1
|
Xiong H, Chen L, Teng H. Environmental factors and blueberry anthocyanin-induced conformational changes modulate the interaction between myofibrillar proteins and fishy compounds and their mechanism, specifically aldehydes and alcohols. Food Res Int 2025; 208:116220. [PMID: 40263794 DOI: 10.1016/j.foodres.2025.116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
This study investigated the impact of blueberry anthocyanin (BA) on the interaction between tilapia myofibrillar protein (MP) and fishy compounds (hexanal, octanal, nonanal, trans-2-nonenal, and 1-octen-3-ol). Results indicated that at a protein concentration of 5 mg/mL and fishy compounds at 5 μg/mL, MP effectively adsorbed these compounds at 4 °C, pH 7.0, and 0.6 mol/L Na+. Increasing BA concentration (0.03-0.24 mg/mL) enhanced the α-helix content of MP from 30 % to 60 %, with a blue shift in the maximum fluorescence emission peak (333-337 nm), suggesting that BA promotes protein structural folding and stability. In MP and fresh fish models, BA addition significantly decreased hexanal (from 50.2 % ± 1.6 % to 29.0 % ± 9.5 %), octanal (from 97.8 % ± 1.6 % to 38.7 % ± 1.8 %), and nonanal (from 69.4 % ± 7.7 % to 39.0 %). Conversely, higher BA concentrations led to increased release of 1-octene-3-ol (from 104.1 % ± 4.4 % to 120.4 % ± 1.1 %). Overall, the findings highlight the correlation between BA's effects on protein folding and stabilization and its influence on the controlled release of fishy compounds, underscoring the significance of polyphenols in protein-flavor interactions. This research offers valuable insights into flavor management and establishes a theoretical basis for flavor regulation in tilapia meat products, contributing to the broader study of quality control and flavor enhancement in meat products through natural pigment active ingredients.
Collapse
Affiliation(s)
- Huaxing Xiong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, No. 3 of Binhai 2(nd) Road, Dapeng New District, Shenzhen, Guangdong Province, 518108, China
| | - Hui Teng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, No. 3 of Binhai 2(nd) Road, Dapeng New District, Shenzhen, Guangdong Province, 518108, China.
| |
Collapse
|
2
|
Huang L, Zhang C, Chen X, Yang M, Xu R, Zhang D, He Y. A new method and mechanism for the rapid detoxification of the herb Pinelliae Rhizoma from the Araceae family, based on the dual destruction of raphides and lectin proteins. Int J Biol Macromol 2025; 310:143416. [PMID: 40268004 DOI: 10.1016/j.ijbiomac.2025.143416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/08/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
Pinelliae Rhizoma (PR), a traditional herbal medicine and dietary supplement, is valued for its cough relief and anti-inflammatory effects. However, it can cause significant throat irritation. And unfortunately, current processing techniques can lead to a considerable loss of active constituents in PR. This study employed microwave irradiation to process PR and elucidated the mechanisms underlying its attenuation of PR's irritation. The results demonstrated that microwave irradiation significantly enhanced the processing efficiency, reducing the traditional processing cycle from 5 to 15 days to just 10 min, while preserving active ingredients and mitigating irritation. Subsequent analysis of the irritant components found that microwave treatment significantly reduced the raphides content, altering their morphology. Concurrently, the secondary structure of lectin proteins underwent significant changes, including an increase in β-sheets, a decrease in β-turns and random coils content, and the formation of insoluble aggregates. In conclusion, microwave irradiation is an effective method for reducing the irritation of PR, with the mechanism attributed to the physical destruction of raphides and alterations in the hydrophobicity of lectin proteins. This study provides a novel approach and method for the processing and development of Araceae herbs, as well as food products such as yam, konjac, and pineapple.
Collapse
Affiliation(s)
- Lin Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xinming Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Ming Yang
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, PR China
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Chengdu 611930, PR China.
| | - Yanan He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
3
|
Li K, Cheng K, Liu H, Cai G, Wang Y, Zhang Y, Xu D, Liu D. Investigation of the interaction between collagen and furan derivatives during the heating process via multidimensional spectroscopy and GC-MS technology. Food Chem 2025; 468:142484. [PMID: 39700794 DOI: 10.1016/j.foodchem.2024.142484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
The flavor retention plays a critical role in the presence of rich flavor profile of meat products. However, the interaction between collagen and furan derivatives has not been previously reported. In this study, the interaction between collagen and furan derivatives during heating was investigated using multidimensional spectroscopy and gas chromatography-mass spectrometry (GC-MS). The results revealed that the collagen structure was disrupted during the heating process, causing its depolymerization and an increase in the absolute value of zeta potential. The heating treatment induced a structural transformation in the collagen from large and ordered sheets to smaller and irregular aggregates. Meanwhile, the binding ability between collagen and furan derivatives was also significantly increased during the heating process due to the increased exposure of sulfhydryl groups and a rise in surface hydrophobicity. These findings will provide valuable insights into the retention of volatile compounds in the meat products.
Collapse
Affiliation(s)
- Kexin Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Kexin Cheng
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Huan Liu
- School of Food Engineering, Ludong University, Yantai 264025, China
| | - Guanhua Cai
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Yuan Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Yingying Zhang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Dasheng Xu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
| |
Collapse
|
4
|
Shao X, Wang H, Huang M, Song X, Xu N, Cai L, Xu X. Effect of bacterial fermentation on the ability of myofibrillar proteins to bind esters and its potential mechanism: Based on protein metabolism and structural changes. Int J Biol Macromol 2024; 281:136425. [PMID: 39427800 DOI: 10.1016/j.ijbiomac.2024.136425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
The effect of fermentation strains (Lactiplantibacillus plantarum CQ01107 and Staphylococcus simulans CD207) on the binding properties of porcine myofibrillar proteins (MPs) to esters was investigated from two perspectives: metabolism degree and structural alterations. Results demonstrated that S. simulans could reduce the particle size and α-helix content of MPs, while simultaneously increasing the absolute zeta potential and active sulfhydryl content. This process decreased protein aggregation and facilitated the unfolding of MPs, thereby enhancing their binding to esters. Conversely, L. plantarum showed limited promotion, which might be related to its robust acid production and protein hydrolysis capacities. In addition, ethyl octanoate, with a longer carbon chain length, was found to have the highest binding capacity to MPs (28.38 %-41.59 %). Molecular docking results further revealed that the binding of the four esters to MPs was spontaneous, with ethyl octanoate exhibiting the lowest binding energy to MPs (-5.635 kcal/mol). The primary forces involved in the binding of the four selected esters to MPs were hydrophobic interactions, hydrogen bonding, and van der Waals forces. These findings can provide new insights into the mechanisms by which fermentation strains influence flavor formation in fermented foods.
