1
|
Zhang F, Yu X, Tian Y, Zeng J, Zhuang P, Jia W, Zhang Y. Joint control of multiple food processing contaminants in Maillard reaction: A comprehensive review of health risks and prevention. Compr Rev Food Sci Food Saf 2025; 24:e70138. [PMID: 39929674 DOI: 10.1111/1541-4337.70138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 05/08/2025]
Abstract
There is an urgent need to address food safety concerns associated with multiple Maillard reaction‒derived chemical contaminants, such as acrylamide, heterocyclic aromatic amines, advanced glycation end products, and 5-hydroxymethylfurfural, which are present in processed foods. Current studies have focused on single contaminant generated by the Maillard reaction; however, there is a dearth of information regarding the interactions of multiple contaminants and their joint control methods. This review article comprehensively summarizes the state-of-the-art progress in the simultaneous analysis, coformation, joint hazardous control, and risk assessment of multiple food processing contaminants generated by the Maillard reaction. The Maillard reaction is associated with caramelization, lipid oxidation, protein oxidation, and ascorbic acid browning reactions. Mass spectrometry‒based chromatography is currently the preferred method for the simultaneous quantification of multiple contaminants, with metabolomics and indirect detection methodologies providing new insights. Mitigation strategies for multiple contaminants include optimizing pretreatment, introducing exogenous additives, regulating processing parameters, and utilizing emerging technologies. Limited animal studies on the metabolism of various contaminants have yielded diverse results, guided by biomarkers for deep understanding. Integrated risk assessment should be conducted to quantify multihazard health impacts. In future research, a unique framework should be developed for assessing multiple contaminants, characterizing their metabolic profiles, and optimizing control measures for Maillard reaction‒derived contaminants.
Collapse
Affiliation(s)
- Fan Zhang
- Zhejiang Key Laboratory of Agri-Food Resources and High-Value Utilization, National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xiaomei Yu
- Zhejiang Key Laboratory of Agri-Food Resources and High-Value Utilization, National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yimei Tian
- Zhejiang Key Laboratory of Agri-Food Resources and High-Value Utilization, National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jia Zeng
- Zhejiang Key Laboratory of Agri-Food Resources and High-Value Utilization, National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Pan Zhuang
- Zhejiang Key Laboratory of Agri-Food Resources and High-Value Utilization, National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Wei Jia
- Zhejiang Key Laboratory of Agri-Food Resources and High-Value Utilization, National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yu Zhang
- Zhejiang Key Laboratory of Agri-Food Resources and High-Value Utilization, National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Liu Z, Dong G, Liu J, Wang L, Chen Q, Wang Z, Zeng M, He Z, Chen J, Hu W, Pan H. Screening of strains from pickles and evaluation of characteristics of different methods of fast and low salt fermented mustard leaves (Brassica juncea var. multiceps). Food Res Int 2025; 201:115557. [PMID: 39849706 DOI: 10.1016/j.foodres.2024.115557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/17/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
The aim of this study was to isolate strains with excellent fermentation performance from pickles, thus enhancing the quality of rapid, low-salt fermented mustard leaves (Brassica juncea var. multiceps) through process optimization and inoculation fermentation. A high-throughput screening method for acid-producing strains was developed, significantly improving screening efficiency. Lactiplantibacillus plantarum CS8 and Saccharomyces cerevisiae CX1, were selected for their superior fermentation performance and used in subsequent fermentation. Four fermentation methods (spontaneous fermentation, optimized spontaneous fermentation, co-fermentation, and two-phase fermentation) were compared for fermenting fresh mustard leaves at 30 °C for 5 days. Compared to spontaneous fermentation, the other methods resulted in lower pH, higher acid production, and reduced nitrite content, thereby enhancing food safety. Significant variations in metabolites (volatiles, organic acids, and free amino acids) were observed among the groups, with the two-phase fermentation method showing the most favorable changes. Sensory evaluation and microbial community analysis further indicated that the two-phase fermentation achieved higher scores for flavor, taste and overall acceptability, while also shortening the fermentation period and improving both flavor and safety. Therefore, inoculation with these two strains using the two-phase fermentation method can efficiently produce high-quality pickle products in a short time. This research contributes to the industrial production of fermented vegetables, enhancing both pickle quality and economic benefits.
