(s)
| | - Kalliopi Rantsiou
- Department of Agricultural, Forest, and Food Science, University of Turin, Grugliasco, Torino, Italy
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy.
| | - Luca Simone Cocolin
- Department of Agricultural, Forest, and Food Science, University of Turin, Grugliasco, Torino, Italy
| | - Ivana Cavoski
- CIHEAM-MAIB, Mediterranean Agronomic Institute of Bari, 70010 Valenzano, Bari, Italy
| | - Marco Gobbetti
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy
| | - Raffaella Di Cagno
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy
| |
Collapse
|
15
|
Arora K, Tlais AZA, Augustin G, Grano D, Filannino P, Gobbetti M, Di Cagno R. Physicochemical, nutritional, and functional characterization of gluten-free ingredients and their impact on the bread texture. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Tlais AZA, Lemos Junior WJF, Filannino P, Campanaro S, Gobbetti M, Di Cagno R. How Microbiome Composition Correlates with Biochemical Changes during Sauerkraut Fermentation: a Focus on Neglected Bacterial Players and Functionalities. Microbiol Spectr 2022; 10:e0016822. [PMID: 35699432 PMCID: PMC9430578 DOI: 10.1128/spectrum.00168-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
This study provided a new perspective on the bacterial community succession during sauerkraut fermentation, and on resulting metabolic functions. While culture-dependent methods confirmed the key role of the well-known core microbiome species, metagenomic approach (shotgun) revealed Secundilactobacillus malefermentans as a species of the core microbiome, especially during the last weeks of fermentation. Although the potentiality of S. malefermentans has not yet fully explored, it held core functional genes usually attributed to others lactic acid bacteria driving sauerkraut fermentation. Based on our results it is arguable that S. malefermentans might have a key a role during sauerkraut fermentation carried out at low temperature. Under our experimental conditions, the profile of phenolic compounds changed throughout sauerkraut fermentation. The amount of free phenolics, including free phenolic acids, increased at the beginning of the fermentation, whereas the conversion of phenolic acids into microbial derivatives was consistent during the last part of the sauerkraut fermentation. We pioneered correlating changes in the phenolics profile to changes in the microbiome, although the framework presented is still fragmentary. Annotated genes linked to the phenolic compounds metabolism (VprA and padA) were found in many core species during the whole process. A high metabolic potential for phenolics bioconversion emerged for lactobacilli and Pediococcus spp. through correlation analysis between microbiome composition and phenolics profile. IMPORTANCE Our study was not limited to describe the succession pattern of the microbial community during sauerkraut fermentation, but also revealed how some neglected bacterial players belong to the core species during sauerkrauts processing, especially at low temperature. Such species might have a role as potential starters to optimize the fermentation processes and to obtain sauerkrauts with improved and standardized nutritional and sensory features. Furthermore, our correlations between microbiome composition and phenolics profile might also represent new references for sauerkraut biotechnology, aiming to identify new metabolic drivers of potential sauerkraut functionalities. Finally, sauerkraut ecosystem is a tractable model, although with high level of complexity, and resultant ecological information might be extended to other plant ecosystems.
Collapse
Affiliation(s)
| | | | - Pasquale Filannino
- Department of Soil, Plant and Food Sciences, University of Bari A. Moro, Bari, Italy
| | | | - Marco Gobbetti
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
| | - Raffaella Di Cagno
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
| |
Collapse
|
17
|
Effect of sequential or ternary starters-assisted fermentation on the phenolic and glucosinolate profiles of sauerkraut in comparison with spontaneous fermentation. Food Res Int 2022; 156:111116. [DOI: 10.1016/j.foodres.2022.111116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022]
|
18
|
Ameur H, Cantatore V, Filannino P, Cavoski I, Nikoloudaki O, Gobbetti M, Di Cagno R. Date Seeds Flour Used as Value-Added Ingredient for Wheat Sourdough Bread: An Example of Sustainable Bio-Recycling. Front Microbiol 2022; 13:873432. [PMID: 35516437 PMCID: PMC9062590 DOI: 10.3389/fmicb.2022.873432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Our study proposed date seeds flour (DSF) as an innovative ingredient for sourdough bread production through sustainable bio-recycling. We isolated autochthonous lactic acid bacteria and yeasts from DSF and DSF-derived doughs to build up a reservoir of strains from which to select starters ensuring rapid adaptation and high ecological fitness. The screening based on pro-technological criteria led to the formulation of a mixed starter consisting of Leuconostoc mesenteroides, Lactiplantibacillus plantarum, and Saccharomyces cerevisiae strains, which allowed obtaining a mature type I sourdough after consecutive refreshments, in which an aliquot of the durum wheat flour (DWF) was replaced by DSF. The resulting DSF sourdough and bread underwent an integrated characterization. Sourdough biotechnology was confirmed as a suitable procedure to improve some functional and sensory properties of DWF/DSF mixture formulation. The radical scavenging activity increased due to the consistent release of free phenolics. Perceived bitterness and astringency were considerably diminished, likely because of tannin degradation.