Collapse
Affiliation(s)
- Xuefei Shao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Huhu Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Mingyuan Huang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China; College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, PR China
| | - Xiangyu Song
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Na Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Linlin Cai
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
5
|
Yu Y, Jiang X, Lu X, Cai R, Shan Y, Tang M, Wang Q, Song Y, Gao F. Effect of microwave treatment and water-bath heating treatment on the performance of glutenin from Tiger nut seed meal: Insights into changes in structural characteristics, functional properties, and in vitro gastrointestinal digestibility. Food Chem X 2024; 23:101741. [PMID: 39253015 PMCID: PMC11381614 DOI: 10.1016/j.fochx.2024.101741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/16/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
In this study, the structural characteristics, functional properties, and in vitro gastrointestinal digestibility of glutenin from Tiger nut seed meal (TNSMG) treated by microwave (140-700 W, 20-60 s) and water-bath heating (40-100 °C, 10-30 min) were investigated. Analysis of the surface hydrophobicity, intrinsic fluorescence spectroscopy and Fourier transform infrared spectroscopy indicated that both microwave and water-bath heating treatments caused structure changes of TNSMG. The results showed an increase in the exposure of sulfhydryl groups and the content of β-sheet, coupled with a decrease in the content of α-helix and β-turn. These structural changes contributed to the improved solubility, foamability, emulsification properties, and digestibility of TNSMG under proper thermal treatment conditions. TNSMG exhibited the best solubility (68.48%) and foamability (85.56%) after water-bath heating treatment for 20 min at 80 °C. Furthermore, TNSMG showed the best emulsification property (9.61 m2/g) and digestibility (78.58%) when treated by microwave treatment at 560 W for 40 s.
Collapse
Affiliation(s)
- Yali Yu
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Xinyu Jiang
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Xiaoyu Lu
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Rongcan Cai
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Yuer Shan
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Minglong Tang
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Quan Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Ye Song
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, Jilin, China
| | - Feng Gao
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| |
Collapse
|
6
|
Liu J, Deng S, Wang J, Huang F, Han D, Xu Y, Yang P, Zhang C, Blecker C. Comparison and elucidation of the changes in the key odorants of precooked stewed beef during cooking-refrigeration-reheating. Food Chem X 2024; 23:101654. [PMID: 39170068 PMCID: PMC11338155 DOI: 10.1016/j.fochx.2024.101654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/03/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
The key odorants contributing to the warmed-over flavor (WOF) of reheated precooked stewed beef were characterized using a sensomics approach. Overall, 36 odorants were identified, and based on flavor dilution factors, odor activity values, aroma recombination, and omission test, 11 compounds mainly derived from lipid oxidation were characterized as the key odorants contributing to the formation of WOF. In particular, 3-(methylthio)propanal, which was positively correlated with meaty aroma, was implicated in an overall increase in WOF. Thus, these odorants were elected as potential markers of WOF in the reheated precooked stewed beef. In summary, the WOF of the precooked stewed beef could be attributed to an overall increase in lipid oxidation products and a decrease in the odorants with desirable aromas. The characterization of WOF in precooked stewed beef will aid in the flavor quality control of precooked stewed beef dishes.
Collapse
Affiliation(s)
- Junmei Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Unit of Food Science and Formulation, University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés, 2B, 5030 Gembloux, Belgium
| | - Siyang Deng
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Unit of Food Science and Formulation, University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés, 2B, 5030 Gembloux, Belgium
| | - Jingfan Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Unit of Food Science and Formulation, University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés, 2B, 5030 Gembloux, Belgium
| | - Feng Huang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dong Han
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ying Xu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ping Yang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Yihai Kitchen (Tianjing) Investment Co., Ltd., Tianjin 300461, China
- Jiangsu Huaguoshan Food Co., Ltd., Jiangsu 222000, China
| | - Christophe Blecker
- Unit of Food Science and Formulation, University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés, 2B, 5030 Gembloux, Belgium
| |
Collapse
|
7
|
Ajayi FF, Mudgil P, Maqsood S. Unveiling differential impact of heat and microwave extraction treatments on the structure, functionality, and digestibility of jack bean proteins extracted under varying extraction pH. Food Res Int 2024; 191:114686. [PMID: 39059943 DOI: 10.1016/j.foodres.2024.114686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
The poor extractability and digestibility of jack beans restrict their application in food systems. Thermal treatment could be a processing tool to disrupt the compact conformation of the plant matrix and inactivate inherent antinutrients. Therefore, this research investigated the impact of conventional heat-aided (HA-) and microwave-aided (MA-) extraction treatments on the structure, functional properties, and digestibility of jack bean protein concentrate (JBPC) under varying extraction pH. The novelty brought by the present study is establishing the thermal treatment/extraction pH combinations for improving techno-functionalities and digestibility of JBPC. Heat (50 °C for 1 h) and sequential microwave power (400 W, 600 W, and 800 W for 5 min) at three extraction pH (9.0, 10.0, and 11.0) were studied. Upon increasing extraction pH, a significant decrease in the protein content, and β-Sheet structure was observed, in the order of pH 11.0 > 10.0 > 9.0. JBPC extracted using HA treatments displayed the highest contents of surface hydrophobicity (90.02) and sulfhydryl groups. In functional properties, MA-extracted JBPC under 400 W showed significantly improved solubility (93.45 %), emulsifying activity index (45.23 m2/g), and foaming capacity (141.70 %) when compared to other thermal treatments. The degree of hydrolysis result revealed that MA treatment improved the JBPC in vitro digestibility at a low power level of 400 W. These findings suggest that MA extraction treatment can improve the functional and nutritional properties of JBPC regardless of the extraction pH, and thus, expand the potential application in food systems.
Collapse
Affiliation(s)
- Feyisola Fisayo Ajayi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; International Research Center for Food, Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
8
|
Fang Y, He A, Chen W, Jia X, Zhao M, Lai M, Zhang H. Zero-waste multistage utilization of dandelion root. Front Chem 2024; 12:1457813. [PMID: 39246724 PMCID: PMC11377288 DOI: 10.3389/fchem.2024.1457813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction In the fragrance and perfume industry, the controlled release of fragrances are crucial factors that contribute to consumer appeal and product quality enhancement. In this study, various aromatic active substances were extracted from dandelion root (DR), which was subsequently calcined to produce high-performance porous biochar material. Methods The dandelion root biochar (DRB) material was identified as promising adsorbents for the controlled release of fragrances. Furfuryl alcohol was chosen as the model fragrance for inclusion and controlled release studies. Results and discussion The DRB exhibited a substantial specific surface area of 991.89 m2/g, facilitating efficient storage and controlled release capabilities. Additionally, the DRB's high stability and porous nature facilitated rapid collection and efficient recyclability. This research significantly contributes to the development of a sustainable, zero-waste multistage utilization strategy for dandelion roots, indicating a potential applications in the food flavoring industry and environmental conservations.
