1
|
Buzzanca C, Di Stefano V, D'Amico A, Gallina A, Melilli MG. A systematic review on Cynara cardunculus L.: bioactive compounds, nutritional properties and food-industry applications of a sustainable food. Nat Prod Res 2024:1-20. [PMID: 39488850 DOI: 10.1080/14786419.2024.2423046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The cardoon (Cynara cardunculus L.), is a perennial plant belonging to the Asteraceae family, and its cultivated species are widely used in the Mediterranean diet. This review provides an overview of cardoons' chemical composition, bioactive properties and multiple industrial and food applications. Thanks to its nutritional composition, the use of cardoon has increased in food, cosmetic and industrial sectors, such as the energy industry or in the production of paper pulp or bio-packaging. An application in the food industry has involved using of cardoon as a vegetable coagulant for gourmet cheeses-making, as the flowers are rich in aspartic proteases. Cardoon by-products are also rich in bioactive compounds with important health benefits. Most of these nutritional activities are due to the presence of phenolic compounds, minerals, inulin, fibre and sesquiterpene lactones with interesting antioxidant and antimicrobial, anti-inflammatory, anti-tumour, lipid-lowering, cytotoxic and anti-diabetic activities.
Collapse
Affiliation(s)
- Carla Buzzanca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Angela D'Amico
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Alessandro Gallina
- National Council of Research, Institute of Biomolecular Chemistry (CNR-ICB), Catania, Italy
| | - Maria Grazia Melilli
- National Council of Research, Institute of Biomolecular Chemistry (CNR-ICB), Catania, Italy
| |
Collapse
|
2
|
Sun S, Xia G, Pang H, Zhu J, Li L, Zang H. Phytochemical Analysis and Antioxidant Activities of Various Extracts from the Aerial Part of Anemone baicalensis Turcz.: In Vitro and In Vivo Studies. Molecules 2024; 29:4602. [PMID: 39407532 PMCID: PMC11478119 DOI: 10.3390/molecules29194602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Anemone baicalensis Turcz., a botanical species with a rich historical background in traditional medicine for detoxification and insecticidal applications, possesses a vast, yet largely unexplored, therapeutic potential. This study primarily focused on conducting a qualitative phytochemical analysis of the plant, determining the active ingredient content and antioxidant activity of various solvent extracts. The qualitative phytochemical analysis revealed the presence of 12 different types of phytochemicals within the plant. Utilizing ultraviolet-visible spectrophotometry, we identified 11 active ingredients in 4 solvent extracts. Notably, the methanol extract was found to contain high concentrations of total carbohydrate, total monoterpenoid, total phenolic, total tannin, and total triterpenoid. In the antioxidant experiment, the methanol extract demonstrated superior scavenging abilities against 1,1-diphenyl-2-picrylhydrazyl radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonicacid) diammonium salt, superoxide anion radical, and hydrogen peroxide, outperforming other extracts in chelation experiments aimed at reducing iron and metal ions. Consequently, the methanol extract was selected for further investigation. Subsequent ultrahigh-performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry analysis revealed that the methanol extract contained 39 compounds, primarily phenolic compounds and triterpenoid saponins. Three stability assessments confirmed the extract's stability under high temperatures, varying pH levels, and simulated gastrointestinal processes. Additionally, oil stability testing demonstrated its antioxidant capacity in extra virgin olive oil and cold-pressed sunflower seed oil media. An oral acute toxicity experiment conducted on mice not only confirmed the absence of acute toxicity in the methanol extract but also provided a dose reference for subsequent gastric protection experiments. Notably, the methanol extract exhibited significant gastroprotective effects against ethanol-induced gastric lesions in rats, as evidenced by histopathological and biochemical analyses. Specifically, the extract reduced levels of malondialdehyde, alanine aminotransferase, and aspartate aminotransferase while increasing glutathione, nitric oxide, and catalase, indicating its gastroprotective mechanism. These findings suggest that the methanol extract from the aerial part of Anemone baicalensis could be a promising therapeutic agent for conditions associated with oxidative imbalances. They underscore the plant's potential therapeutic benefits and offer valuable insights into its antioxidant properties, thereby broadening our understanding of its medicinal potential.
Collapse
Affiliation(s)
- Shuang Sun
- College of Pharmacy, Yanbian University, Yanji 133000, China; (S.S.); (G.X.)
| | - Guangqing Xia
- College of Pharmacy, Yanbian University, Yanji 133000, China; (S.S.); (G.X.)
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.P.); (J.Z.)
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Gerplasm Resources of Jilin Province, Tonghua 134002, China
| | - Hao Pang
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.P.); (J.Z.)
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Junyi Zhu
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.P.); (J.Z.)
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Gerplasm Resources of Jilin Province, Tonghua 134002, China
| | - Li Li
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.P.); (J.Z.)
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Gerplasm Resources of Jilin Province, Tonghua 134002, China
| | - Hao Zang
- College of Pharmacy, Yanbian University, Yanji 133000, China; (S.S.); (G.X.)
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.P.); (J.Z.)
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Gerplasm Resources of Jilin Province, Tonghua 134002, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi 117004, China
| |
Collapse
|
3
|
Mandim F, Carocho M, Petropoulos SA, Santos-Buelga C, Barros L. Effect of Different Seasons and Development Stages on the Chemical Composition and Bioactive Potential of Cardoon. Foods 2024; 13:2536. [PMID: 39200463 PMCID: PMC11354160 DOI: 10.3390/foods13162536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Cynara cardunculus L. (cardoon) is a wild species of the Mediterranean basin and is highly appreciated due to its rich nutritional value and versatile industrial applications. It is widely known that environmental conditions, such as air temperature, humidity, and solar radiation, among others, play a crucial role in plant phenological variations and the chemical composition and bioactive properties of different plant tissues of cardoon. This study applied several statistical methods to uncover the variations in biomolecules of different cardoon tissues collected in Greece over the growth cycle. The influence of the different seasons on the species is evident, resulting in a clear discrimination between the samples harvested throughout the growth cycle. In addition, the observed fluctuations in chemical composition are consistent with each vegetable tissue's functions and the plant's different physiological processes. This work allows for a better understanding and knowledge of the species, encouraging more profitable and sustainable use of all the plant parts.
