1
|
Yang H, Xue J, Xiao Y, Guo E, Wu J, Ji Y, Fan C. Comparative study of binding interactions between different fatty acids and β-lactoglobulin:Impact on conformation and physicochemical properties of the protein. Food Chem 2025; 482:144116. [PMID: 40179563 DOI: 10.1016/j.foodchem.2025.144116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/28/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025]
Abstract
A comparative study was conducted to investigate the binding mechanisms and interactions between four different lengths of saturated fatty acids (C12:0 to C18:0) and two types of C18 unsaturated fatty acids (C18:1 and C18:2) with β-lactoglobulin (β-Lg). The quenching mechanism for these six fatty acids - lauric acid (LUA), myristic acid (MA), palmitic acid (PAL), stearic acid (SA), oleic acid (OA), and linoleic acid (LA) - with β-Lg were found to be static, and the interactions were predominantly driven by hydrophobic forces. The binding affinity was increased with the increase of carbon chain. While, an increase in the number of CC double bonds resulted in a decreased in binding affinity. The binding of fatty acids interfered with the micro-environment around the tyrosine (Tyr) and tryptophan (Trp) residues in protein, subsequently altering the secondary structures of β-Lg. This study will help to improve our understanding of nutrient interactions in food.
Collapse
Affiliation(s)
- Hui Yang
- College of Food Science, Shenyang Agricultural University; Shenyang 110866, China..
| | - Jie Xue
- College of Food Science, Shenyang Agricultural University; Shenyang 110866, China
| | - Yinuo Xiao
- College of Food Science, Shenyang Agricultural University; Shenyang 110866, China
| | - Endian Guo
- College of Food Science, Shenyang Agricultural University; Shenyang 110866, China
| | - Jiayang Wu
- College of Food Science, Shenyang Agricultural University; Shenyang 110866, China
| | - Yanli Ji
- College of Food Science, Shenyang Agricultural University; Shenyang 110866, China
| | - Chenxi Fan
- College of Food Science, Shenyang Agricultural University; Shenyang 110866, China
| |
Collapse
|
2
|
Li Y, Liu Z, Li G, Yin X, Guo C, Jiang Y, Hu X, Yi J. Inactivated mechanisms of high pressure processing combined with mild temperature on pectin methylesterase and its inhibitor. Food Chem 2025; 484:144477. [PMID: 40300406 DOI: 10.1016/j.foodchem.2025.144477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/26/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025]
Abstract
High pressure processing (HPP) of orange juice faces storage issues due to refrigeration need and cloud loss caused by pectin methylesterase (PME). Our previous research indicated that HPP conjunction with pectin methylesterase inhibitor (PMEI) enhanced juice stability, but not fully inactivated PME. This study explored the effectiveness of HPP with mild temperature treatments to fully inactivate PME and sterilize microorganisms in juice, using experimental analysis and molecular dynamics simulation. The findings revealed that PME activity was reduced by 94 % at 600 MPa and 60 °C, with completely inactivating at 80 °C. Conversely, PMEI exhibited resistance to pressure and temperature. Following processes at 600 MPa and above 60 °C, the tail-end helix structure of PME destabilized, with α-helices converting to β-sheets and disrupting hydrogen bonds within molecular chain. Conversely, the structure of PMEI was stable. Additionally, the combination of HPP and temperature treatment enhanced the binding affinity between PME and PMEI.
Collapse
Affiliation(s)
- Yantong Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Zhuyin Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Guijing Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Xinyi Yin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Chaofan Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Yongli Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China.