Collapse
Affiliation(s)
- Yongwei Fang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Aimin He
- China Tobacco Hebei Industrial Co., Ltd., Shijiazhuang, Hebei, China
| | - Weihua Chen
- China Tobacco Hebei Industrial Co., Ltd., Shijiazhuang, Hebei, China
| | - Xiaohui Jia
- China Tobacco Hebei Industrial Co., Ltd., Shijiazhuang, Hebei, China
| | - Mingqin Zhao
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Miao Lai
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hong Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Zhao D, Fang Y, Wei Z, Duan W, Chen Y, Zhou X, Xiao C, Chen W. Proteomics reveals the mechanism of protein degradation and its relationship to sensorial and texture characteristics in dry-cured squid during processing. Food Chem X 2024; 22:101409. [PMID: 38711776 PMCID: PMC11070823 DOI: 10.1016/j.fochx.2024.101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/27/2024] [Accepted: 04/21/2024] [Indexed: 05/08/2024] Open
Abstract
Proteolysis in dry-cured squid contributes to the development of sensory and textural attributes. In this study, label-free quantitative proteomics was conducted to study the mechanism of proteolysis and its correlation with quality changes. The results showed that the protein profile of dry-cured squid changed markedly during processing, which was confirmed by the quantification of myofibrillar protein, amino nitrogen and total free acids, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. Thirty-two key differentially abundant proteins were found to be correlated with sensory and texture characteristics, including myofibrillar protein, tubulin beta chain, collagens, heat shock proteins and cytochrome c. The correlation analysis indicated that myosin regulatory light chain and tubulin beta chain played the most important role in the development of texture and sensory attributes in squid samples during the dry-curing process. The results offered novel insights into proteolysis in dry-cured squid and its relationship to quality changes.
Collapse
Affiliation(s)
- Dandan Zhao
- Ecology and Health Institute, Hangzhou Vocational & Technical Collge, Hangzhou, China
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yizhou Fang
- College of Life Sciences, China Jiliang University, Hangzhou 322002, China
| | - Zhengxun Wei
- Ecology and Health Institute, Hangzhou Vocational & Technical Collge, Hangzhou, China
| | - Wenkai Duan
- Ecology and Health Institute, Hangzhou Vocational & Technical Collge, Hangzhou, China
| | - Yu Chen
- Ecology and Health Institute, Hangzhou Vocational & Technical Collge, Hangzhou, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China
| | - Chaogeng Xiao
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenxuan Chen
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
10
|
Yu Y, Fan C, Qi J, Zhao X, Yang H, Ye G, Zhang M, Liu D. Effect of ultrasound treatment on porcine myofibrillar protein binding furan flavor compounds at different salt concentrations. Food Chem 2024; 443:138427. [PMID: 38277938 DOI: 10.1016/j.foodchem.2024.138427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/05/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
The effects of ultrasound (500 W) on the interaction of porcine myofibrillar protein (MP) with furan flavor compounds at different salt concentrations (0.6 %, 1.2 % and 2.4 %) were investigated. With the increase of salt concentration, the particle size of MP decreased, and the surface hydrophobicity and active sulfhydryl content increased due to the unfolding and depolymerization of MP. At the same time, ultrasound promoted the exposure of hydrophobic binding sites and hydrogen bonding sites of MP in different salt concentration systems, thus improving the binding ability of MP with furan compounds by 2 % to 22 %, among which MP had the strongest binding capacity of 2-pentylfuran. In conclusion, ultrasound could effectively promote the unfolding of the secondary structure of MP, which was beneficial to the combination of MP and furan flavor compounds under different salt concentrations.
Collapse
Affiliation(s)
- Ying Yu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Chaoxia Fan
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Jun Qi
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaocao Zhao
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Hui Yang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Guoqing Ye
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Mingcheng Zhang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
| |
Collapse
|
11
|
Meng X, Tu ZC, Wen PW, Hu YM, Wang H. Investigating the Mechanism of Microwave-Assisted Enzymolysis Synergized with Magnetic Bead Adsorption for Reducing Ovalbumin Allergenicity through Biomass Spectrometry Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38833376 DOI: 10.1021/acs.jafc.4c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This study found that, after microwave treatment at 560 W for 30 s, alkaline protease enzymolysis significantly reduced the allergenicity of ovalbumin (OVA). Furthermore, specific adsorption of allergenic anti-enzyme hydrolyzed peptides in the enzymatic products by immunoglobulin G (IgG) bound to magnetic bead further decreased the allergenicity of OVA. The results indicated that microwave treatment disrupts the structure of OVA, increasing the accessibility of OVA to the alkaline protease. A comparison between 17 IgG-binding epitopes identified through high-performance liquid chromatography-higher energy collisional dissociation-tandem mass spectrometry and previously reported immunoglobulin E (IgE)-binding epitopes revealed a complete overlap in binding epitopes at amino acids (AA)125-135, AA151-158, AA357-366, and AA373-381. Additionally, partial overlap was observed at positions AA41-59, AA243-252, and AA320-340. Consequently, these binding epitopes were likely pivotal in eliciting the allergic reaction to OVA, warranting specific attention in future studies. In conclusion, microwave-assisted enzymolysis synergized with magnetic bead adsorption provides an effective method to reduce the allergenicity of OVA.
Collapse
Affiliation(s)
- Xin Meng
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Zong-Cai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
- Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Ping-Wei Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Yue-Ming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| |
Collapse
|
12
|
Yu M, Xie Q, Song H, Wang L, Sun H, Jiang S, Zhang Y, Zheng C. Characterization of the odor compounds in human milk by DHS/GC × GC-O-MS: A feasible and efficient method. Food Res Int 2023; 174:113597. [PMID: 37986460 DOI: 10.1016/j.foodres.2023.113597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Odor analysis of human milk (HM) is often challenging. Here, a new strategy for the analysis of odorants in HM using dynamic headspace sampling combined with comprehensive two-dimensional gas chromatography-olfactometry-mass spectrometry (DHS/GC × GC-O-MS) was established based on the comparison of different extraction methods and instrument modes. Overall, DHS/GC × GC-O-MS was proved to be able to provide higher extraction efficiency and better analytical results of the odor-active compounds (OACs) in HM, meanwhile, the salt addition during the extraction further promoted the release of the odorants. Twenty key OACs in HM were identified by flavor dilution analysis and odor activity calculation, of which 1-octen-3-one, 2,3-butanedione, (E)-2-nonenal, and nonanal contributed significantly to the odor of HM. In addition, 2,3-pentanedione was detected as a key OAC in HM for the first time. This study provided a powerful analytical strategy for the comprehensive odor analysis of HM.