Collapse
Affiliation(s)
- Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (F.M.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación em Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain;
| | - Márcio Carocho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (F.M.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Spyridon A. Petropoulos
- Laboratory of Vegetable Production, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece;
| | - Celestino Santos-Buelga
- Grupo de Investigación em Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain;
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (F.M.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
4
|
Hazrati S, Mousavi Z, Nicola S. Harvest time optimization for medicinal and aromatic plant secondary metabolites. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108735. [PMID: 38781639 DOI: 10.1016/j.plaphy.2024.108735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/24/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Plant secondary metabolites (SMs) play a crucial role in shielding plants from pathogens and environmental stressors. These natural products find widespread applications across various industries, including pharmaceutical, food, cosmetic, and healthcare. However, the quantity and quality of these compounds in plants can be influenced by factors such as genetics, morphology, plant age, and the seasonal and daily variations. The timing of harvest holds particular significance for medicinal and aromatic plants (MAPs) as their active compounds peak at a specific moment during the plant growth cycle. Determining the optimal harvest time is essential to ensure the plants meet their intended cultivation goal. In this review, we analyzed how developmental and external factors impact the qualitative and quantitative effectiveness of SMs in MAPs. We examined recent studies on the effects of environmental and developmental factors on SMs of MAPs, compiling relevant data for analysis. The results of this review demonstrate how these factors influence the quantity and quality of plant SMs, underscoring the importance of determining the optimal harvest time (known as the balsamic time) to maximize the utilization of these compounds. Our findings offer crucial insights into the factors affecting SMs, serving as a tool for quality control in MAPs production. Moreover, this review can be a valuable resource for researchers, farmers, and industrial users aiming to optimize plant growth and harvest timing for maximum yield. Overall, our review provides valuable information for devising effective strategies to produce high-quality MAPs products.
Collapse
Affiliation(s)
- Saeid Hazrati
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, 53714-161, Iran.
| | - Zahra Mousavi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, 53714-161, Iran
| | - Silvana Nicola
- Department of Agricultural, Forest and Food Sciences, Horticultural Sciences - Inhortosanitas Lab, University of Turin, 10095, Grugliasco (TO), Italy.
| |
Collapse
|
5
|
Mandim F, Pinela J, Marcelino S, Dias MI, Barracosa P, Ivanov M, Soković M, Santos-Buelga C, Barros L. Insights into the phenolic composition and in vitro bioactivity of cardoon capitulum: A nutraceutical-oriented valorization study. Food Chem 2024; 435:137480. [PMID: 37774613 DOI: 10.1016/j.foodchem.2023.137480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/04/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
The capitulum constituents (stigma, corolla, bracts, pappus, and receptacle) of seven cardoon cultivars were studied for their polyphenolic composition and bioactive properties. Fifteen phenolic compounds were identified, secoiridoid, secoxyloganin, and apigenin-O-hexuronoside in higher concentrations. The bracts had the highest concentration of phenolic compounds, and the corolla had the greatest variety. The corolla of F4-1-4 and F1-34-1 cultivars, and bracts of F1-1-1, F1-19-4, and F4-37-1 cultivars revealed the greatest capacity to inhibit the thiobarbituric acid reactive substances formation (IC50 of 38 and 40.4 µg/mL, respectively). The corolla of F1-34-1 cultivar showed higher antihaemolytic activity than the positive control Trolox (IC50 5.5 vs. 20 µg/mL). Bracts of the F4-25-2 cultivar showed higher cytotoxic activity. No hepatotoxicity or anti-inflammatory effects were presented by the studied samples. These bioactivities exhibit a significative correlation with phenolic compounds, in particular flavonoids. Antimicrobial capacity was also observed, with all samples presenting higher antifungal potential than positive controls.
Collapse
Affiliation(s)
- Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Sandra Marcelino
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Paulo Barracosa
- CERNAS, Centro de Investigação do Instituto Politécnico de Viseu (ESAV) Quinta da Alagoa, 3500-606 Viseu, Portugal
| | - Marija Ivanov
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Marina Soković
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
6
|
Salvati D, Paschoalinotto BH, Mandim F, Ferreira ICFR, Steinmacher NC, Pereira C, Dias MI. Exploring the Impacts of Sorghum ( Sorghum bicolor L. Moench) Germination on the Flour's Nutritional, Chemical, Bioactive, and Technological Properties. Foods 2024; 13:491. [PMID: 38338626 PMCID: PMC10855074 DOI: 10.3390/foods13030491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Germination is a natural, simple, and economical process used to improve the quality of nutritional and technological grains. In this study, native and sprouted sorghum flours were characterized regarding their technological properties (particle size distribution, water, and oil absorption capacity, swelling power and solubility, microscopy of starch granules, and pasting and thermal properties). Nutritional and phytochemical characterization profiles, including free sugars, fatty acids, organic acids, tocopherols, and phenolic compounds, were explored through chromatographic methods. The antioxidant, anti-inflammatory, and cytotoxic activities of the respective hydroethanolic extracts were also evaluated. The results showed that the germination process caused significant changes in the flour composition and properties, causing reduced gelatinization temperature and retarded starch retrogradation; an increased content of free sugars and total organic acids; and a decreased content of tocopherols and phenolic compounds. In terms of bioactivity, the sprouted sorghum flour extract showed better lipid-peroxidation-inhibition capacity and none of the extracts revealed hepatotoxicity or nephrotoxicity, which are important results for the validation of the use of the flours for food purposes. Germination is an efficient and alternative method for grain modification that gives improved technological properties without chemical modification or genetic engineering.