| |
Collapse
|
3
|
Cui H, Zhu X, Yu X, Li S, Wang K, Wei L, Li R, Qin S. Advancements of astaxanthin production in Haematococcus pluvialis: Update insight and way forward. Biotechnol Adv 2025; 79:108519. [PMID: 39800086 DOI: 10.1016/j.biotechadv.2025.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/12/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The global market demand for natural astaxanthin (AXT) is growing rapidly owing to its potential human health benefits and diverse industry applications, driven by its safety, unique structure, and special function. Currently, the alga Haematococcus pluvialis (alternative name H. lacustris) has been considered as one of the best large-scale producers of natural AXT. However, the industry's further development faces two main challenges: the limited cultivation areas due to light-dependent AXT accumulation and the low AXT yield coupled with high production costs resulting from complex, time-consuming upstream biomass culture and downstream AXT extraction processes. Therefore, it is urgently to develop novel strategies to improve the AXT production in H. pluvialis to meet industrial demands, which makes its commercialization cost-effective. Although several strategies related to screening excellent target strains, optimizing culture condition for high biomass yield, elucidating the AXT biosynthetic pathway, and exploiting effective inducers for high AXT content have been applied to enhance the AXT production in H. pluvialis, there are still some unsolved and easily ignored perspectives. In this review, firstly, we summarize the structure and function of natural AXT focus on those from the algal H. pluvialis. Secondly, the latest findings regarding the AXT biosynthetic pathway including spatiotemporal specificity, transport, esterification, and storage are updated. Thirdly, we systematically assess enhancement strategies on AXT yield. Fourthly, the regulation mechanisms of AXT accumulation under various stresses are discussed. Finally, the integrated and systematic solutions for improving AXT production are proposed. This review not only fills the existing gap about the AXT accumulation, but also points the way forward for AXT production in H. pluvialis.
Collapse
Affiliation(s)
- Hongli Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Xiaoli Zhu
- College of Food and Bioengineering, Yantai Institute of Technology, Yantai 264003, Shandong, China
| | - Xiao Yu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Siming Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Kang Wang
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Le Wei
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| |
Collapse
|
4
|
Yang B, Lan M, Zhong R, Shi F, Liang P. Insight into the effects of large yellow croaker roe (Larimichthys Crocea) phospholipids on the conformational and functional properties of pork myofibrillar protein. Food Chem 2024; 461:140813. [PMID: 39173261 DOI: 10.1016/j.foodchem.2024.140813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/19/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
The large yellow croaker roe phospholipids (LYPLs), rich in polyunsaturated fatty acids, is a potential phospholipid additive for meat products. In this work, the effects of LYPLs on the structural and functional properties of myofibrillar protein (MP) were determined, and compared with egg yolk phospholipids (EYPLs) and soybean phospholipids (SBPLs). The results revealed that LYPLs, similar to SBPLs and EYPLs, induced a transformation in the secondary structure of MP from α-helix to β-sheets and random coils, while also inhibited the formation of carbonyl and disulfide bonds within MP. All three phospholipids induced MP tertiary structure unfolding, with the greatest degree of unfolding observed in MP containing LYPLs. The MP with LYPLs had the highest surface hydrophobicity, emulsification properties and gel strength. In addition, MP with LYPLs added also demonstrated superior rheological properties and water-holding capacity compared with SBPLs and EYPLs. In conclusion, adding LYPLs endowed MP with improved functional properties.
Collapse
Affiliation(s)
- Boruo Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, 350002 Fuzhou, China
| | - Mei Lan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, 350002 Fuzhou, China
| | - Rongbin Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, 350002 Fuzhou, China
| | - Feifei Shi
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, 350002 Fuzhou, China
| | - Peng Liang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, 350002 Fuzhou, China.
| |
Collapse
|
5
|
Wang Y, Jiang Y, Shi J. Fabrication of novel casein/oligochitosan nanocomplexes for lutein delivery: Enhanced stability, bioavailability, and antioxidant properties. Food Res Int 2024; 197:115241. [PMID: 39593323 DOI: 10.1016/j.foodres.2024.115241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
This study aimed to prepare novel nanocomplexes for delivery of lutein using transglutaminase (TGase)-type glycation of casein. The effect of glycated casein nanoparticles on the environmental stability, bioavailability, and antioxidant properties of lutein was investigated. Glycated casein nanoparticles with uniform distribution and small particle size were successfully prepared by ultrasound technology. The structure analysis revealed intermolecular interactions between lutein and glycated casein, with the complexes having a spherical and stable structure. The fabricated nanoparticles exhibited a high encapsulation efficiency (91.89%) and loading capacity (3.06%) for lutein. TGase-type glycation of casein nanoparticles contributed to the strong thermal stability, pH stability, storage stability, and salt stability. Moreover, glycated casein/lutein nanoparticles exhibited resistance to gastric digestion, rapid intestinal release rate, increased lutein bioavailability, and antioxidant activity under simulated digestion. This study provides key support for the development of glycated casein-based nanoparticles as delivery systems and reinforcing stability of hydrophilic nutraceuticals.