Collapse
Affiliation(s)
- Mingguang Yu
- Laboratory of Molecular Sensory Science, College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qinggang Xie
- Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China; PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China.
| | - Huanlu Song
- Laboratory of Molecular Sensory Science, College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Lijin Wang
- Laboratory of Molecular Sensory Science, College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Han Sun
- Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China; PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China.
| | - Shilong Jiang
- Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China.
| | - Yongjiu Zhang
- Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China.
| | - Chengdong Zheng
- Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China; PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China.
| |
Collapse
|
13
|
Liu H, Li J, Wang F, Sun X, Liu D, Wang Z, Gong H. Comprehensive binding analysis of glycated myosin with furan derivatives via glucose by means of multi-spectroscopy techniques and molecular docking simulation. Food Res Int 2023; 173:113275. [PMID: 37803587 DOI: 10.1016/j.foodres.2023.113275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
Myosin is an ideal binding receptor for aroma compounds and its functional properties are easily affected by glucose. The study comprehensively clarified the effects of glucose glycation-induced structural modifications of myosin on its binding ability with furan derivatives, including 2-methylfuran, 2-furfural, and 2-furfurylthiol. The results demonstrated that the binding levels of furan derivatives were obviously affected by the glycation levels of myosin due to the changes of myosin structure and surface. The increased glycation levels caused the unfolding of myosin structure and accelerated the aggregation, as were exhibited by the data of zeta potential, particle size, microstructure, and secondary structure. The glycated myosin with wrinkled surfaces favored the significant increase of hydrophobic interactions (31.59-69.50 μg), the more exposure of amino acid residues (3459-6048), the formation of free sulfhydryl groups (16.37-20.58 mmol/104g) and hydrogen bonds. These key (non)covalent linkages accounted for the generation of glycated myosin-odorants complex, including 2-furfurylthiol (29.17-47.87 %), thus enhancing the resultant binding ability as evidenced by the free furan derivatives concentrations, fluorescence quenching and molecular docking simulation analysis. The glycated myosin for 8 h bound highest concentrations of furan derivatives. The results will provide comprehensive data on the retention of aroma compounds in meat products.
Collapse
Affiliation(s)
- Huan Liu
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Bionanotechnology Institute, Ludong University, Yantai 264025, China.
| | - Junke Li
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Bionanotechnology Institute, Ludong University, Yantai 264025, China
| | - Fang Wang
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Bionanotechnology Institute, Ludong University, Yantai 264025, China
| | - Xuemei Sun
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Bionanotechnology Institute, Ludong University, Yantai 264025, China
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | | | - Hansheng Gong
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Bionanotechnology Institute, Ludong University, Yantai 264025, China.
| |
Collapse
|
14
|
Sengar AS, Beyrer M, McDonagh C, Tiwari U, Pathania S. Effect of Process Variables and Ingredients on Controlled Protein Network Creation in High-Moisture Plant-Based Meat Alternatives. Foods 2023; 12:3830. [PMID: 37893723 PMCID: PMC10606469 DOI: 10.3390/foods12203830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The market has observed a rapid increase in the demand for plant-based foods as an alternative to animal meat products. Technologies such as high-moisture extrusion (HME) have the potential to develop anisotropic structures using alternative protein ingredients. This article discusses the different possible mechanisms responsible for structure formation and the effect of extrusion process parameters and outlines the recent advances in the long cooling dies (LCDs) used for meat alternative development. The role of different protein ingredients and the impact of combining them with other biopolymers were also evaluated. The underlying mechanism behind anisotropic structure formation during HME is a synergistic effect, with substantial dependence on the source of ingredients and their processing background. Formulation including proteins derived from plants, insects, animals, and microalgae with other biopolymers could pave the way to develop structured meat alternatives and fill nutritional interstices. Dynamic or rotating annular gap cooling dies operating at freely controllable shear and static annular gap dies are recent developments and assist to produce layered or fibrous structures. The complex chemical sites created during the HME of plant protein favour flavour and colour retention. This paper summarises the recent information published in the scientific literature and patents, which could further help researchers to fill the present knowledge gaps.
Collapse
Affiliation(s)
- Animesh Singh Sengar
- Food Industry Development Department, Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland; (A.S.S.); (C.M.)
- School of Food Science and Environmental Health, Technological University Dublin, City Campus, Central Quad, Grangegorman, D07 ADY7 Dublin, Ireland
| | - Michael Beyrer
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland, 1950 Sion, Switzerland;
| | - Ciara McDonagh
- Food Industry Development Department, Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland; (A.S.S.); (C.M.)
| | - Uma Tiwari
- School of Food Science and Environmental Health, Technological University Dublin, City Campus, Central Quad, Grangegorman, D07 ADY7 Dublin, Ireland
| | - Shivani Pathania
- Food Industry Development Department, Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland; (A.S.S.); (C.M.)
| |
Collapse
|
15
|
Liu WL, Wang H, Hu YM, Wang XM, Chen HQ, Tu ZC. Mechanism of the Allergenicity Reduction of Ovalbumin by Microwave Pretreatment-Assisted Enzymolysis through Biological Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15363-15374. [PMID: 37797215 DOI: 10.1021/acs.jafc.3c04613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Ovalbumin (OVA) is a major allergen in hen eggs. Enzymolysis has been demonstrated as an efficient method for reducing OVA allergenicity. This study demonstrates that microwave pretreatment (MP) at 400 W for 20 s assisting bromelain enzymolysis further decreases the allergenicity of OVA, which was attributed to the increase in the degree of hydrolysis and promoted the destruction of IgE-binding epitopes. The results showed that MP could promote OVA unfolding, expose hydrophobic domains, and disrupt tightly packed α-helical structures and disulfide bonds, which increased the degree of hydrolysis by 7.28% and the contents of peptides below 1 kDa from 43.55 to 85.06% in hydrolysates compared with that for untreated OVA. Biological mass spectrometry demonstrated that the number of intact IgE-binding epitope peptides in MP-assisted OVA hydrolysates decreased by 533 compared to that in hydrolysis without MP; consequently, their IgG/IgE binding rates decreased more significantly. Therefore, MP-assisted enzymolysis may provide an alternative method for decreasing the OVA allergenicity.
Collapse
Affiliation(s)
- Wen Li Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yue Ming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Xu Mei Wang
- National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- College of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Hai Qi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Zong Cai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
- National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
16
|
Zhang Z, Yang T, Wang Y, Liu J, Shi W, Hu H, Meng Y, Meng X, He R. Influence of Multi-Frequency Ultrasound Treatment on Conformational Characteristics of Beef Myofibrillar Proteins with Different Degrees of Doneness. Foods 2023; 12:2926. [PMID: 37569195 PMCID: PMC10417746 DOI: 10.3390/foods12152926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
This study evaluated the effect of multi-frequency sonication (20 kHz, 25 kHz, 28 kHz, 40 kHz, 50 kHz) on structural characteristics of beef myofibrillar proteins (MPs) with different degrees of doneness (Rare 52~55 °C, Medium Rare 55~60 °C, Medium 60~65 °C, Medium Well 65~69 °C, Well Down 70~80 °C, and Overcooked 90 °C). The results showed that surface hydrophobicity and sulfhydryl content increased with the increase in degree of doneness. At the same degree of doneness, the sulfhydryl group contents reached the maximum at a frequency of 28 kHz. In addition, the absolute value of ζ-potential was significantly decreased after ultrasonic treatment (p < 0.05). SDS gel electrophoresis showed that the bands of beef MPs were not significantly affected by various ultrasonic frequencies, but the bands became thinner when the degree of doneness reached overcooked. Fourier transform infrared spectrum showed that with the increase of ultrasonic frequency, α-helix content decreased, and random coil content significantly increased (p < 0.05). The results of atomic force microscopy indicated that the surface structure of beef MPs was damaged, and the roughness decreased by sonication, while the roughness significantly increased when the degree of doneness changed from medium to overripe (p < 0.05). In conclusion, multi-ultrasound combined with degree of doneness treatment alters the structural characteristics of beef MPs.