Collapse
Affiliation(s)
- Diogo Salvati
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.S.); (B.H.P.); (F.M.); (I.C.F.R.F.); (C.P.)
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Departamento Acadêmico de Alimentos (DAALM), Campus Medianeira, Universidade Tecnológica Federal do Paraná, Medianeira 85884-000, Brazil;
| | - Beatriz Helena Paschoalinotto
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.S.); (B.H.P.); (F.M.); (I.C.F.R.F.); (C.P.)
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.S.); (B.H.P.); (F.M.); (I.C.F.R.F.); (C.P.)
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.S.); (B.H.P.); (F.M.); (I.C.F.R.F.); (C.P.)
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Nádia Cristiane Steinmacher
- Departamento Acadêmico de Alimentos (DAALM), Campus Medianeira, Universidade Tecnológica Federal do Paraná, Medianeira 85884-000, Brazil;
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.S.); (B.H.P.); (F.M.); (I.C.F.R.F.); (C.P.)
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.S.); (B.H.P.); (F.M.); (I.C.F.R.F.); (C.P.)
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
7
|
Chtioui W, Heleno S, Migheli Q, Rodrigues P. Plant extracts as biocontrol agents against Aspergillus carbonarius growth and ochratoxin A production in grapes. Int J Food Microbiol 2023; 407:110425. [PMID: 37804776 DOI: 10.1016/j.ijfoodmicro.2023.110425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/24/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Aspergillus carbonarius (Bainier) Thom. is an important pathogen and ochratoxin A (OTA) producer in grapes that can be controlled by adopting sustainable approaches. Here we evaluate the application of natural plant extracts as an alternative to synthetic fungicides to reduce OTA contamination and to prevent infection of grapes by two isolates of A. carbonarius. In a preliminary screening, natural extracts of chestnut flower, cistus, eucalyptus, fennel, and orange peel were evaluated for their antifungal and anti-mycotoxigenic efficiency in a grape-based medium at concentrations of 10 and 20 mg/mL. Cistus and orange peel extracts demonstrated the best antifungal activity at both concentrations. Although the eucalyptus extract demonstrated no significant effect on Aspergillus vegetative growth, it significantly reduced OTA by up to 85.75 % at 10 mg/mL compared to the control. Chestnut flower, cistus, eucalyptus, and orange peel extracts were then tested at the lowest concentration (10 mg/mL) for their antifungal activity in artificially inoculated grape berries. The cistus and orange peel extracts demonstrated the greatest antifungal activity and significantly reduced mold symptoms in grapes. Moreover, all tested natural extracts were able to reduce OTA content in grape berries (17.7 ± 8.3 % - 82.3 ± 3.85 % inhibition), although not always significantly. Eucalyptus extract was particularly efficient, inhibiting OTA production by both strains of A. carbonarius by up to >80 % with no effects on fungal growth. The use of natural eucalyptus extract represents a feasible strategy to reduce OTA formation without disrupting fungal growth, apparently maintaining the natural microbial balance, while cistus and orange peel extracts appear promising as inhibitors of A. carbonarius mycelial growth. Our findings suggest that plant extracts may be useful sources of bioactive chemicals for preventing A. carbonarius contamination and OTA production. Nonetheless, it will be necessary to evaluate their effect on the organoleptic properties of the grapes.
Collapse
Affiliation(s)
- Wiem Chtioui
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100, Sassari, Italy; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Sandrina Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.
| | - Quirico Migheli
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100, Sassari, Italy; Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Via E. De Nicola 9, 07100, Sassari, Italy
| | - Paula Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.
| |
Collapse
|
8
|
Mandim F, Santos-Buelga C, C F R Ferreira I, Petropoulos SA, Barros L. The wide spectrum of industrial applications for cultivated cardoon (Cynara cardunculus L. var. Altilis DC.): A review. Food Chem 2023; 423:136275. [PMID: 37172504 DOI: 10.1016/j.foodchem.2023.136275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/28/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Cynara cardunculus L. var. altilis DC. belongs to the Asteraceae family and is widely used. This species is integrated into the Mediterranean diet and has broad applicability due to its rich chemical composition. Its flowers, used as a vegetable coagulant for gourmet cheese production, are rich in aspartic proteases. Leaves are rich in sesquiterpene lactones, the most abundant being cynaropicrin, while stems present a higher abundance of hydroxycinnamic acids. Both classes of compounds exhibit a wide range of bioactive properties. Its chemical composition makes it applicable in other industrial sectors, such as energy (e.g., manufacturing of biodiesel and biofuel) or paper pulp production, among other biotechnological applications. In the last decade, cardoon has been identified as a competitive energy crop, constituting an opportunity for the economic recovery and development of the rural areas of the Mediterranean basin. This article reviews the chemical composition, bioactive properties, and multifaceted industrial applications of cardoon.