Collapse
Affiliation(s)
- Zhenheng Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Gaofeng Dong
- Technology Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming 650202, China
| | - Jing Liu
- Technology Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming 650202, China
| | - Lei Wang
- Technology Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming 650202, China
| | - Qiuming Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weiyao Hu
- Technology Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming 650202, China.
| | - Hongyang Pan
- Analysis and Testing Center, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Wang W, Zeng M, Chen Q, Wang Z, He Z, Chen J. Influence of Phosphate Marinades on the Quality and Flavor Characteristics of Prepared Beef. Molecules 2025; 30:202. [PMID: 39795258 PMCID: PMC11721332 DOI: 10.3390/molecules30010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/04/2025] [Accepted: 01/04/2025] [Indexed: 01/13/2025] Open
Abstract
Phosphate has been widely used in beef to improve processing characteristics such as tenderness and water-holding capacity. However, the effects of phosphates on the quality and especially the flavor of beef are not well understood. This study investigated the influence of eight different phosphate marinade solutions on the quality and flavor of prepared beef. The results revealed that the thawing loss in the control group was 11.47%, and NaCl with sodium hexametaphosphate (SYCP) had the lowest thawing loss, with a value of 2.13%, which was reduced by 81.43% as compared to the control group. The shear force of the control group was 3.85 kg, and the shear work was 10.03 kg. The best tenderness was recorded in the NaCl with sodium hexametaphosphate (SYST) group, which had a shear force of 1.14 kg and shear work of 3.34 kg. The incorporation of phosphates suppressed fat oxidation and increased the total free amino acid content. Additionally, the levels of certain key volatile flavor compounds, particularly those associated with fat oxidation, such as hexanal, heptanal, octanal, and nonanal, were reduced. In terms of sensory evaluation, juiciness, flavor, tenderness, and overall acceptability in the treatment group were significantly increased (p < 0.05). Overall, the results indicate that adding phosphates can enhance the quality of processed beef, inhibit lipid oxidation, and improve sensory evaluation.
Collapse
Affiliation(s)
- Wanqi Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (W.W.); (M.Z.); (Q.C.); (Z.W.); (Z.H.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (W.W.); (M.Z.); (Q.C.); (Z.W.); (Z.H.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (W.W.); (M.Z.); (Q.C.); (Z.W.); (Z.H.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (W.W.); (M.Z.); (Q.C.); (Z.W.); (Z.H.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (W.W.); (M.Z.); (Q.C.); (Z.W.); (Z.H.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (W.W.); (M.Z.); (Q.C.); (Z.W.); (Z.H.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Zhu R, Wang L, Chao A, Fan F, Wang M, Zhao Y. Effect and mechanisms of thermal sterilization methods on the in vitro phenolic bioaccessibility of rose tea with milk. Food Chem 2024; 458:140248. [PMID: 38944930 DOI: 10.1016/j.foodchem.2024.140248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Rose polyphenols, key functional components in roses, require adequate bioaccessibility for their health benefits, subject to influence by food components and processing. Investigating the impact of various thermal sterilization methods on the bioaccessibility of rose polyphenols in rose tea with milk and the underlying mechanisms, our findings indicated a significant increase in bioaccessibility following treatment at 85 °C/30 min. Conversely, 121 °C/15 min treatment decreased bioaccessibility. Examining the interaction between β-casein in milk and rose polyphenols under different sterilization conditions, SEM and particle size analysis revealed binding, with fluorescence spectroscopy indicating non-covalent bonds. Binding forces followed the order 121 °C > 85 °C > 25 °C. Notably, at 85 °C, non-covalent binding improved polyphenol bioaccessibility, while the intensified binding at 121 °C decreased it. SDS-PAGE and amino acid analysis confirmed no covalent bond. This study establishes a theoretical basis for selecting thermal sterilization temperatures for milk-flower combinations, considering polyphenol bioaccessibility.