Collapse
Affiliation(s)
- Zhaoli Zhang
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, College of Tourism and Culinary Science, Ministry of Culture and Tourism, Yangzhou University, Yangzhou 225127, China; (Z.Z.); (T.Y.); (J.L.); (W.S.); (H.H.); (Y.M.)
| | - Tingxuan Yang
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, College of Tourism and Culinary Science, Ministry of Culture and Tourism, Yangzhou University, Yangzhou 225127, China; (Z.Z.); (T.Y.); (J.L.); (W.S.); (H.H.); (Y.M.)
| | - Yang Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Jiarui Liu
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, College of Tourism and Culinary Science, Ministry of Culture and Tourism, Yangzhou University, Yangzhou 225127, China; (Z.Z.); (T.Y.); (J.L.); (W.S.); (H.H.); (Y.M.)
| | - Wangbin Shi
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, College of Tourism and Culinary Science, Ministry of Culture and Tourism, Yangzhou University, Yangzhou 225127, China; (Z.Z.); (T.Y.); (J.L.); (W.S.); (H.H.); (Y.M.)
| | - Haochen Hu
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, College of Tourism and Culinary Science, Ministry of Culture and Tourism, Yangzhou University, Yangzhou 225127, China; (Z.Z.); (T.Y.); (J.L.); (W.S.); (H.H.); (Y.M.)
| | - Yang Meng
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, College of Tourism and Culinary Science, Ministry of Culture and Tourism, Yangzhou University, Yangzhou 225127, China; (Z.Z.); (T.Y.); (J.L.); (W.S.); (H.H.); (Y.M.)
| | - Xiangren Meng
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, College of Tourism and Culinary Science, Ministry of Culture and Tourism, Yangzhou University, Yangzhou 225127, China; (Z.Z.); (T.Y.); (J.L.); (W.S.); (H.H.); (Y.M.)
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
17
|
Liu H, Ainiwan D, Liu Y, Dong X, Fan H, Sun T, Huang P, Zhang S, Wang D, Liu T, Zhang Y. Adsorption and controlled release performances of flavor compounds by rice bran insoluble dietary fiber improved through steam explosion method. Curr Res Food Sci 2023; 7:100550. [PMID: 37534307 PMCID: PMC10391727 DOI: 10.1016/j.crfs.2023.100550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 08/04/2023] Open
Abstract
In this study, steam explosion was employed as a modification process for rice bran insoluble dietary fiber (RBIDF) to improve the flavor adsorption and controlled release capacities of RBIDF. Results showed that the flavor adsorption ability of RBIDF was effectively improved due to the unfolding structure, increased specific surface area and pore volume and exposure of more functional groups after steam explosion treatment. The mechanism of the flavor adsorption behavior of modified RBIDF was preliminarily explored using adsorption kinetics and isotherms combined with SEM and DSC analysis. Results showed that the Langmuir isotherm model and pseudo-second-order kinetic model yielded the best fit to the adsorption data, indicating monolayer adsorption of flavor onto the modified RBIDF, and the adsorption was mainly driven by chemisorption process. The flavor release profile of modified RBIDF was investigated by HS-SPME/GC-MS and E-nose. After long-time storage, the flavor compounds were retained at a higher concentration in the modified RBIDF compared with the untreated RBIDF, indicating that the steam explosion treatment prolonged the retention time and enhanced the retention and controlled release capacities of RBIDF for flavor compounds. This study provides indications for potential applications of steam explosion-modified RBIDF as a novel flavor delivery system and functional ingredient.
Collapse
Affiliation(s)
- Hongcheng Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun, 130118, China
| | - Dilinuer Ainiwan
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Engineering Research Center of Grain Deep-processing and High-Efficiency Utilization of Jilin Province, Changchun, 130118, China
| | - Yingxu Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun, 130118, China
| | - Xiaolan Dong
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Engineering Research Center of Grain Deep-processing and High-Efficiency Utilization of Jilin Province, Changchun, 130118, China
| | - Hongxiu Fan
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun, 130118, China
| | - Tong Sun
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Key Laboratory of Technological Innovations for Grain Deep-processing and High-Efficiency Utilization of By-Products of Jilin Province, Changchun, 130118, China
| | - Pingyun Huang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Key Laboratory of Technological Innovations for Grain Deep-processing and High-Efficiency Utilization of By-Products of Jilin Province, Changchun, 130118, China
| | - Shanshan Zhang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Key Laboratory of Technological Innovations for Grain Deep-processing and High-Efficiency Utilization of By-Products of Jilin Province, Changchun, 130118, China
| | - Dawei Wang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Engineering Research Center of Grain Deep-processing and High-Efficiency Utilization of Jilin Province, Changchun, 130118, China
| | - Tingting Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Engineering Research Center of Grain Deep-processing and High-Efficiency Utilization of Jilin Province, Changchun, 130118, China
| | - Yanrong Zhang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun, 130118, China
| |
Collapse
|
18
|
Chen JN, Zhao HL, Zhang YY, Zhou DY, Qin L, Huang XH. Comprehensive Multi-Spectroscopy and Molecular Docking Understanding of Interactions between Fermentation-Stinky Compounds and Mandarin Fish Myofibrillar Proteins. Foods 2023; 12:foods12102054. [PMID: 37238872 DOI: 10.3390/foods12102054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The release of flavor compounds is a critical factor that influences the quality of fermented foods. A recent study investigated the interactions between four fermentation-stinky compounds (indole, isovaleric acid, dimethyl disulfide, and dibutyl phthalate) and myofibrillar proteins (MPs). The results indicated that all four fermentation-stinky compounds had different degrees of binding to MPs, with dibutyl phthalate and dimethyl disulfide exhibiting stronger interactions. Reduced hydrophobicity enhanced these interactions. Multi-spectroscopy showed that static fluorescence quenching was dominant in the MPs-fermentation-stinky compound complexes. The interaction altered the secondary structure of MPs, predominantly transitioning from β-sheets to α-helix or random coil structures via hydrogen bond interactions. Molecular docking confirmed that these complexes maintained steady states due to stronger hydrogen bonds, van der Waals forces, ionic bonds, conjugate systems, and lower hydrophobicity interactions. Hence, it is a novel sight that the addition of hydrophobic bond-disrupting agents could improve the flavor of fermented foods.