Collapse
Affiliation(s)
- Hana Ameur
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
| | - Vincenzo Cantatore
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Pasquale Filannino,
| | - Ivana Cavoski
- CIHEAM-MAIB, Mediterranean Agronomic Institute of Bari, Valenzano, Bari, Italy
| | - Olga Nikoloudaki
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
| | - Raffaella Di Cagno
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
- Raffaella Di Cagno,
| |
Collapse
|
19
|
Acin‐Albiac M, Filannino P, Coda R, Rizzello CG, Gobbetti M, Di Cagno R. How water-soluble saccharides drive the metabolism of lactic acid bacteria during fermentation of brewers' spent grain. Microb Biotechnol 2022; 15:915-930. [PMID: 34132488 PMCID: PMC8913874 DOI: 10.1111/1751-7915.13846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/20/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022] Open
Abstract
We proposed a novel phenomic approach to track the effect of short-term exposures of Lactiplantibacillus plantarum and Leuconostoc pseudomesenteroides to environmental pressure induced by brewers' spent grain (BSG)-derived saccharides. Water-soluble BSG-based medium (WS-BSG) was chosen as model system. The environmental pressure exerted by WS-BSG shifted the phenotypes of bacteria in species- and strains-dependent way. The metabolic drift was growth phase-dependent and likely underlay the diauxic profile of organic acids production by bacteria in response to the low availability of energy sources. Among pentosans, metabolism of arabinose was preferred by L. plantarum and xylose by Leuc. pseudomesenteroides as confirmed by the overexpression of related genes. Bayesian variance analysis showed that phenotype switching towards galactose metabolism suffered the greatest fluctuation in L. plantarum. All lactic acid bacteria strains utilized more intensively sucrose and its plant-derived isomers. Sucrose-6-phosphate activity in Leuc. pseudomesenteroides likely mediated the increased consumption of raffinose. The increased levels of some phenolic compounds suggested the involvement of 6-phospho-β-glucosidases in β-glucosides degradation. Expression of genes encoding β-glucoside/cellobiose-specific EII complexes and phenotyping highlighted an increased metabolism for cellobiose. Our reconstructed metabolic network will improve the understanding of how lactic acid bacteria may transform BSG into suitable food ingredients.
Collapse
Affiliation(s)
- Marta Acin‐Albiac
- Faculty of Science and TechnologyFree University of BolzanoBolzano39100Italy
| | - Pasquale Filannino
- Department of Soil, Plant and Food ScienceUniversity of Bari Aldo MoroBari70126Italy
| | - Rossana Coda
- Department of Food and NutritionHelsinki Institute of Sustainability ScienceUniversity of HelsinkiHelsinki00100Finland
| | | | - Marco Gobbetti
- Faculty of Science and TechnologyFree University of BolzanoBolzano39100Italy
| | - Raffaella Di Cagno
- Faculty of Science and TechnologyFree University of BolzanoBolzano39100Italy
| |
Collapse
|
20
|
Hu X, Zeng J, Shen F, Xia X, Tian X, Wu Z. Citrus pomace fermentation with autochthonous probiotics improves its nutrient composition and antioxidant activities. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Filannino P, Di Cagno R, Vincentini O, Pinto D, Polo A, Maialetti F, Porrelli A, Gobbetti M. Nutrients Bioaccessibility and Anti-inflammatory Features of Fermented Bee Pollen: A Comprehensive Investigation. Front Microbiol 2021; 12:622091. [PMID: 33603725 PMCID: PMC7884310 DOI: 10.3389/fmicb.2021.622091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/04/2021] [Indexed: 01/02/2023] Open
Abstract
We compared raw bee-collected pollen (Raw-BCP), spontaneously fermented BCP (Unstarted-BCP), and BCP fermented with selected microbial starters (Started-BCP) to deepen whether fermentation may favorably affect the nutrients bioaccessibility and functional features of BCP. Under in vitro gastrointestinal batches, the highest serum-availability of phenolic compounds was found in Started-BCP, highlighting the positive effect exerted by selected microbial starters. The same effect was not found in spontaneously fermented BCP. In colon adenocarcinoma cell line-2 (Caco-2) cells stressed by a pro-inflammatory stimulus, the treatment with Started-BCP halted the increase of pro-inflammatory mediator's level. Started-BCP counteracted efficiently the deleterious effects of inflammatory stimuli on the integrity of the Caco-2 cells monolayer and its barrier function. Started-BCP successfully counteracted the H2O2-induced intracellular accumulation of reactive oxygen species (ROS) in Caco-2 cells. A protective role against lipopolysaccharide (LPS)-induced inflammation was exerted by Started-BCP in human keratinocytes. The same protective effects on Caco-2 and keratinocyte cell lines were negligible after treatments with Raw-BCP or Unstarted-BCP.