Collapse
Affiliation(s)
- Ruifang Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | | | - Ailun Chao
- Shanghai Center for Adverse Drug and Medical Device Reaction Monitoring, Shanghai, China
| | - Fangyu Fan
- College of Life Sciences, Southwest Forestry University, Kunming, Yunnan, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Sipahi S, Barak TH, Can Ö, Temur BZ, Baş M, Sağlam D. Garlic Extract Increased Acrylamide Formation in French Fries Obtained by Different Cooking Methods. Foods 2024; 13:2769. [PMID: 39272534 PMCID: PMC11394623 DOI: 10.3390/foods13172769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Fried potato products are the largest dietary source of acrylamide, a potential carcinogen formed at high temperatures. Previous studies suggested that garlic powder could decrease the development of acrylamide; however, there has not been much focus on the effect of garlic extract. The aim of this study was to investigate the effect of garlic extract exposure on the development of acrylamide in French fries in popular home cooking techniques such as pan-frying, air-frying, and oven-frying. Initially, the antioxidative profile, total phenolic content, and chlorogenic acid content of garlic were analyzed. Subsequently, potatoes were treated with garlic extract and fried using pan-frying, air-frying, and oven-frying techniques. Acrylamide levels were then quantified through HPLC and compared to control groups. The findings showed that garlic exposure increased the acrylamide formation in French fries obtained with air-frying (311.95 ± 0.5 μg/kg) and with oven-frying (270.32 ± 23.4 μg/kg) (p < 0.005 *). This study offers new insights into varying acrylamide formation levels in domestic practices. Unlike previous studies, this study is the first to question the effect of aqueous garlic extract exposure. Further research is required to comprehend the interaction between garlic exposure and acrylamide formation in household settings.
Collapse
Affiliation(s)
- Simge Sipahi
- Department of Nutrition and Dietetics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Timur Hakan Barak
- Department of Pharmacognosy, Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Özge Can
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Betül Zehra Temur
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Murat Baş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Duygu Sağlam
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| |
Collapse
|
6
|
Zou H, Deng C, Li J, Lou A, Liu Y, Luo J, Shen Q, Quan W. Quantitative Proteomics Reveals the Relationship between Protein Changes and Volatile Flavor Formation in Hunan Bacon during Low-Temperature Smoking. Foods 2024; 13:1360. [PMID: 38731730 PMCID: PMC11083045 DOI: 10.3390/foods13091360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
This study aimed to investigate the changes in proteins and volatile flavor compounds that occur in bacon during low-temperature smoking (LTS) and identify potential correlations between these changes. To achieve this, a combination of gas chromatography-mass spectrometry and proteomics was employed. A total of 42 volatile flavor compounds were identified in the bacon samples, and, during LTS, 11 key volatile flavor compounds with variable importance were found at a projection value of >1, including 2',4'-dihydroxyacetophenone, 4-methyl-2H-furan-5-one, Nonanal, etc. In total, 2017 proteins were quantified at different stages of LTS; correlation coefficients and KEGG analyses identified 27 down-regulated flavor-related proteins. Of these, seven were involved in the tricarboxylic acid (TCA) cycle, metabolic pathways, or amino acid metabolism, and they may be associated with the process of flavor formation. Furthermore, correlation coefficient analysis indicated that certain chemical parameters, such as the contents of free amino acids, carbonyl compounds, and TCA cycle components, were closely and positively correlated with the formation of key volatile flavor compounds. Combined with bioinformatic analysis, the results of this study provide insights into the proteins present in bacon at various stages of LTS. This study demonstrates the changes in proteins and the formation of volatile flavor compounds in bacon during LTS, along with their potential correlations, providing a theoretical basis for the development of green processing methods for Hunan bacon.
Collapse
Affiliation(s)
- Huiyu Zou
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.D.); (J.L.); (A.L.); (Y.L.); (J.L.)
| | - Chuangye Deng
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.D.); (J.L.); (A.L.); (Y.L.); (J.L.)
| | - Junnian Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.D.); (J.L.); (A.L.); (Y.L.); (J.L.)
| | - Aihua Lou
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.D.); (J.L.); (A.L.); (Y.L.); (J.L.)
| | - Yan Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.D.); (J.L.); (A.L.); (Y.L.); (J.L.)