Collapse
Affiliation(s)
- Yu Wang
- Department of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China
| | - Yujun Jiang
- Department of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China
| | - Jia Shi
- Department of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
6
|
Liang Y, Zu XY, Zhao YN, Li YQ, Wang CY, Zhao XZ, Wang H. Research on the Synergistic Inhibition of Angiotensin-Converting Enzyme (ACE) by the Gastrointestinal Digestion Products of the ACE Inhibitory Peptide FPPDVA. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24463-24475. [PMID: 39436688 DOI: 10.1021/acs.jafc.4c05518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
To gain a deeper understanding of the ACE inhibition effect, the inhibitory effect of ACE-inhibiting peptide (ACEIP) FPPDVA's digestive products on ACE was further investigated. Two novel peptides, PD (IC50 = 161.1 ± 1.10 μM) and DV (IC50 = 66.51 ± 0.99 μM) were identified in the digestive products of FPPDVA using LC-MS/MS. The Peptide Mix (FPPDVA, PD, and DV) exhibited a remarkable synergistic effect on ACE inhibition by significantly enhancing it by up to 508% compared to the individual peptides alone. Furthermore, theoretical simulations suggest that the Peptide Mix synergistically inhibits ACE activity by forming more stable complexes with the active site of ACE, facilitated by an increased number of hydrogen bonds. Additionally, Lineweaver-Burk plot analysis and spectroscopic studies further verified the presence of these stable complexes. ITC results show that the combination of Peptides Mix and ACE is a spontaneous exothermic process driven by entropy. The study showed that FPPDVA has a stronger inhibitory effect on ACE after digestion, making it suitable as an antihypertensive peptide in functional foods.
Collapse
Affiliation(s)
- Yan Liang
- School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Xin-Yu Zu
- School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Ya-Nan Zhao
- School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Ying-Qiu Li
- School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Chen-Ying Wang
- School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Xiang-Zhong Zhao
- School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Hua Wang
- School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| |
Collapse
|
7
|
Li Y, Zhang W, Jiang Y, Devahastin S, Hu X, Song Z, Yi J. Inactivation mechanisms on pectin methylesterase by high pressure processing combined with its recombinant inhibitor. Food Chem 2024; 446:138806. [PMID: 38402767 DOI: 10.1016/j.foodchem.2024.138806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
High pressure processing (HPP) juice often experiences cloud loss during storage, caused by the activity of pectin methylesterase (PME). The combination of HPP with natural pectin methylesterase inhibitor (PMEI) could improve juice stability. However, extracting natural PMEI is challenging. Gene recombination technology offers a solution by efficiently expressing recombinant PMEI from Escherichia coli and Pichia pastoris. Experimental and molecular dynamics simulation were conducted to investigate changes in activity, structure, and interaction of PME and recombinant PMEI during HPP. The results showed PME retained high residual activity, while PMEI demonstrated superior pressure resistance. Under HPP, PMEI's structure remained stable, while the N-terminus of PME's α-helix became unstable. Additionally, the helix at the junction with the PME/PMEI complex changed, thereby affecting its binding. Furthermore, PMEI competed with pectin for active sites on PME, elucidating. The potential mechanism of PME inactivation through the synergistic effects of HPP and PMEI.
Collapse
Affiliation(s)
- Yantong Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500, Kunming, China
| | - Wanzhen Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500, Kunming, China
| | - Yongli Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500, Kunming, China
| | - Sakamon Devahastin
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Tungkru, Bangkok 10140, Thailand
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zibo Song
- Yunnan Maoduoli Group Food Co., Ltd., 653100 Yuxi, Yunnan, China; Yunnan Provincial Key Laboratory of Applied Technology for Special Forest Fruits, 653100 Yuxi, Yunnan, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500, Kunming, China; Yunnan Maoduoli Group Food Co., Ltd., 653100 Yuxi, Yunnan, China.