Collapse
Affiliation(s)
- Jia-Nan Chen
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hui-Lin Zhao
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yu-Ying Zhang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Da-Yong Zhou
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lei Qin
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xu-Hui Huang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
19
|
Han C, Zheng Y, Wang L, Zhou C, Wang J, He J, Sun Y, Cao J, Pan D, Xia Q. Contribution of process-induced molten-globule state formation in duck liver protein to the enhanced binding ability of (E,E)-2,4-heptadienal. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3334-3345. [PMID: 36786016 DOI: 10.1002/jsfa.12499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Extracted proteins of alternative animal origin tend to present strong off-flavor perception due to physicochemical interactions of coextracted off-flavor compounds with proteins. To investigate the relationship between absorption behaviors of volatile aromas and the processes-induced variations in protein microstructures and molecular conformations, duck liver protein isolate (DLp) was subjected to heating (65/100 °C, 15 min) and ultra-high pressure (UHP, 100-500 MPa/10 min, 28 °C) treatments to obtain differential unfolded protein states. RESULTS Heat and UHP treatments induced the unfolding of DLp to varied degrees, as revealed by fluorescence spectroscopy, ultraviolet-visible absorption, circular dichroism spectra and surface hydrophobicity measurements. Two types of heating-denatured states with varied unfolding degrees were obtained, while UHP at both levels of 100/500 MPa caused partial unfolding of DLp and the presence of a molten-globule state, which significantly enhanced the binding affinity between DLp and (E,E)-2,4-heptadienal. In particular, significantly modified secondary structures of DLp were observed in heating-denatured samples. Excessive denaturing and unfolding degrees resulted in no significant changes in the absorption behavior of the volatile ligand, as characterized by observations of fluorescence quenching and analysis of headspace concentrations. CONCLUSION Defining process-induced conformational transition behavior of matrix proteins could be a promising strategy to regulate food flavor attributes and, particularly, to produce DLp coextracted with limited off-flavor components by modifying their interaction during extraction processes. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chuanhu Han
- College of Food and Pharmaceutical Science, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy and Food Co. Ltd, Shanghai, China
| | - Libin Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Changyu Zhou
- College of Food and Pharmaceutical Science, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Jianhui Wang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, China
| | - Jun He
- College of Food and Pharmaceutical Science, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Yangying Sun
- College of Food and Pharmaceutical Science, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Jinxuan Cao
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Daodong Pan
- College of Food and Pharmaceutical Science, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Qiang Xia
- College of Food and Pharmaceutical Science, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| |
Collapse
|
20
|
Kang X, Guo W, Ding K, Zhan S, Lou Q, Huang T. Microwave processing technology influences the functional and structural properties of fish gelatin. J Texture Stud 2023; 54:127-135. [PMID: 36176227 DOI: 10.1111/jtxs.12727] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022]
Abstract
The objective of this study was to evaluate the effects of microwave processing technology (MPT, 240-800 W, 1 and 4 min) on the functional and structural properties of fish gelatin (FG). It showed that MPT could increase gel strength and texture properties of FG, especially for 240 W. MPT greatly increased emulsifying activity index (EAI) of FG, but decreased its emulsion stability index (ESI). Rheology results showed that MPT increased viscosity of FG, but decreased gelation times. Intrinsic fluorescence and Fourier transform infrared (FTIR) spectroscopy results indicated that MPT could unfold gelatin, contributing to the formation of H-bonds. Scanning electron microscopy (SEM) analysis revealed that low power and short time of MPT-treated gelatin gels had much more dense and less voids. This work provided guidance for the applications of MPT to improve the functional properties of FG, and the results show that MPT-treated FG can replace mammalian gelatin and meet the religious requirement.
Collapse
Affiliation(s)
- Xinzi Kang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Wenwen Guo
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Keying Ding
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Shengnan Zhan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Qiaoming Lou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China.,Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
21
|
Physicochemical, structural, functional and flavor adsorption properties of white shrimp (Penaeus vannamei) proteins as affected by processing methods. Food Res Int 2023; 163:112296. [PMID: 36596199 DOI: 10.1016/j.foodres.2022.112296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Proteins contribute to the flavor release and texture of foods besides their nutritional attributes. However, processing affects the protein structural conformation and, thus, their functional properties. White shrimp proteins (WSP) are well known for their nutritional and functional properties and limited attention has been paid to the flavor adsorption properties of WSP. This study investigated the effects of processing methods such as microwave drying, hot air drying, roasting, and boiling on the structural (secondary and tertiary) changes and physicochemical, functional, and flavor adsorption properties of white shrimp proteins (WSP). Structural changes of WSPs were evaluated by Fourier Transform Infrared (FTIR) spectroscopy, fluorescence spectroscopy, and sulfhydryl bond content. Results revealed that the processing triggered structural changes that affected the functional properties of WSP. The highest surface hydrophobicity (H0) of WSP in boiling (58.27 ± 1.68) and microwave drying (39.83 ± 0.83) caused increased emulsifying properties and decreased water solubility. The increased content of α-helix and random coils leads to cross-linking and protein aggregation in hot air drying (21.62 ± 0.37 %) and roasting (24.30 ± 0.24 %), which leads to low H0 and high foaming properties. Processing has increased the flavor adsorption ability of WSP. Among all the processing methods, boiling has shown the highest flavor adsorption potential, followed by microwave drying. The findings broaden the scope of techno-functional properties of WSP in the food industry by thermal treatment modification.
Collapse
|
22
|
Zhang B, Peng J, Pan L, Tu K. A novel insight into the binding behavior between soy protein and homologous ketones: Perspective from steric effect. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Gong H, Liu J, Wang L, You L, Yang K, Ma J, Sun W. Strategies to optimize the structural and functional properties of myofibrillar proteins: Physical and biochemical perspectives. Crit Rev Food Sci Nutr 2022; 64:4202-4218. [PMID: 36305316 DOI: 10.1080/10408398.2022.2139660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Myofibrillar protein (MP), as the main meat protein, have high nutritional value. However, the relatively poor solubility of MP at low ionic strength sometimes limits the utilization of MP to produce products rich in meat protein. Accordingly, appropriate modification of MP is needed to improve their functional properties. In general, MP modification strategies are categorized into biochemical and physical approaches. Different from other available reviews, the review focuses on summarizing the principles and applications of several techniques of physical modification, briefly depicting biochemical modification as a comparison. Modification of MP with a certain intensity of direct current magnetic field, ultrasound, high pressure, microwave, or radio frequency can improve solubility, emulsification, stability, and gel formation. Of these, magnetic field and microwave-modified MP have shown some potential in reducing salt in meat. These physical techniques can also have synergistic effects with other conditions (temperature, pH, physical or chemical techniques) to compensate for the deficiencies of individual treatment techniques. However, these strategies still need further research for practical applications.HIGHLIGHTSThe current status and findings of research on direct current magnetic field in meat processing are presented.Several physical strategies to modify the microstructure and functional properties of MPs.The synergistic effects of these techniques in combination with other methods to modify MPs are discussed.