Collapse
Affiliation(s)
- Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança. Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Grupo de Investigación em Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Celestino Santos-Buelga
- Grupo de Investigación em Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança. Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Spyridon A Petropoulos
- University of Thessaly, Department of Agriculture, Crop Production and Rural Environment, 38446 N. Ionia, Volos, Greece
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança. Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
9
|
Valorization of Punica granatum L. Leaves Extracts as a Source of Bioactive Molecules. Pharmaceuticals (Basel) 2023; 16:ph16030342. [PMID: 36986442 PMCID: PMC10052729 DOI: 10.3390/ph16030342] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Due to a lack of innovative valorization strategies, pomegranate processing generates a significant amount of residues with a negative environmental footprint. These by-products are a rich source of bioactive compounds with functional and medicinal benefits. This study reports the valorization of pomegranate leaves as a source of bioactive ingredients using maceration, ultrasound, and microwave-assisted extraction techniques. The phenolic composition of the leaf extracts was analyzed using an HPLC-DAD-ESI/MSn system. The extracts’ antioxidant, antimicrobial, cytotoxic, anti-inflammatory, and skin-beneficial properties were determined using validated in vitro methodologies. The results showed that gallic acid, (-)-epicatechin, and granatin B were the most abundant compounds in the three hydroethanolic extracts (between 0.95 and 1.45, 0.7 and 2.4, and 0.133 and 3.0 mg/g, respectively). The leaf extracts revealed broad-spectrum antimicrobial effects against clinical and food pathogens. They also presented antioxidant potential and cytotoxic effects against all tested cancer cell lines. In addition, tyrosinase activity was also verified. The tested concentrations (50–400 µg/mL) ensured a cellular viability higher than 70% in both keratinocyte and fibroblast skin cell lines. The obtained results indicate that the pomegranate leaves could be used as a low-cost source of value-added functional ingredients for potential nutraceutical and cosmeceutical applications.
Collapse
|
10
|
Putri AS, Haqiqi MT, Supomo S, Kusuma IW, Kuspradini H, Rosamah E, Amirta R, Paramita S, Ramadhan R, Lubis MAR, Ariyanta HA, Aswandi A, Kholibrina CR, Ismayati M, Fatriasari W, Tarmadi D, Yuliansyah Y, Suwinarti W, Kim YU, Arung ET. A Mini Review: The Application of Eupatorium Plants as Potential Cosmetic Ingredients. COSMETICS 2022; 9:103. [DOI: 10.3390/cosmetics9050103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The Eupatorium plant has been well used in medication and as a decorative plant. Some studies have reported that this herb has biochemical compounds, such as sesquiterpenes, phenolics, polysaccharides, and pyrrolizidine alkaloids. Thus, it has pharmacological effects, including antifungal, antibacterial, cytotoxic, and antinociceptive properties, that can be utilized for cosmetic purposes. However, only a few published works have summarized the active compounds and the application of Eupatorium plants as cosmetic agents. Therefore, this article aims to review the application of Eupatorium plants as a potential cosmetic agent. The active compounds of Eupatorium are contained in the whole plant, as well as the stems, leaves, roots, and aerial parts (flower, fruit, and seeds). In terms of cosmetic applications, the activities of Eupathorium are antioxidant, anti-tyrosinase, anti-melanin/melanogenesis, anti-acne, and anti-inflammatory. This review aims to contribute to a better understanding for expanding the utilization of this plant for cosmetic purposes by using these active compounds.
Collapse
Affiliation(s)
- Agmi Sinta Putri
- Forestry Faculty, Mulawarman University, Kampus Gunung Kelua, Jl Panajam, Samarinda 75123, Indonesia
- Research Collaboration Center for Biomass-Based Nano Cosmetic, Collaboration Mulawarman University and BRIN, Samarinda 75123, Indonesia
| | - Muhammad Taufiq Haqiqi
- Forestry Faculty, Mulawarman University, Kampus Gunung Kelua, Jl Panajam, Samarinda 75123, Indonesia
- Research Collaboration Center for Biomass-Based Nano Cosmetic, Collaboration Mulawarman University and BRIN, Samarinda 75123, Indonesia
| | - Supomo Supomo
- Forestry Faculty, Mulawarman University, Kampus Gunung Kelua, Jl Panajam, Samarinda 75123, Indonesia
- Research Collaboration Center for Biomass-Based Nano Cosmetic, Collaboration Mulawarman University and BRIN, Samarinda 75123, Indonesia
- Sekolah Tinggi Ilmu Kesehatan Samarinda, Samarinda College of Health Sciences, Samarinda 75242, Indonesia
| | - Irawan Wijaya Kusuma
- Forestry Faculty, Mulawarman University, Kampus Gunung Kelua, Jl Panajam, Samarinda 75123, Indonesia
- Research Collaboration Center for Biomass-Based Nano Cosmetic, Collaboration Mulawarman University and BRIN, Samarinda 75123, Indonesia
- Research Center for Medicine and Cosmetics Tropical Rainforest Resources (PUIPT-OKTAL), Mulawarman University, Samarinda 75119, Indonesia
| | - Harlinda Kuspradini
- Forestry Faculty, Mulawarman University, Kampus Gunung Kelua, Jl Panajam, Samarinda 75123, Indonesia
- Research Collaboration Center for Biomass-Based Nano Cosmetic, Collaboration Mulawarman University and BRIN, Samarinda 75123, Indonesia
- Research Center for Medicine and Cosmetics Tropical Rainforest Resources (PUIPT-OKTAL), Mulawarman University, Samarinda 75119, Indonesia