| |
Collapse
|
8
|
Guo J, Hu M, Yang M, Cao H, Li H, Zhu J, Li S, Zhang J. Inhibition mechanism of theaflavins on matrix metalloproteinase-2: inhibition kinetics, multispectral analysis, molecular docking and molecular dynamics simulation. Food Funct 2024; 15:7452-7467. [PMID: 38910519 DOI: 10.1039/d4fo01620c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Dental caries is a chronic and destructive disease and matrix metalloproteinase-2 (MMP-2) plays a major role in caries. The inhibitory mechanisms of theaflavins [theaflavin (TF1), theaflavin-3-gallate (TF2A), theaflavin-3'-gallate (TF2B), and theaflavin-3,3'-digallate (TF3)] on MMP-2 were investigated using techniques such as enzyme inhibition kinetics, multi-spectral methods, molecular docking, and molecular dynamics simulations. The results showed that TF1, TF2A, TF2B, and TF3 all competitively and reversibly inhibited MMP-2 activity. Fluorescence spectra and molecular docking indicated that four theaflavins spontaneously bind to MMP-2 through noncovalent interactions, driven by hydrogen bonds and hydrophobic interactions, constituting a static quenching mechanism and resulting in an altered tryptophan residue environment around MMP-2. Molecular dynamic simulations demonstrated that four theaflavins can form stable, compact complexes with MMP-2. In addition, the order of theaflavins' ability to inhibit MMP-2 was found to be TF1 > TF2B > TF2A > TF3. Interestingly, the order of binding capacity between MMP-2 and TF1, TF2A, TF2B, and TF3 was consistent with the order of inhibitory capacity, and was opposite to the order of steric hindrance of theaflavins. This may be due to the narrow space of the active pocket of MMP-2, and the smaller the steric hindrance of theaflavins, the easier it is to enter the active pocket and bind to MMP-2. This study provided novel insights into theaflavins as functional components in the exploration of natural MMP-2 inhibitors.
Collapse
Affiliation(s)
- Jing Guo
- Department of Dental General and Emergency, The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, No. 688 Honggu North Road, Honggutan District, Nanchang 330038, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, People's Republic of China
| | - Mengna Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
| | - Mingqi Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
| | - Huang Cao
- Department of Dental General and Emergency, The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, No. 688 Honggu North Road, Honggutan District, Nanchang 330038, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, People's Republic of China
| | - Hongan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
| | - Jiayu Zhu
- Department of Dental General and Emergency, The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, No. 688 Honggu North Road, Honggutan District, Nanchang 330038, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, People's Republic of China
| | - Shuang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
| | - Jinsheng Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
| |
Collapse
|
9
|
Debnath T, Bandyopadhyay TK, Vanitha K, Bobby MN, Nath Tiwari O, Bhunia B, Muthuraj M. Astaxanthin from microalgae: A review on structure, biosynthesis, production strategies and application. Food Res Int 2024; 176:113841. [PMID: 38163732 DOI: 10.1016/j.foodres.2023.113841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Astaxanthin is a red-colored secondary metabolite with excellent antioxidant properties, typically finds application as foods, feed, cosmetics, nutraceuticals, and medications. Astaxanthin is usually produced synthetically using chemicals and costs less as compared to the natural astaxanthin obtained from fish, shrimps, and microorganisms. Over the decades, astaxanthin has been naturally synthesized from Haematococcus pluvialis in commercial scales and remains exceptional, attributed to its higher bioactive properties as compared to synthetic astaxanthin. However, the production cost of algal astaxanthin is still high due to several bottlenecks prevailing in the upstream and downstream processes. To that end, the present study intends to review the recent trends and advancements in astaxanthin production from microalgae. The structure of astaxanthin, sources, production strategies of microalgal astaxanthin, and factors influencing the synthesis of microalgal astaxanthin were discussed while detailing the pathway involved in astaxanthin biosynthesis. The study also discusses the relevant downstream process used in commercial scales and details the applications of astaxanthin in various health related issues.
Collapse
Affiliation(s)
- Taniya Debnath
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India
| | | | - Kondi Vanitha
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Medak, Telangana, India
| | - Md Nazneen Bobby
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Guntur 522213, Andhra Pradesh, India
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, Indian Agricultural Research Institute (ICAR), New Delhi 110012, India.
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India.
| | - Muthusivaramapandian Muthuraj
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India; Department of Bio Engineering, National Institute of Technology, Agartala-799046, India.