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.D.); (J.L.); (A.L.); (Y.L.); (J.L.)
| | - Qingwu Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.D.); (J.L.); (A.L.); (Y.L.); (J.L.)
| | - Wei Quan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (C.D.); (J.L.); (A.L.); (Y.L.); (J.L.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Xu K, Zhang Z, Jiang K, Yang A, Wang T, Xu L, Li X, Zhang X, Meng F, Wang B. Elucidating the effect of different processing methods on the sensory quality of chestnuts based on multi-scale molecular sensory science. Food Chem 2024; 431:136989. [PMID: 37572488 DOI: 10.1016/j.foodchem.2023.136989] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/14/2023]
Abstract
Chestnuts are known for their unique flavor and nutritional value. However, the flavor changes in chestnuts after processing remain unclear. Multi-intelligent sensory technologies and headspace solid-phase microextraction-arrow gas chromatography-mass spectrometry (HS-SPME-Arrow-GC-MS) combined with multivariate statistical analysis were applied to evaluate the effect of packaging and heat sterilization procedures on the sensory quality of chestnuts. The results showed that the significant variations (p < 0.05) between the different chestnut processing methods were revealed via the electronic eye (E-eye), electronic nose (E-nose), and electronic tongue (E-tongue). The packaging had a more significant influence on the sensory quality of the chestnuts than heat sterilization procedures. HS-SPME-Arrow-GC-MS identified 83 volatile compounds. The processed chestnuts exhibited higher aldehyde, ester, and alkene concentrations, while N2 packaging was more favorable to flavor elicitation and retention. Therefore, combining intelligent sensory techniques with GC-MS can rapidly determine the chestnut quality and guide industrial production.
Collapse
Affiliation(s)
- Kunli Xu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Zheting Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Kexin Jiang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Aolin Yang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Tielong Wang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Lingyun Xu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Xiaodong Li
- Shimadzu CO., LTD., China Innovation Center, Beijing 100020, China
| | - Xiaoli Zhang
- Shimadzu CO., LTD., China Innovation Center, Beijing 100020, China
| | - Fanyu Meng
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Bei Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
8
|
Shen X, Liu X, Wang X, Xue C, Chai Z, Zeng M, Chen J. Effect of Angelica dahurica, Angelica dahurica polysaccharides, and imperatorin on free and bound heterocyclic amine generation in roasted beef patties and release profiles of bound heterocyclic amines during in vitro digestion. Food Res Int 2024; 175:113639. [PMID: 38129016 DOI: 10.1016/j.foodres.2023.113639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 12/23/2023]
Abstract
This study explored the suppressive activity of Angelica dahurica (AD), AD polysaccharides, and imperatorin on free and bound heterocyclic amine (HA) formation in roast beef patties and release profiles of bound HAs during in vitro digestion. The suppressive effects and potential mechanisms associated with free radical quenching were explored using UPLC-MS/MS, multivariate statistical analysis, and electron paramagnetic resonance (EPR). AD (0.5%, 1.0%, and 1.5%) and imperatorin (0.005%, 0.010%, and 0.015%) showed a dose-dependent inhibition for both free and bound HAs, with AD polysaccharides showing a slight inhibitory capacity. The maximum inhibition of free and bound HAs was 36.31% (1.5% AD) and 35.68% (0.015% imperatorin). The EPR results demonstrated that alkyl radicals and 1O2 were the pivotal free radicals for HAs. Furthermore, AD and imperatorin dose-dependently decreased the level of these radicals. Intriguingly, after in vitro digestion, only AD polysaccharides significantly inhibited the release of bound HAs, with imperatorin even facilitating the release process. In this study, the capacity of the AD polysaccharide to suppress the release of bound HAs and the ability of AD and imperatorin to inhibit free and bound HAs in beef patties were identified for the first time.