| | - Enih Rosamah
- Forestry Faculty, Mulawarman University, Kampus Gunung Kelua, Jl Panajam, Samarinda 75123, Indonesia
- Research Collaboration Center for Biomass-Based Nano Cosmetic, Collaboration Mulawarman University and BRIN, Samarinda 75123, Indonesia
| | - Rudianto Amirta
- Forestry Faculty, Mulawarman University, Kampus Gunung Kelua, Jl Panajam, Samarinda 75123, Indonesia
- Research Collaboration Center for Biomass-Based Nano Cosmetic, Collaboration Mulawarman University and BRIN, Samarinda 75123, Indonesia
| | - Swandari Paramita
- Research Collaboration Center for Biomass-Based Nano Cosmetic, Collaboration Mulawarman University and BRIN, Samarinda 75123, Indonesia
- Research Center for Medicine and Cosmetics Tropical Rainforest Resources (PUIPT-OKTAL), Mulawarman University, Samarinda 75119, Indonesia
- Faculty of Medicine, Mulawarman University, Samarinda 75119, Indonesia
| | - Rico Ramadhan
- Research Collaboration Center for Biomass-Based Nano Cosmetic, Collaboration Mulawarman University and BRIN, Samarinda 75123, Indonesia
- Departement of Chemistry, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| | - Muhammad Adly Rahandi Lubis
- Research Collaboration Center for Biomass-Based Nano Cosmetic, Collaboration Mulawarman University and BRIN, Samarinda 75123, Indonesia
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46 Cibinong, Bogor 16911, Indonesia
| | - Harits Atika Ariyanta
- Research Collaboration Center for Biomass-Based Nano Cosmetic, Collaboration Mulawarman University and BRIN, Samarinda 75123, Indonesia
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46 Cibinong, Bogor 16911, Indonesia
| | - Aswandi Aswandi
- Research Collaboration Center for Biomass-Based Nano Cosmetic, Collaboration Mulawarman University and BRIN, Samarinda 75123, Indonesia
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46 Cibinong, Bogor 16911, Indonesia
| | - Cut Rizlani Kholibrina
- Research Collaboration Center for Biomass-Based Nano Cosmetic, Collaboration Mulawarman University and BRIN, Samarinda 75123, Indonesia
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46 Cibinong, Bogor 16911, Indonesia
| | - Maya Ismayati
- Research Collaboration Center for Biomass-Based Nano Cosmetic, Collaboration Mulawarman University and BRIN, Samarinda 75123, Indonesia
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46 Cibinong, Bogor 16911, Indonesia
| | - Widya Fatriasari
- Research Collaboration Center for Biomass-Based Nano Cosmetic, Collaboration Mulawarman University and BRIN, Samarinda 75123, Indonesia
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46 Cibinong, Bogor 16911, Indonesia
| | - Didi Tarmadi
- Research Collaboration Center for Biomass-Based Nano Cosmetic, Collaboration Mulawarman University and BRIN, Samarinda 75123, Indonesia
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46 Cibinong, Bogor 16911, Indonesia
| | - Yuliansyah Yuliansyah
- Forestry Faculty, Mulawarman University, Kampus Gunung Kelua, Jl Panajam, Samarinda 75123, Indonesia
- Research Collaboration Center for Biomass-Based Nano Cosmetic, Collaboration Mulawarman University and BRIN, Samarinda 75123, Indonesia
| | - Wiwin Suwinarti
- Forestry Faculty, Mulawarman University, Kampus Gunung Kelua, Jl Panajam, Samarinda 75123, Indonesia
- Research Collaboration Center for Biomass-Based Nano Cosmetic, Collaboration Mulawarman University and BRIN, Samarinda 75123, Indonesia
| | - Yong-ung Kim
- Department of Pharmaceutical Engineering, College of Cosmetics and Pharmaceuticals, Daegu Haany University, Daegu 38610, Korea
| | - Enos Tangke Arung
- Forestry Faculty, Mulawarman University, Kampus Gunung Kelua, Jl Panajam, Samarinda 75123, Indonesia
- Research Collaboration Center for Biomass-Based Nano Cosmetic, Collaboration Mulawarman University and BRIN, Samarinda 75123, Indonesia
- Research Center for Medicine and Cosmetics Tropical Rainforest Resources (PUIPT-OKTAL), Mulawarman University, Samarinda 75119, Indonesia
| |
Collapse
|
11
|
Moreira B, Pereira E, Finimundy TC, Pinela J, Calhelha RC, Carocho M, Stojković D, Sokovic M, Ferreira ICFR, Caleja C, Barros L. Pineapple by-products as a source of bioactive compounds with potential for industrial food application. Food Funct 2022; 13:9959-9972. [PMID: 36056706 DOI: 10.1039/d2fo00657j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pineapple is a tropical fruit consumed fresh or processed into various food products. However, the peel and crown of this fruit are not industrially exploited, thus generating tons of by-products that represent an economic and environmental concern. In order to promote the upcycling of these by-products, this work aimed to characterize the phenolic profile of its hydroethanolic extracts obtained from pineapple peel and crown leaves and to evaluate their in vitro bioactivity. The HPLC-DAD-ESI/MS analysis allowed the identification of 25 phenolic compounds, including phenolic acids and flavonoids. The antioxidant, cytotoxic, and antimicrobial activity assays highlighted the peel extract as the most promising and, therefore, it was incorporated into a traditional Portuguese pastry cake as a functional ingredient. The nutritional parameters of the developed food were not affected by the incorporation of the extract, but it promoted the antioxidant activity during its shelf-life. Overall, pineapple peel and crown appeared as promising by-products to be exploited by the food industry, which can be achieved through a circular economy approach.