Collapse
Affiliation(s)
- Honghong Gong
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Jiao Liu
- College of Life Science, South-Central MinZu University, Wuhan, P. R. China
| | - Limei Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Li You
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Kun Yang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| |
Collapse
|
24
|
Wang YR, Wang SL, Luo RM. Evaluation of key aroma compounds and protein secondary structure in the roasted Tan mutton during the traditional charcoal process. Front Nutr 2022; 9:1003126. [PMID: 36330139 PMCID: PMC9622931 DOI: 10.3389/fnut.2022.1003126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/20/2022] [Indexed: 09/11/2023] Open
Abstract
The traditional charcoal technique was used to determine the changes in the key aroma compounds of Tan mutton during the roasting process. The results showed that the samples at the different roasting time were distinguished using GC-MS in combination with PLS-DA. A total of 26 volatile compounds were identified, among which 14 compounds, including (E)-2-octenal, 1-heptanol, hexanal, 1-hexanol, heptanal, 1-octen-3-ol, 1-pentanol, (E)-2-nonenal, octanal, 2-undecenal, nonanal, pentanal, 2-pentylfuran and 2-methypyrazine, were confirmed as key aroma compounds through the odor activity values (OAV) and aroma recombination experiments. The OAV and contribution rate of the 14 key aroma compounds were maintained at high levels, and nonanal had the highest OAV (322.34) and contribution rate (27.74%) in the samples after roasting for 10 min. The content of α-helix significantly decreased (P < 0.05), while the β-sheet content significantly increased (P < 0.05) during the roasting process. The content of random coils significantly increased in the samples roasted for 0-8 min (P < 0.05), and then no obvious change was observed. At the same time, β-turn content had no obvious change. Correlation analysis showed that the 14 key aroma compounds were all positively correlated with the content of α-helix and negatively correlated with the contents of β-sheet and random coil, and also positively correlated with the content of β-turn, except hexanal and 2-methypyrazine. The results are helpful to promoting the industrialization of roasted Tan mutton.
Collapse
Affiliation(s)
- Yong-Rui Wang
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Song-Lei Wang
- College of Food and Wine, Ningxia University, Yinchuan, China
| | - Rui-Ming Luo
- College of Food and Wine, Ningxia University, Yinchuan, China
| |
Collapse
|
25
|
Deng X, Huang H, Huang S, Yang M, Wu J, Ci Z, He Y, Wu Z, Han L, Zhang D. Insight into the incredible effects of microwave heating: Driving changes in the structure, properties and functions of macromolecular nutrients in novel food. Front Nutr 2022; 9:941527. [PMID: 36313079 PMCID: PMC9607893 DOI: 10.3389/fnut.2022.941527] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Microwave heating technology performs the characteristics of fast heating, high efficiency, green energy saving and easy control, which makes it deeply penetrate into the food industry and home cooking. It has the potential to alter the appearance and flavor of food, enhance nutrient absorption, and speed up the transformation of active components, which provides an opportunity for the development of innovation foods. However, the change of food driven by microwave heating are very complex, which often occurs beyond people's cognition and blocks the development of new food. It is thus necessary to explore the transformation mechanism and influence factors from the perspectives of microwave technology and food nutrient diversity. This manuscript focuses on the nutritional macromolecules in food, such as starch, lipid and protein, and systematically analyzes the change rule of structure, properties and function under microwave heating. Then, the flavor, health benefits, potential safety risks and bidirectional allergenicity associated with microwave heating are fully discussed. In addition, the development of new functional foods for health needs and future market based on microwave technology is also prospected. It aims to break the scientific fog of microwave technology and provide theoretical support for food science to understand the change law, control the change process and use the change results.
Collapse
Affiliation(s)
- Xuan Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haozhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengjie Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China,State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jing Wu
- Xinqi Microwave Co., Ltd., Guiyang, China
| | - Zhimin Ci
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanan He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China,State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China,Zhenfeng Wu
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Li Han
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Dingkun Zhang
| |
Collapse
|
26
|
Huang P, Wang Z, Feng X, Kan J. Promotion of fishy odor release by phenolic compounds through interactions with myofibrillar protein. Food Chem 2022; 387:132852. [DOI: 10.1016/j.foodchem.2022.132852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/13/2022] [Accepted: 03/27/2022] [Indexed: 12/16/2022]
|
27
|
Zhang B, Zhang J, Yu X, Peng J, Pan L, Tu K. Evaluation of the adsorption capacity and mechanism of soy protein isolate for volatile flavor compounds: Role of different oxygen-containing functional groups. Food Chem 2022; 386:132745. [PMID: 35334317 DOI: 10.1016/j.foodchem.2022.132745] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022]
Abstract
Mechanism of soy protein isolate (SPI) adsorbing isomers of volatile flavor compounds (VFCs: 2-octanone, 1-octen-3-ol and octanal) were investigated by exploring the interaction between different oxygen-containing functional groups (OCF groups: carbonyl, alcohol hydroxyl and aldehyde group) and SPI in this study. VFCs made SPI aggregate into larger particle size, and an increase in β-sheet and β-turn was observed. Octanal has strongest binding capacity to SPI, followed by 1-octen-3-ol and 2-octanone. Fluorescence analysis revealed that static quenching occurred between the VFCs and SPI, which suggested that SPI-VFCs complex were formed. Double logarithmic Stern-Volmer indicated the strongest interaction between aldehyde group and SPI, which was proved by surface plasmon resonance. Finally, molecular docking results showed more hydrogen bonds between octanal and SPI. The results showed that aldehyde groups were more likely to interact with SPI than others, probably due to their tendency to form more hydrogen bonds.
Collapse
Affiliation(s)
- Bin Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingwen Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaobo Yu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center of Meat Quality and Safety Control, Nanjing 210095, China
| | - Jing Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Tu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
28
|
Influence of Proteolysis on the Binding Capacity of Flavor Compounds to Myofibrillar Proteins. Foods 2022; 11:foods11060891. [PMID: 35327313 PMCID: PMC8955031 DOI: 10.3390/foods11060891] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/10/2022] Open
Abstract
Proteolysis occurs extensively during postmortem aging, enzymatic tenderization and fermentation of meat products, whereas less is understood regarding how proteolysis affects meat flavor. Myofibrillar proteins (MP) were extracted from beef longissimus dorsi muscle and subsequently treated with three commercial proteases. The effect of proteolysis on the interactions between the treated MP and butyraldehyde, 2-pentanone, octanal and 2-octanone was investigated. The progress of proteolysis increased the degree of hydrolysis (DH) and the surface hydrophobicity but decreased the turbidity and particle size. Fluorescence-quenching analysis results indicated that the enzymatic treatment generally increased the quenching constant (Ksv) between the treated MP and ketones but decreased the Ksv between the treated MP and aldehydes, and the papain treatment changed the Ksv value to a larger degree than treatment with proteinase K and bromelain. The adsorption assay showed that the proteinase K treatment largely increased the adsorption capacity of the MP to octanal (by 15.8−19.3%), whereas the bromelain treatment significantly reduced the adsorption capacity of the treated MP to butyraldehyde (by 6.0−7.9%) and 2-pentanone (by 9.7−11.9%). A correlation analysis demonstrated a strong positive correlation (0.859, p < 0.05) between the DH of the MP and the adsorption ability of the treated MP to octanal. This study highlighted the significant but complex influence of proteolysis on MP binding capacity to flavor compounds.