| |
Collapse
|
10
|
Taheri A, Kashaninejad M, Tamaddon AM, Du J, Jafari SM. Rheological Characteristics of Soluble Cress Seed Mucilage and β-Lactoglobulin Complexes with Salts Addition: Rheological Evidence of Structural Rearrangement. Gels 2023; 9:485. [PMID: 37367155 DOI: 10.3390/gels9060485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
Functional, physicochemical, and rheological properties of protein-polysaccharide complexes are remarkably under the influence of the quality of solvent or cosolute in a food system. Here, a comprehensive description of the rheological properties and microstructural peculiarities of cress seed mucilage (CSM)-β-lactoglobulin (Blg) complexes are discussed in the presence of CaCl2 (2-10 mM), (CSM-Blg-Ca), and NaCl (10-100 mM) (CSM-Blg-Na). Our results on steady-flow and oscillatory measurements indicated that shear thinning properties can be fitted well by the Herschel-Bulkley model and by the formation of highly interconnected gel structures in the complexes, respectively. Analyzing the rheological and structural features simultaneously led to an understanding that formations of extra junctions and the rearrangement of the particles in the CSM-Blg-Ca could enhance elasticity and viscosity, as compared with the effect of CSM-Blg complex without salts. NaCl reduced the viscosity and dynamic rheological properties and intrinsic viscosity through the salt screening effect and dissociation of structure. Moreover, the compatibility and homogeneity of complexes were approved by dynamic rheometry based on the Cole-Cole plot supported by intrinsic viscosity and molecular parameters such as stiffness. The results outlined the importance of rheological properties as criteria for investigations that determine the strength of interaction while facilitating the fabrication of new structures in salt-containing foods that incorporate protein-polysaccharide complexes.
Collapse
Affiliation(s)
- Afsaneh Taheri
- Department of Food Process Engineering, Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49138-15739, Iran
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Mahdi Kashaninejad
- Department of Food Process Engineering, Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49138-15739, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Juan Du
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Seid Mahdi Jafari
- Department of Food Process Engineering, Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49138-15739, Iran
| |
Collapse
|
11
|
Liu Y, Li X, Sun H, Zhang J, Cai C, Xu N, Feng J, Nan B, Wang Y, Liu J. Whey protein concentrate/pullulan gel as a novel microencapsulated wall material for astaxanthin with improving stability and bioaccessibility. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Liu C, Lv N, Xu YQ, Tong H, Sun Y, Huang M, Ren G, Shen Q, Wu R, Wang B, Cao Z, Xie H. pH-dependent interaction mechanisms between β-lactoglobulin and EGCG: Insights from multi-spectroscopy and molecular dynamics simulation methods. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Shen P, Peng Y, Zhou X, Jiang X, Raj R, Ge H, Wang W, Yu B, Zhang J. A comprehensive spectral and in silico analysis on the interactions between quercetin, isoquercitrin, rutin and HMGB1. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Gao Q, Qiao X, Yang L, Cao Y, Li Z, Xu J, Xue C. Effects of microencapsulation in dairy matrix on the quality characteristics and bioavailability of docosahexaenoic acid astaxanthin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5711-5719. [PMID: 35396734 DOI: 10.1002/jsfa.11919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/20/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Compared with free astaxanthin (Asta), docosahexaenoic acid astaxanthin monoester (Asta-C22:6) has higher stability and bioavailability. However, Asta-E is still unable to be used in the water system. Hence it is necessary to build a water-soluble delivery system. In this study, Asta-C22:6 microemulsion and microcapsule using whey protein isolate (WPI) and hydroxypropyl-β-cyclodextrin (HPβ-CD) as composite wall material were prepared. They were added to three dairy products (milk powder, yogurt and flavored dairy product). A dairy product rich in Asta-C22:6 with high bioavailability was designed by measuring quality characteristics, sensory evaluation and in vivo experiments. RESULTS Compared with spray drying, the freeze-drying microcapsule had a higher encapsulation efficiency (72.5%), water content (4%) and better solubility, and Asta-C22:6 microcapsule (1 g L-1 ) yogurt had the best quality. The bioavailability of Asta-C22:6 microcapsule yogurt was further evaluated. After a single oral dose in mice, the bioavailability of Asta-C22:6 microcapsule in yogurt was significantly increased (Cmax = 0.31 μg mL-1 , AUC0-T = 3.20 h μg mL-1 ). CONCLUSION We successfully prepared Asta-C22:6 microcapsule yogurt, which improved the stability and bioavailability of Asta. The present research is meaningful for delivering unstable bioactive small molecules based on WPI and HPβ-CD. It provides an experimental basis for the application of Asta-C22:6 and the development of functional dairy products. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qun Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xing Qiao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Lu Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yunrui Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
15
|