Collapse
Affiliation(s)
- Bruna Moreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Eliana Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Tiane C Finimundy
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Márcio Carocho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Dejan Stojković
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Sokovic
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Cristina Caleja
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
12
|
Mandim F, Petropoulos SA, Santos-Buelga C, Ferreira IC, Barros L. Chemical composition of cardoon (Cynara cardunculus L. var. altilis) petioles as affected by plant growth stage. Food Res Int 2022; 156:111330. [DOI: 10.1016/j.foodres.2022.111330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 11/04/2022]
|
13
|
Mandim F, Petropoulos SA, Pinela J, Dias MI, Kostic M, Soković M, Ferreira ICFR, Santos-Buelga C, Barros L. Phenolic Composition and Antioxidant, Anti-Inflammatory, Cytotoxic, and Antimicrobial Activities of Cardoon Blades at Different Growth Stages. BIOLOGY 2022; 11:biology11050699. [PMID: 35625427 PMCID: PMC9138655 DOI: 10.3390/biology11050699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary The rapid increase of the world population has promoted a more sustainable and efficient use of natural resources. To achieve complete and proper upcycling of plant crops, it is important to know their potential for industrial exploitation. Cardoon (Cynara cardunculus L.) is a species native to the Mediterranean basin widely used in different sectors, including food and pharmaceuticals. Despite their multiple industrial applications, not all plant tissues have been incorporated into the value chain. Therefore, this work aimed to characterize the phenolic composition and bioactive properties of cardoon blades throughout the phenological growth cycle. In addition to the structural variety of phytochemicals detected in the blade extracts, their antioxidant, anti-inflammatory, anti-proliferative, and antimicrobial properties were also highlighted. While immature material showed higher levels of phenolic compounds and greater potential to inhibit lipid peroxidation, samples at higher development stages had greater anti-proliferative, anti-inflammatory, and antimicrobial potential. These results demonstrate that the growth cycle influences the bioactive potential of cardoon blades and will be useful to establish suitable industrial applications, such as the development of ingredients for functional foods and nutraceuticals, among other products. Abstract Cardoon (Cynara cardunculus var. altilis) blades were collected at sixteen sampling dates (B1–B16) to study the influence of the phenological growth stage on the phenolic composition and biological properties. Twenty phenolic compounds were identified, among which trans 3,4-O-dicaffeoylquinic acid, 5-O-caffeoylquinic acid, and luteolin-O-hexoside (39.6, 42.6, and 101.0 mg/g extract, respectively) were the main compounds. Immature blades (B3) had a higher content of phenolic compounds (178 mg/g extract) and a greater ability to inhibit the formation of thiobarbituric acid reactive substances (IC50 of 1.61 µg/mL). Samples at more advanced growth stages revealed a greater capacity to inhibit oxidative hemolysis (B8, IC50 of 25 and 47.4 µg/mL for Δt of 60 and 120 min, respectively) and higher cytotoxic (B8–B13, GI50 between 7.1 and 17 µg/mL), anti-inflammatory (B13, IC50 of 10 µg/mL), and antibacterial activities. In turn, the antifungal activity varied depending on the tested fungi. All these results suggest that maturity influences the phenolic composition and bioactive properties of cardoon blades, which reveal great potential for the development of bioactive ingredients for food and pharmaceutical applications, among others.
Collapse
Affiliation(s)
- Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (F.M.); (J.P.); (M.I.D.); (I.C.F.R.F.)
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Spyridon A. Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece
- Correspondence: (S.A.P.); (L.B.)
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (F.M.); (J.P.); (M.I.D.); (I.C.F.R.F.)
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (F.M.); (J.P.); (M.I.D.); (I.C.F.R.F.)
| | - Marina Kostic
- Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.K.); (M.S.)
| | - Marina Soković
- Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.K.); (M.S.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (F.M.); (J.P.); (M.I.D.); (I.C.F.R.F.)
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (F.M.); (J.P.); (M.I.D.); (I.C.F.R.F.)
- Correspondence: (S.A.P.); (L.B.)
| |
Collapse
|
14
|
Jiang R, Chen X, Liao X, Peng D, Han X, Zhu C, Wang P, Hufnagel DE, Wang L, Li K, Li C. A Chromosome-Level Genome of the Camphor Tree and the Underlying Genetic and Climatic Factors for Its Top-Geoherbalism. FRONTIERS IN PLANT SCIENCE 2022; 13:827890. [PMID: 35592577 PMCID: PMC9112071 DOI: 10.3389/fpls.2022.827890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/24/2022] [Indexed: 06/15/2023]
Abstract
Camphor tree [Cinnamomum camphora (L.) J. Presl], a species in the magnoliid family Lauraceae, is known for its rich volatile oils and is used as a medical cardiotonic and as a scent in many perfumed hygiene products. Here, we present a high-quality chromosome-scale genome of C. camphora with a scaffold N50 of 64.34 Mb and an assembled genome size of 755.41 Mb. Phylogenetic inference revealed that the magnoliids are a sister group to the clade of eudicots and monocots. Comparative genomic analyses identified two rounds of ancient whole-genome duplication (WGD). Tandem duplicated genes exhibited a higher evolutionary rate, a more recent evolutionary history and a more clustered distribution on chromosomes, contributing to the production of secondary metabolites, especially monoterpenes and sesquiterpenes, which are the principal essential oil components. Three-dimensional analyses of the volatile metabolites, gene expression and climate data of samples with the same genotype grown in different locations showed that low temperature and low precipitation during the cold season modulate the expression of genes in the terpenoid biosynthesis pathways, especially TPS genes, which facilitates the accumulation of volatile compounds. Our study lays a theoretical foundation for policy-making regarding the agroforestry applications of camphor tree.