Collapse
|
29
|
Zhao X, Qi J, Fan C, Wang B, Yang C, Liu D. Ultrasound treatment enhanced the ability of the porcine myofibrillar protein to bind furan compounds: Investigation of underlying mechanisms. Food Chem 2022; 384:132472. [PMID: 35240573 DOI: 10.1016/j.foodchem.2022.132472] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/02/2022] [Accepted: 02/13/2022] [Indexed: 11/15/2022]
Abstract
This study was designed to explore the effects of different ultrasound power levels (0-600 W) on the ability of myofibrillar protein (MP) to bind furan compounds by analyzing the results of SDS-PAGE, particle size, Raman spectra, fluorescence intensity, solubility, turbidity, zeta potential, surface hydrophobicity, sulfhydryl content, solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS). As ultrasound power levels were increased from 0 to 500 W, the hydrophobic bonding sites, hydrogen-bonding sites, and electrostatic effects increased due to the unfolding and depolymerization of MP, thus enhancing the ability of MP to bind furan (flavor-enhancing) compounds. Consistent with these results, the positive effect of ultrasound resulted in ability of MP to bind furan compounds increased by 19.00 % to 33.32 %. However, after 600-W ultrasound treatment, the MP aggregated again and the bonding sites were re-embedded, which decreased the furan-binding ability.
Collapse
Affiliation(s)
- Xiaocao Zhao
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Jun Qi
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chaoxia Fan
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Bo Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Cong Yang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, China.
| |
Collapse
|
30
|
Bhat ZF, Morton JD, El-Din A. Bekhit A, Kumar S, Bhat HF. Processing technologies for improved digestibility of milk proteins. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Wu D, Guo J, Wang X, Yang K, Wang L, Ma J, Zhou Y, Sun W. The direct current magnetic field improved the water retention of low-salt myofibrillar protein gel under low temperature condition. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Bhat ZF, Morton JD, Bekhit AEDA, Kumar S, Bhat HF. Effect of processing technologies on the digestibility of egg proteins. Compr Rev Food Sci Food Saf 2021; 20:4703-4738. [PMID: 34355496 DOI: 10.1111/1541-4337.12805] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/06/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023]
Abstract
Egg and egg products are a rich source of highly bioavailable animal proteins. Several processing technologies can affect the structural and functional properties of these proteins differently and can influence their fate inside the gastrointestinal tract. The present review examines some of the processing technologies for improving egg protein digestibility and discusses how different processing conditions affect the digestibility of egg proteins under gastrointestinal digestion environments. To provide up-to-date information, most of the studies included in this review have been published in the last 5 years on different aspects of egg protein digestibility. Digestibility of egg proteins can be improved by employing some processing technologies that are able to improve the susceptibility of egg proteins to gastrointestinal proteases. Processing technologies, such as pulsed electric field, high-pressure, and ultrasound, can induce conformational and microstructural changes that lead to unfolding of the polypeptides and expose active sites for further interactions. These changes can enhance the accessibility of digestive proteases to cleavage sites. Some of these technologies may inactivate some egg proteins that are enzyme inhibitors, such as trypsin inhibitors. The underlying mechanisms of how different technologies mediate the egg protein digestibility have been discussed in detail. The proteolysis patterns and digestibility of the processed egg proteins are not always predictable and depends on the processing conditions. Empirical input is required to tailor the optimization of processing conditions for favorable effects on protein digestibility.
Collapse
Affiliation(s)
- Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST of Jammu, Jammu, Jammu and Kashmir, India
| | - James D Morton
- Department of Wine Food and Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | | | - Sunil Kumar
- Division of Livestock Products Technology, SKUAST of Jammu, Jammu, Jammu and Kashmir, India
| | - Hina F Bhat
- Division of Biotechnology, SKUAST of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
33
|
Xue C, You J, Zhang H, Xiong S, Yin T, Huang Q. Capacity of myofibrillar protein to adsorb characteristic fishy-odor compounds: Effects of concentration, temperature, ionic strength, pH and yeast glucan addition. Food Chem 2021; 363:130304. [PMID: 34144420 DOI: 10.1016/j.foodchem.2021.130304] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 01/20/2023]
Abstract
The capacity of myofibrillar protein (MP) to adsorb fishy-odors (hexanal, nonanal, 1-octen-3-ol) was investigated under the influences of concentration, temperature, pH, ionic strength and yeast glucan (YG) addition. The adsorption of MP for fishy-odors was in the order of nonanal > hexanal > 1-octen-3-ol. With increasing MP concentration, the binding of protein-aldehydes was facilitated, in contrast to a decrease trend in binding to 1-octen-3-ol. Meanwhile, MP adsorption capacity for off-odors peaked at 40 °C. Additionally, low ionic strength (0.2 mol/L) could promote MP adsorption for off-odors, while high ionic strength (0.6-1.0 mol/L) could reduce its adsorption for hexanal and 1-octen-3-ol. Moreover, MP had higher adsorption capacity under extreme pH values (pH 3 and 11). Furthermore, YG was shown as an ideal additive to adsorb off-odors due to its large specific surface area and good stability. This work provides useful information on how to deodorize fishy-odors in fish products.
Collapse
Affiliation(s)
- Chao Xue
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Juan You
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Huimin Zhang
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Shanbai Xiong
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Tao Yin
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Qilin Huang
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China.
| |
Collapse
|
34
|
Wu H, Wang Y, Jiang Q, Jiang X, Feng Q, Shi W. Changes in physicochemical properties and myofibrillar protein properties in grass carp salted by brining and injection. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Han Wu
- College of Food Science and Technology Shanghai Ocean University No.999 Huchenghuan Road Shanghai 201306 China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) No.999 Huchenghuan Road Shanghai 201306 China
| | - Yixin Wang
- College of Food Science and Technology Shanghai Ocean University No.999 Huchenghuan Road Shanghai 201306 China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) No.999 Huchenghuan Road Shanghai 201306 China
| | - Qingqing Jiang
- College of Food Science and Technology Shanghai Ocean University No.999 Huchenghuan Road Shanghai 201306 China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) No.999 Huchenghuan Road Shanghai 201306 China
| | - Xin Jiang
- College of Food Science and Technology Shanghai Ocean University No.999 Huchenghuan Road Shanghai 201306 China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) No.999 Huchenghuan Road Shanghai 201306 China
| | - Qian Feng
- College of Food Science and Technology Shanghai Ocean University No.999 Huchenghuan Road Shanghai 201306 China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) No.999 Huchenghuan Road Shanghai 201306 China
| | - Wenzheng Shi
- College of Food Science and Technology Shanghai Ocean University No.999 Huchenghuan Road Shanghai 201306 China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) No.999 Huchenghuan Road Shanghai 201306 China
| |
Collapse
|
35
|
Recent advantage of interactions of protein-flavor in foods: Perspective of theoretical models, protein properties and extrinsic factors. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|