Collapse
Affiliation(s)
- Xing Shen
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Xiuxiu Liu
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xuemei Wang
- College of Geographical Science and Tourism, Xinjiang Normal University, Urumqi 830052, China
| | - Chaoyi Xue
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| | - Zhongping Chai
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Du H, Huang T, Zeng M, Shen Q, Jiao Y, Quan W. Inhibitory Effects of Some Hydrocolloids on the Formation of Advanced Glycation End Products and Heterocyclic Amines in Chemical Models and Grilled Beef Patties. Polymers (Basel) 2023; 15:3914. [PMID: 37835963 PMCID: PMC10574993 DOI: 10.3390/polym15193914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Effectively inhibiting the formation of heterocyclic amines (HAs) and advanced glycation end products (AGEs) is crucial to human health. In the present study, chemical model systems were used to evaluate the inhibitory effects of seven hydrocolloids on HA and AGE formation. The results showed that hydrocolloids effectively inhibited the formation of two major AGEs. However, their inhibitory action against HA formation showed unexpected results, wherein alginic acid, carrageenan and konjac glucomannan promoted the formation of 2-Amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP), harmane, norharmane and 2-amino-3,8-dimethyl-imidazo [4,5-f]-quinoline (MeIQx). Only chitosan and pectin showed significant inhibitory effects on HAs, reducing HA levels by 34.5-56.3% and 30.1-56.6%, respectively. In grilled beef patties, the addition of 1.5% chitosan and pectin significantly decreased AGE and HA content by 53.8-67.0% and 46.9-68.1%, respectively. Moreover, it had a limited impact on quality and sensory properties. Further mechanism studies conducted in model systems revealed that chitosan and pectin decreased the formation of key intermediates of AGEs and HAs. These findings suggest that chitosan and pectin are powerful inhibitors against AGE and HA formation with minimal impact on food quality. Therefore, their application in meat preparation and processing could effectively decrease human dietary exposure to HAs and AGEs.
Collapse
Affiliation(s)
- Hongfei Du
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.D.); (Q.S.)
| | - Tiantian Huang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.D.); (Q.S.)
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qingwu Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.D.); (Q.S.)
| | - Ye Jiao
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China;
| | - Wei Quan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.D.); (Q.S.)
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China;
| |
Collapse
|
10
|
Tang X, Zhang Y, Li F, Zhang N, Yin X, Zhang B, Zhang B, Ni W, Wang M, Fan J. Effects of traditional and advanced drying techniques on the physicochemical properties of Lycium barbarum L. polysaccharides and the formation of Maillard reaction products in its dried berries. Food Chem 2023; 409:135268. [PMID: 36592603 DOI: 10.1016/j.foodchem.2022.135268] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
This study explored the effect of three different industrial drying methods on the physicochemical, nutritional, and safety profile of goji berries. The hot-air (HD) and microwave drying (MD) methods yielded berries with relatively high polysaccharide content, while vacuum freeze-drying (FD) yielded dried berries with better sensory qualities but relatively less polysaccharide content. The polysaccharides obtained from the HD and MD berries had lower molecular weight, high antioxidant activity and high degrees of Maillard reaction. Further investigations revealed that all three methods, in particular HD and MD, generated high levels of intermediate Maillard reaction products (55.8-86.3 mg/kg) and advanced glycation end-products (fluorescent intensity of 26784-51712), based on significant reduction of reducing sugar and amino acids in the HD and MD berries (p < 0.05). These findings highlight the need to scrutinize the effectiveness of traditional and emerging drying technologies used to produce safe fruits.
Collapse
Affiliation(s)
- Xiaomin Tang
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Yaqiong Zhang
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Feiyang Li
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Na Zhang
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyu Yin
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Bo Zhang
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Bolin Zhang
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Wenrui Ni
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Mengze Wang
- School of Food & Wine, Ningxia University, Yinchuan 750021, China.
| | - Junfeng Fan
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
11
|
Feng Y, Shi Y, Huang R, Wang P, Li G. Simultaneous detection of heterocyclic aromatic amines and acrylamide in thermally processed foods by magnetic solid-phase extraction combined with HPLC-MS/MS based on cysteine-functionalized covalent organic frameworks. Food Chem 2023; 424:136349. [PMID: 37244185 DOI: 10.1016/j.foodchem.2023.136349] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023]
Abstract
Acrylamide (AA) and heterocyclic aromatic amines (HAAs), as classic hazards produced during food thermal processing, have been widely concerned, but because of their polarity difference, it is very difficult to detect these contaminants simultaneously. Herein, novel cysteine (Cys)-functionalized magnetic covalent organic frameworks (Fe3O4@COF@Cys) were synthesized via a thiol-ene click strategy and then used as adsorbents for magnetic solid-phase extraction (MSPE). Benefiting from the hydrophobic properties of COFs and the modification of hydrophilic Cys, AA and HAAs could be enriched simultaneously. Then, a rapid and reliable method based on MSPE coupled with HPLC-MS/MS was developed for the simultaneous detection of AA and 5 HAAs in thermally processed foods. The proposed method showed good linearity (R2 ≥ 0.9987) with satisfactory limits of detection (0.012-0.210 μg kg-1) and recoveries (90.4-102.8%). Actual sample analysis showed that the levels of AA and HAAs in French fries were affected by frying time and temperature, water activity of samples, content and type of reaction precursors, and reuse of oils.