Collapse
Affiliation(s)
- Rihong Jiang
- Guangxi Key Laboratory for Cultivation and Utilization of Special Non-Timber Forest Crops, Guangxi Engineering and Technology Research Center for Woody Spices, Guangxi Forestry Research Institute, Nanning, China
- College of Environmental Sciences and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Xinlian Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Dan Peng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaoxu Han
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Changsan Zhu
- Guangxi Key Laboratory for Cultivation and Utilization of Special Non-Timber Forest Crops, Guangxi Engineering and Technology Research Center for Woody Spices, Guangxi Forestry Research Institute, Nanning, China
| | - Ping Wang
- College of Environmental Sciences and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - David E. Hufnagel
- Virus and Prion Research Unit, National Animal Disease Center, The Agricultural Research Service (ARS) of the United States Department of Agriculture (USDA), Ames, IA, United States
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
| | - Kaixiang Li
- Guangxi Key Laboratory for Cultivation and Utilization of Special Non-Timber Forest Crops, Guangxi Engineering and Technology Research Center for Woody Spices, Guangxi Forestry Research Institute, Nanning, China
| | - Cheng Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
15
|
Influence of Cynara cardunculus L. Phenolic Compounds on Pseudomonas putida Isolated from the Dairy Industry: Growth and Melanin Bioproduction. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cynara cardunculus L. inflorescence infusion has been used for several centuries as curd in traditional cheese making, such as some highly prized Portuguese cheeses. To promote the sustainable use of all C. cardunculus plants, C. cardunculus extract leaves decoction (CL), inflorescence decoction (CI), chlorogenic acid (CA) (a compound in the plant leaves), and rosmarinic acid (RA) (a similar phenolic compound) solutions were tested for antimicrobial activity against bacteria that may appear on the cheese rind. The antimicrobial activity was evaluated by 15 bacterial strains using two different methodologies: solid and liquid. The influence of these extracts and the phenolic compounds on melanin bioproduction by Pseudomonas putida ESACB 191 was also studied. CA and RA (1 mg/mL) showed antimicrobial activity. CL and CA reduced P. putida ESACB 191 growth in the liquid assay and melanin bioproduction by 6.20 Log CFU/mL and 50%, respectively. Cynarin, CA, and its derivates were identified as the main phenolic compounds (52%) of CL, which may justify its inhibitory action on bacterial growth and melanin bioproduction. Thus, future perspectives include the application of CL extracts with antimicrobial activity in edible films and/or coatings to applied in cheese rind to increase the shelf time.
Collapse
|
16
|
Mandim F, Petropoulos SA, Pinela J, Dias MI, Giannoulis KD, Kostić M, Soković M, Queijo B, Santos-Buelga C, Ferreira ICFR, Barros L. Chemical composition and biological activity of cardoon (Cynara cardunculus L. var. altilis) seeds harvested at different maturity stages. Food Chem 2022; 369:130875. [PMID: 34438342 DOI: 10.1016/j.foodchem.2021.130875] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 11/28/2022]
Abstract
Cardoon seeds collected in Greece at four different maturity stages (samples S1 to S4) were analysed in terms of chemical composition and in vitro bioactivities. The content of phenolic compounds (six compounds in total) increased with increasing maturity, and 3,5-O-dicaffeyolquinic (14.8-33.8 mg/g extract) acid was the compound detected in higher abundance. Mature seeds (sample S4) also revealed the highest content in lipids (23 g/100 g extract) and tocopherols (29.62 mg/100 g dw) and demonstrated the highest cytotoxic (GI50 of 97-216 µg/mL) and anti-inflammatory (IC50 = 148 µg/mL) activities, and capacity to inhibit the formation of thiobarbituric acid reactive substances (TBARS) (IC50 = 5 µg/mL). Cardoon seed hydroethanolic extracts also revealed high antibacterial and antifungal potential, particularly samples S3 and S1, respectively. This study proved the multifaceted potential associated with valorisation of cardoon seeds, while their biological and chemical composition can be influenced by the maturity stage.
Collapse
Affiliation(s)
- Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Spyridon A Petropoulos
- University of Thessaly, Department of Agriculture, Crop Production and Rural Environment, 38446 N. Ionia, Volos, Greece.
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Kyriakos D Giannoulis
- University of Thessaly, Department of Agriculture, Crop Production and Rural Environment, 38446 N. Ionia, Volos, Greece
| | - Marina Kostić
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Marina Soković
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Beatriz Queijo
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
17
|
Bioactive Compounds from Cardoon as Health Promoters in Metabolic Disorders. Foods 2022; 11:foods11030336. [PMID: 35159487 PMCID: PMC8915173 DOI: 10.3390/foods11030336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
Cardoon (Cynara cardunculus L.) is a Mediterranean plant and member of the Asteraceae family that includes three botanical taxa, the wild perennial cardoon (C. cardunculus L. var. sylvestris (Lamk) Fiori), globe artichoke (C. cardunculus L. var. scolymus L. Fiori), and domesticated cardoon (C. cardunculus L. var. altilis DC.). Cardoon has been widely used in the Mediterranean diet and folk medicine since ancient times. Today, cardoon is recognized as a plant with great industrial potential and is considered as a functional food, with important nutritional value, being an interesting source of bioactive compounds, such as phenolics, minerals, inulin, fiber, and sesquiterpene lactones. These bioactive compounds have been vastly described in the literature, exhibiting a wide range of beneficial effects, such as antimicrobial, anti-inflammatory, anticancer, antioxidant, lipid-lowering, cytotoxic, antidiabetic, antihemorrhoidal, cardiotonic, and choleretic activity. In this review, an overview of the cardoon nutritional and phytochemical composition, as well as its biological potential, is provided, highlighting the main therapeutic effects of the different parts of the cardoon plant on metabolic disorders, specifically associated with hepatoprotective, hypolipidemic, and antidiabetic activity.
