1
|
Zheng J, Zhang Q, Zhong N. Selective synthesis of triacylglycerols by the ADS-17-supported Candida antarctica lipase B through esterification of oleic acid and glycerol. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3931-3941. [PMID: 39835430 DOI: 10.1002/jsfa.14137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/02/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Immobilized enzyme possessing both high activity and good selectivity is important in practice. In this study, Candida antarctica lipase B (CALB) was immobilized onto the macroporous resin ADS-17 for triacylglycerol (TAG) synthesis through esterification of oleic acid and glycerol. The reaction conditions were optimized by single-factor study and orthogonal test, and the reusability of the immobilized CALB (CALB@ADS-17) was evaluated. In addition, the mechanism of lipase immobilization was studied and the catalytic mechanism of CALB@ADS-17 was investigated. RESULTS Oleic acid conversion up to 99.20% and TAG content at 91.58 wt% could be obtained under optimal conditions. In addition, the CALB@ADS-17 retained 84.28% of its initial activity after 11 cycles of reuse. The mechanism of lipase immobilization was through hydrophobic adsorption. The relationship between temperature and oleic acid conversion was lnV0 = 6.3316 - 4.3321/T, and the activation energy (Ea) was 36.02 kJ mol-1. CALB@ADS-17 did not exhibit an obvious interfacial activation phenomenon. Its kinetic behavior can be described by the Michaelis-Menten model, whose kinetic parameters of vmax, kcat, Km, Ki, and kcat/Km were 0.01265 μmol L-1 s-1, 9310.72 s-1, 0.4907 mmol L-1, 3.997 mmol L-1, and 1.90 × 104 L mmol-1 s-1, respectively. CONCLUSION CALB@ADS-17 showed good esterification performance and exhibited good selectivity towards TAG generation. In addition, CALB@ADS-17 exhibited good reusability in esterification reactions and has potential in practical applications. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiawei Zheng
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| | - Qiangyue Zhang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| | - Nanjing Zhong
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| |
Collapse
|
2
|
Liu X, Li Z, OuYang B, Wang W, Lan D, Wang Y. Lipidomics analysis of rice bran during storage unveils mechanisms behind dynamic changes in functional lipid molecular species. Food Chem 2024; 447:138946. [PMID: 38498952 DOI: 10.1016/j.foodchem.2024.138946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/13/2024] [Accepted: 03/03/2024] [Indexed: 03/20/2024]
Abstract
Rice bran, recognized for its rich lipids and health-beneficial bioactive compounds, holds considerable promise in applications such as rice bran oil production. However, its susceptibility to lipid hydrolysis and oxidation during storage presents a significant challenge. In response, we conducted an in-depth metabolic profiling of rice bran over a storage period of 14 days. We focused on the identification of bioactive compounds and functional lipid species (25 acylglycerols and 53 phospholipids), closely tracking their dynamic changes over time. Our findings revealed significant reductions in these lipid molecular species, highlighting the impact of rancidity processes. Furthermore, we identified 19 characteristic lipid markers and elucidated that phospholipid and glycerolipid metabolism were key metabolic pathways involved. By shedding light on the mechanisms driving lipid degradation in stored rice bran, our study significantly advanced the understanding of lipid stability. These information provided valuable insights for countering rancidity and optimizing rice bran preservation strategies.
Collapse
Affiliation(s)
- Xuan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhong Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bo OuYang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China..
| | - Weifei Wang
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China.
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Youmei Institute of Inteligent Bio-manufacturing Co., Ltd, Foshan, Guangdong 528200, China.
| |
Collapse
|
3
|
Liu X, Wang W, Li Z, Xu L, Lan D, Wang Y. Lipidomics analysis unveils the dynamic alterations of lipid degradation in rice bran during storage. Food Res Int 2024; 184:114243. [PMID: 38609222 DOI: 10.1016/j.foodres.2024.114243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
Recent explorations into rice bran oil (RBO) have highlighted its potential, owing to an advantageous fatty acid profile in the context of health and nutrition. Despite this, the susceptibility of rice bran lipids to oxidative degradation during storage remains a critical concern. This study focuses on the evolution of lipid degradation in RBO during storage, examining the increase in free fatty acids (FFAs), the formation of oxylipids, and the generation of volatile secondary oxidation products. Our findings reveal a substantial rise in FFA levels, from 109.55 to 354.06 mg/g, after 14 days of storage, highlighting significant lipid deterioration. Notably, key oxylipids, including 9,10-EpOME, 12,13(9,10)-DiHOME, and 13-oxoODE, were identified, with a demonstrated positive correlation between total oxylipids and free polyunsaturated fatty acids (PUFAs), specifically linoleic acid (LA) and α-linolenic acid (ALA). Furthermore, the study provides a detailed analysis of primary volatile secondary oxidation products. The insights gained from this study not only sheds light on the underlying mechanisms of lipid rancidity in rice bran but also offers significant implications for extending the shelf life and preserving the nutritional quality of RBO, aligning with the increasing global interest in this high-quality oil.