Wang Z, Zhao J, Zhang T, Karrar E, Chang M, Liu R, Wang X. Impact of interactions between whey protein isolate and different phospholipids on the properties of krill oil emulsions: A consideration for functional lipids efficient delivery. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
Xu L, Zheng Y, Zhou C, Pan D, Geng F, Cao J, Xia Q. A structural explanation for enhanced binding behaviors between β-lactoglobulin and alkene-aldehydes upon heat- and ultrasonication-induced protein unfolding. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Feng X, Liao D, Sun L, Feng S, Wu S, Lan P, Wang Z, Lan X. Exploration of interaction between angiotensin I-converting enzyme (ACE) and the inhibitory peptide from Wakame (Undaria pinnatifida). Int J Biol Macromol 2022; 204:193-203. [PMID: 35090938 DOI: 10.1016/j.ijbiomac.2022.01.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 11/18/2022]
Abstract
The interaction between angiotensin I-converting enzyme (ACE) and the inhibitory peptide KNFL from Wakame was explored using isothermal titration calorimetry, multiple spectroscopic techniques and molecular dynamics simulations, and an inhibition model was established based on free energy binding theory. The experiments revealed that the binding of KNFL to ACE was a spontaneous exothermic process driven by enthalpy and entropy and occurred via multiple binding sites to form stable complexes. The complexes may be formed through multiple steps of inducing fit and conformational selection. The peptide KNFL had a fluorescence quenching effect on ACE and its addition not only affected the microenvironment around the ACE Trp and Tyr residues, but also increased the diameter and altered the conformation of ACE. This study should prove useful for improving our understanding of the mechanism of ACE inhibitory peptides.
Collapse
Affiliation(s)
- Xuezhen Feng
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China; Medical College, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, People's Republic of China
| | - Dankui Liao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
| | - Lixia Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Shuzhen Feng
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Shanguang Wu
- Medical College, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, People's Republic of China
| | - Ping Lan
- Guangxi Key Laboratory of Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, People's Republic of China
| | - Zefen Wang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Xiongdiao Lan
- Guangxi Key Laboratory of Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, People's Republic of China
| |
Collapse
|
18
|
Yang L, Li F, Cao X, Qiao X, Xue C, Xu J. Stability and bioavailability of protein matrix-encapsulated astaxanthin ester microcapsules. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2144-2152. [PMID: 34614199 DOI: 10.1002/jsfa.11556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/21/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Astaxanthin ester derived from Haematococcus pluvialis is often used as a functional and nutritional ingredient in foods. However, its utilization is currently limited as a result of its chemical instability and low bioavailability. Food matrix microcapsules are becoming increasingly popular because of their safety and high encapsulation efficiency. In the present study, the effect of protein matrixes on the properties of microcapsules was evaluated. RESULTS We investigated the effects of storage on astaxanthin ester microcapsules and the corresponding rehydration solution at 40 °C under a nitrogen atmosphere, as well as in darkness. The results showed that the stability of products prepared based on whey protein (WP) and corn-gluten was superior to that of products prepared based on lactoferrin, soy protein and sodium caseinate. The bioavailability of astaxanthin ester microcapsules encapsulated with different proteins and examined by means of astaxanthin concentrations in the serum and liver after oral administration was compared. All five protein wall materials could significantly improve the bioavailability of astaxanthin ester. The microcapsules prepared based on WP had the highest bioavailability, with a value of 10.69 ± 0.75 μg·h mL-1 , which was 3.15 times higher compared to that of the control group. CONCLUSION The results of the present study showed that protein encapsulation, especially WP encapsulation, could effectively improve the stability, water solubility and bioavailability of astaxanthin esters. Thus, WP can be used as the main wall material in delivery systems. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lu Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Fei Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xinyu Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xing Qiao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
19
|
Zhao J, Wang Z, Karrar E, Xu D, Sun X. Inhibition Mechanism of Berberine on α‐Amylase and α‐Glucosidase in Vitro. STARCH-STARKE 2022. [DOI: 10.1002/star.202100231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jinjin Zhao
- Synergetic Innovation Center of Food Safety and Nutrition State Key Laboratory of Food Science and Technology International Joint Research Laboratory for Lipid Nutrition and Safety School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Zhangtie Wang
- Synergetic Innovation Center of Food Safety and Nutrition State Key Laboratory of Food Science and Technology International Joint Research Laboratory for Lipid Nutrition and Safety School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Emad Karrar