Collapse
Affiliation(s)
- Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Raffaella Di Cagno
- Faculty of Sciences and Technology, Libera Università di Bolzano, Bolzano, Italy
| | - Olimpia Vincentini
- Unit of Human Nutrition and Health, Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Andrea Polo
- Faculty of Sciences and Technology, Libera Università di Bolzano, Bolzano, Italy
| | - Francesca Maialetti
- Unit of Human Nutrition and Health, Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Annalisa Porrelli
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Marco Gobbetti
- Faculty of Sciences and Technology, Libera Università di Bolzano, Bolzano, Italy
| |
Collapse
|
22
|
Functional Exploitation of Carob, Oat Flour, and Whey Permeate as Substrates for a Novel Kefir-Like Fermented Beverage: An Optimized Formulation. Foods 2021; 10:foods10020294. [PMID: 33535686 PMCID: PMC7912806 DOI: 10.3390/foods10020294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 01/03/2023] Open
Abstract
This study investigated the fortification of a carob-based kefir-like beverage (KLB) with whey permeate (WP) and oat flour (OF). The response surface method was used to show the effect of WP and OF concentrations on lactic acid bacteria and yeast cell densities, pH, total titratable acidity (TTA), total phenolics content (TCP), DPPH radical scavenging activity, and overall acceptability (OA) in KLB. The statistical design provided thirteen formulations where OF concentration varied from 3% to 5% and WP from 10% to 15%. The enrichment of carob pods decoction with WP and OF had a positive effect on biomass production. Overall fermentation was shown to increase TPC of KLB. Furthermore, OF supplementation led to the higher levels of TPC and antiradical activity. WP negatively affected OA at linear and quadratic levels, whereas no effect of OF was observed at the linear level. The optimum point was found by using WP at 11.51% and OF at 4.77%. Optimized KLB resulted in an enrichment of bioavailable phenolics derivatives and highly digestible proteins.
Collapse
|
23
|
Volatilome and Bioaccessible Phenolics Profiles in Lab-Scale Fermented Bee Pollen. Foods 2021; 10:foods10020286. [PMID: 33572637 PMCID: PMC7911640 DOI: 10.3390/foods10020286] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 01/03/2023] Open
Abstract
Bee-collected pollen (BCP) is currently receiving increasing attention as a dietary supplement for humans. In order to increase the accessibility of nutrients for intestinal absorption, several biotechnological solutions have been proposed for BCP processing, with fermentation as one of the most attractive. The present study used an integrated metabolomic approach to investigate how the use of starter cultures may affect the volatilome and the profile of bioaccessible phenolics of fermented BCP. BCP fermented with selected microbial starters (Started-BCP) was compared to spontaneously fermented BCP (Unstarted-BCP) and to unprocessed raw BCP (Raw-BCP). Fermentation significantly increased the amount of volatile compounds (VOC) in both Unstarted- and Started-BCP, as well as modifying the relative proportions among the chemical groups. Volatile free fatty acids were the predominant VOC in Unstarted-BCP. Started-BCP was differentiated by the highest levels of esters and alcohols, although volatile free fatty acids were always prevailing. The profile of the VOC was dependent on the type of fermentation, which was attributable to the selected Apilactobacillus kunkeei and Hanseniaspora uvarum strains used as starters, or to the variety of yeasts and bacteria naturally associated to the BCP. Started-BCP and, to a lesser extent, Unstarted-BCP resulted in increased bioaccessible phenolics, which included microbial derivatives of phenolic acids metabolism.
Collapse
|
24
|
Role of Lactic Acid Bacteria Phospho-β-Glucosidases during the Fermentation of Cereal by-Products. Foods 2021; 10:foods10010097. [PMID: 33466465 PMCID: PMC7830935 DOI: 10.3390/foods10010097] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Bioprocessing using lactic acid bacteria (LAB) is a powerful means to exploit plant-derived by-products as a food ingredient. LAB have the capability to metabolize a large variety of carbohydrates, but such metabolism only relies on few metabolic routes, conferring on them a high fermentation potential. One example of these pathways is that involving phospho-β-glucosidase genes, which are present in high redundancy within LAB genomes. This enzymatic activity undertakes an ambivalent role during fermentation of plant-based foods related to the release of a wide range of phenolic compounds, from their β-D-glycosylated precursors and the degradation of β-glucopyranosyl derived carbohydrates. We proposed a novel phenomic approach to characterize the metabolism drift of Lactiplantibacillus plantarum and Leuconostoc pseudomesenteroides caused by a lignocellulosic by-product, such as the brewers’ spent grain (BSG), in contrast to Rich De Man, Rogosa and Sharpe (MRS) broth. We observed an increased metabolic activity for gentiobiose, cellobiose and β-glucoside conjugates of phenolic compounds during BSG fermentation. Gene expression analysis confirmed the importance of cellobiose metabolism while a release of lignin-derived aglycones was found during BSG fermentation. We provided a comprehensive view of the important role exerted by LAB 6-phospho-β-glucosidases as well the major metabolic routes undertaken during plant-based fermentations. Further challenges will consider a controlled characterization of pbg gene expression correlated to the metabolism of β-glucosides with different aglycone moieties.
Collapse
|