Collapse
|
18
|
Phenolic Composition and Biological Properties of Cynara cardunculus L. var. altilis Petioles: Influence of the Maturity Stage. Antioxidants (Basel) 2021; 10:antiox10121907. [PMID: 34943010 PMCID: PMC8750300 DOI: 10.3390/antiox10121907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/20/2022] Open
Abstract
Hydroethanolic extracts of cardoon petioles collected at sixteen growth stages (P1-P16) were characterized in terms of their phenolic composition and bioactive potential (antioxidant, cytotoxic, anti-inflammatory, and antimicrobial activities). Fifteen phenolic compounds were tentatively identified (i.e., ten phenolic acids and five flavonoid glycosides); the main compounds were 5-O-caffeoylquinic and 1,5-di-O-caffeoylquinic acids. Samples collected at early maturity (P1-P4) presented a weak positive correlation between the higher content in polyphenols (P3: 101-mg/g extract) and better inhibition capacity against thiobarbituric acid reactive substance formation (TBARS; P3: IC50 = 5.0 µg/mL). Samples at intermediate maturation stages (P9) presented higher cytotoxic and anti-inflammatory potential. Moreover, immature petioles showed greater antihemolytic (OxHLIA; P4: IC50 = 65 and 180 µg/mL for Δt of 60 and 120 min, respectively) and antibacterial activity. The antifungal activity varied depending on the maturation stage and the fungi strain. In conclusion, the maturation stage may greatly affect the polyphenols composition and content and the bioactive potential of cardoon petioles.
Collapse
|
19
|
Garcia-Oliveira P, Barral M, Carpena M, Gullón P, Fraga-Corral M, Otero P, Prieto MA, Simal-Gandara J. Traditional plants from Asteraceae family as potential candidates for functional food industry. Food Funct 2021; 12:2850-2873. [PMID: 33683253 DOI: 10.1039/d0fo03433a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Traditional plants have been used in the treatment of disease and pain due to their beneficial properties such as antioxidant, antiinflammation, analgesic, and antibiotic activities. The Asteraceae family is one of the most common groups of plants used in folk medicine. The species Achillea millefolium, Arnica montana, Bellis perennis, Calendula officinalis, Chamaemelum nobile, Eupatorium cannabinum, Helichrysum stoechas, and Taraxacum officinale have been used in different remedies in Northwest Spain. Besides health benefits, some of them like C. nobile and H. stoechas are already employed in cooking and culinary uses, including cocktails, desserts, and savory dishes. This study aimed to review the current information on nutritive and beneficial properties and bioactive compounds of these plants, which are not mainly used as foods but are possible candidates for this purpose. The report highlights their current uses and suitability for the development of new functional food industrial applications. Phenolic compounds, essential oils, and sesquiterpene lactones are some of the most important compounds, being related to different bioactivities. Hence, they could be interesting for the development of new functional foods.
Collapse
Affiliation(s)
- Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Graziani G, Docimo T, Palma MD, Sparvoli F, Izzo L, Tucci M, Ritieni A. Changes in Phenolics and Fatty Acids Composition and Related Gene Expression during the Development from Seed to Leaves of Three Cultivated Cardoon Genotypes. Antioxidants (Basel) 2020; 9:antiox9111096. [PMID: 33171628 PMCID: PMC7695130 DOI: 10.3390/antiox9111096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022] Open
Abstract
Cultivated cardoon (Cynara cardunculus var. altilis) has long been used as a food and medicine remedy and nowadays is considered a functional food. Its leaf bioactive compounds are mostly represented by chlorogenic acids and coumaroyl derivatives, known for their nutritional value and bioactivity. Having antioxidant and hepatoprotective properties, these molecules are used for medicinal purposes. Apart from the phenolic compounds in green tissues, cultivated cardoon is also used for the seed oil, having a composition suitable for the human diet, but also valuable as feedstock for the production of biofuel and biodegradable bioplastics. Given the wide spectrum of valuable cardoon molecules and their numerous industrial applications, a detailed characterization of different organs and tissues for their metabolic profiles as well as an extensive transcriptional analysis of associated key biosynthetic genes were performed to provide a deeper insight into metabolites biosynthesis and accumulation sites. This study aimed to provide a comprehensive analysis of the phenylpropanoids profile through UHPLC-Q-Orbitrap HRMS analysis, of fatty acids content through GC-MS analysis, along with quantitative transcriptional analyses by qRT-PCR of hydroxycinnamoyl-quinate transferase (HQT), stearic acid desaturase (SAD), and fatty acid desaturase (FAD) genes in seeds, hypocotyls, cotyledons and leaves of the cardoon genotypes “Spagnolo”, “Bianco Avorio”, and “Gigante”. Both oil yield and total phenols accumulation in all the tissues and organs indicated higher production in “Bianco Avorio” and “Spagnolo” than in “Gigante”. Antioxidant activity evaluation by DPPH, ABTS, and FRAP assays mirrored total phenols content. Overall, this study provides a detailed analysis of tissue composition of cardoon, enabling to elucidate value-added product accumulation and distribution during plant development and hence contributing to better address and optimize the sustainable use of this natural resource. Besides, our metabolic and transcriptional screening could be useful to guide the selection of superior genotypes.
Collapse
Affiliation(s)
- Giulia Graziani
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (L.I.); (A.R.)
- Correspondence: (G.G.); (M.T.)
| | - Teresa Docimo
- Institute of Bioscience and Bioresources, Consiglio Nazionale delle Ricerche, via Università 133, 80055 Portici, Italy; (T.D.); (M.D.P.)
| | - Monica De Palma
- Institute of Bioscience and Bioresources, Consiglio Nazionale delle Ricerche, via Università 133, 80055 Portici, Italy; (T.D.); (M.D.P.)
| | - Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche, Via E. Bassini 15, 20133 Milan, Italy;
| | - Luana Izzo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (L.I.); (A.R.)
| | - Marina Tucci
- Institute of Bioscience and Bioresources, Consiglio Nazionale delle Ricerche, via Università 133, 80055 Portici, Italy; (T.D.); (M.D.P.)
- Correspondence: (G.G.); (M.T.)
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (L.I.); (A.R.)
- Unesco Chair for Health Education and Sustainable Development, 80131 Naples, Italy
| |
Collapse
|