Collapse
Affiliation(s)
- Xuan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weifei Wang
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China.
| | - Zhong Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Long Xu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Youmei Institute of Inteligent Bio-manufacturing Co., Ltd, Foshan, Guangdong 528200, China.
| |
Collapse
|
4
|
Guo Y, Wang N, Wang D, Luo S, Zhang H, Yu D, Wang L, Elfalleh W, Liao C. Preparation of vacuum-assisted conjugated linoleic acid phospholipids under nitrogen: Mechanism of acyl migration of lysophospholipids. Food Chem 2024; 436:137680. [PMID: 37832416 DOI: 10.1016/j.foodchem.2023.137680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/26/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Sn-Glycerol-3-phosphatidylcholine (GPC) was prepared by hydrolysis of phosphatidylcholine (PC) catalyzed by phospholipase A1 (PLA1). Nitrogen flow assisted the esterification of conjugated linoleic acid (CLA) and GPC to produce conjugated linoleic acid lysophosphatidylcholine (LPC - CLA). The effects of different reaction conditions on the PC conversion and acyl migration rates were investigated, and the acyl migration mechanism under acidic and alkaline conditions was studied. In addition, the optimum conditions for the esterification of CLA and GPC were selected. The optimal condition for the hydrolysis of PC was an enzyme loading of 5 %, pH of 5, reaction temperature of 50 ℃, and reaction time of 3 h. The results also showed that the maximum esterification rate reached 82.37 % at an enzyme loading of 15 %, CLA/GPC molar ratio of 50:1, and vacuum pressure of 13.3 kPa. This study not only improved the bioavailability of PC but also effectively increased the content of LPC - CLA.
Collapse
Affiliation(s)
- Yanfei Guo
- School of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ning Wang
- School of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Donghua Wang
- School of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Shunian Luo
- School of Food Science, Harbin University of Commerce, Harbin, 150000, China
| | - Hongwei Zhang
- School of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Liqi Wang
- School of Food Science, Harbin University of Commerce, Harbin, 150000, China
| | - Walid Elfalleh
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, Zrig, 6072, Gabes, Tunisia
| | - Changbao Liao
- Heilongjiang Red Star Group Food Co., LTD, Mudanjiang, 157000, China
| |
Collapse
|
5
|
Liu W, Deng Y, Zhao Z, Wei Z, Zhang Y, Tang X, Liu G, Li P, Zhou P, Zhang M. Use of different approaches for deacidification of high-acid rice bran oil: A comparison of glyceride lipid profiles. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Contribution of endogenous minor components in the oxidative stability of rice bran oil. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01602-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Design of functional glycerol-based deep eutectic solvents as reaction media for enzymatic deacidification of high-acid rice bran oil. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Yin Y, Fei X, Tian J, Xu L, Li Y, Wang Y. Synthesis of lipase-hydrogel microspheres and their application in deacidification of high-acid rice bran oil. NEW J CHEM 2022. [DOI: 10.1039/d2nj03761k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The main challenge of rice bran oil (RBO) as a highly nutritional edible oil is the high content of free fatty acids.
Collapse
Affiliation(s)
- Yawen Yin
- Instrumental Analysis Center, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian, 116034, China
- School of Biological Engineering, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian, 116034, China
| | - Xu Fei
- Instrumental Analysis Center, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian, 116034, China
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian, 116034, China
| | - Longquan Xu
- Instrumental Analysis Center, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian, 116034, China
| | - Yao Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian, 116034, China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian, 116034, China
| |
Collapse
|
9
|
Yang F, Wang M, Chao X, Yan X, Zhang W, Yuan C, Zeng Q. Rice bran oil deacidification by immobilized Aspergillus Niger lipase catalyzed esterification with D-isoascorbic acid. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Li D, Zhang J, Faiza M, Shi L, Wang W, Liu N, Wang Y. The enhancement of rice bran oil quality through a novel moderate biorefining process. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Wang X, Wang X, Xie D. A novel method for oil deacidification: Chemical amidation with ethanolamine catalyzed by calcium oxide. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|