- Synergetic Innovation Center of Food Safety and Nutrition State Key Laboratory of Food Science and Technology International Joint Research Laboratory for Lipid Nutrition and Safety School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Deping Xu
- Synergetic Innovation Center of Food Safety and Nutrition State Key Laboratory of Food Science and Technology International Joint Research Laboratory for Lipid Nutrition and Safety School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Xiulan Sun
- Synergetic Innovation Center of Food Safety and Nutrition State Key Laboratory of Food Science and Technology International Joint Research Laboratory for Lipid Nutrition and Safety School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| |
Collapse
|
20
|
Sun J, Wei Z, Xue C. Recent research advances in astaxanthin delivery systems: Fabrication technologies, comparisons and applications. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34657544 DOI: 10.1080/10408398.2021.1989661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Astaxanthin (AST) is classified as a kind of carotenoid with bright red color, powerful antioxidant activity as well as a range of health benefits. AST-based functional foods present a new thought of healthy diets with both the enhancement of food color and incorporation of nutrients. However, the poor water solubility, easy oxidation, light instability, thermal instability and peculiar smell excessively restrict its application in the food industry. In this review, common bio-based materials for various AST delivery systems suitable for different food products are highlighted. Moreover, characteristics of different delivery systems and current applications in food products are also compared and summarized. This review provides some ideas on the research trends and applications of AST delivery systems in food. The joint use of two or more materials can significantly enhance the stability of delivery systems. All of the encapsulation systems slow down the degradation of AST to a certain extent and can be applied to different food systems. However, studies and applications are still focused on emulsions and microcapsules with unsatisfactory odor masking effects. In the future, diverse AST-loaded delivery systems with high encapsulation efficacy, good stability, odor masking effects and cost-effective preparation technologies will be the major research trends.
Collapse
Affiliation(s)
- Jialin Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory of Marine Drugs and Biological Products, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
21
|
Xu L, Zheng Y, Zhou C, Pan D, Geng F, Cao J, Xia Q. Kinetic response of conformational variation of duck liver globular protein to ultrasonic stimulation and its impact on the binding behavior of n-alkenals. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111890] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Gan N, Sun Q, Suo Z, Zhang S, Zhao L, Xiang H, Wang W, Li Z, Liao X, Li H. How hydrophilic group affects drug-protein binding modes: Differences in interaction between sirtuins inhibitors Tenovin-1/Tenovin-6 and human serum albumin. J Pharm Biomed Anal 2021; 201:114121. [PMID: 34020341 DOI: 10.1016/j.jpba.2021.114121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 01/28/2023]
Abstract
Introduction of hydrophilic groups can improve the solubility of leading drugs but inevitably affect their interaction with proteins. This study selected sirtuin inhibitors Tenovin-1 (T1) and Tenovin-6 (T6) as drug models to determine differences in binding mode to human serum albumin (HSA). T1 and T6 quenched the endogenous fluorescence of HSA via static quenching mechanism. Introduction of hydrophilic groups greatly reduced the binding constant, i.e., from 1.302 × 104 L mol-1 for the HSA-T6 system to 0.128 × 104 L mol-1 for the HSA-T1 system. HSA-T1 system was mainly driven by electrostatic interactions while that of HSA-T6 system was hydrophobic interaction and both systems were spontaneous reactions. Site marker experiments and molecular docking indicated that both systems mainly bound to the hydrophobic site I of HSA. Molecular dynamics (MD) simulation analysis further revealed that Tyr148, Tyr150 and Arg257 residues played a key role in this recognition process for both systems. In particular, T6 maintained additional several hydrogen bonds with the surrounding residues. T1 had almost no effect on the esterase-like activity of HSA, but T6 inhibited the hydrolysis of p-NPA. Furthermore, differential scanning calorimetry (VP-DSC), circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy confirmed that HSA in the T6 system undergone a more significant conformational transition than that in the T1 system.
Collapse
Affiliation(s)
- Na Gan
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Qiaomei Sun
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Zili Suo
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Shuangshuang Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Ludan Zhao
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Hongzhao Xiang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Wenjing Wang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Zhiqiang Li
- R&D Center, China Tobacco Yunnan Industrial Co., Ltd., No. 367, Hongjin Road, Kunming, 650000, China
| | - Xiaoxiang Liao
- R&D Center, China Tobacco Yunnan Industrial Co., Ltd., No. 367, Hongjin Road, Kunming, 650000, China
| | - Hui Li
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
23
|
Mantovani RA, Rasera ML, Vidotto DC, Mercadante AZ, Tavares GM. Binding of carotenoids to milk proteins: Why and how. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|