Collapse
Affiliation(s)
- Yanmei Feng
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yiheng Shi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Rui Huang
- Zhongken Huashanmu Dairy Co., Ltd, Weinan 714019, China
| | - Panpan Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
12
|
Dong R, Zhu M, Long Y, Yu Q, Li C, Xie J, Huang Y, Chen Y. Exploring correlations between green coffee bean components and thermal contaminants in roasted coffee beans. Food Res Int 2023; 167:112700. [PMID: 37087268 DOI: 10.1016/j.foodres.2023.112700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
This study evaluated chemical compositions of green coffee beans from multi-production regions and correlated this information with thermal contaminants in roasted coffee. Using multivariate statistical techniques, formation of 5-hydroxymethylfurfural (5-HMF), furan, 2- and 3-methylfuran were positively correlated with lipid, sucrose, glutamic acid, phenylalanine, margaric acid, linolenic acid and trigonelline in green coffee beans. Moreover, significant positive correlations between acrylamide (AA) levels with aspartic acid, serine, alanine, histidine, asparagine, protein, and caffeine was found in green beans. Despite this, 5-HMF, furan, 2- and 3-methylfuran showed negative correlations with active constitutes (neochlorogenic acid, cryptochlorogenic acid, caffeine, total phenolics (TPC) and total flavonoids contents (TFC)), and several amino acids, and there were slight negative relationships between AA and myristic acid, palmitic acid, chlorogenic acid, sucrose, lipid, TPC and TFC. This study provides valuable enlightenment for the selection of proper coffee beans for production of coffee with high nutrition and low chemical hazardous risks.
Collapse
|
13
|
LOU PX, ZHANG WW, CAO H, THAKUR K, SHANG YF, ZHANG JG, WEI ZJ. Insights into sub-chronic toxicity effects of enzymatic hydrolysate of peony seed meal derived Maillard reaction products in SD rats. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.99622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | - Heng CAO
- Hefei University of Technology, China
| | - Kiran THAKUR
- Hefei University of Technology, China; North Minzu University, China
| | - Ya-Fang SHANG
- Hefei University of Technology, China; North Minzu University, China
| | - Jian-Guo ZHANG
- Hefei University of Technology, China; North Minzu University, China
| | - Zhao-Jun WEI
- Hefei University of Technology, China; North Minzu University, China
| |
Collapse
|
14
|
Xue C, Li Y, Quan W, Deng P, He Z, Qin F, Wang Z, Chen J, Zeng M. Simultaneous alleviation of acrylamide and methylimidazole accumulation in cookies by Rhizoma kaempferiae and kaempferol and potential mechanism revealed by density functional theory. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Deng P, Chen Y, Xie S, Xue C, He Z, Chen Q, Wang Z, Qin F, Chen J, Zeng M. Accumulation of Heterocyclic Amines and Advanced Glycation End Products in Various Processing Stages of Plant-Based Burgers by UHPLC-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14771-14783. [PMID: 36374967 DOI: 10.1021/acs.jafc.2c06393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The accumulation of heterocyclic amines (HAs) and advanced glycation end products (AGEs) during different processing stages was investigated in commercial raw materials to plant-based hamburger meats (PBHMs). Principal component analysis (PCA) was performed to explore the difference between the samples of each processing stage. The total free HA level accumulated from 4.74-6.63 ng/g in raw plant proteins to 5.81-20.23 ng/g in textured vegetable proteins after extrusion. The concentration of MeAαC increased from 29.23 ± 3.50 to 59.44 ± 0.26 ng/g, resulting in an accumulation of the total protein-bound HAs after cooking at 160 °C for 6 min, but the MeAαC content decreased to 42.26 ± 0.11 ng/g when the heating duration was prolonged to 12 min. An evident accumulation of AGEs was observed during the thermal home-processing of PBHM. The total levels for all HAs were 381.30 and 160.30 ng/g in roast beef patty (RBP) and PBHM, respectively, with RBP having a better amino acid composition pattern. These results may reveal the target processing stage, which should be paid attention to for the inhibition of Maillard reaction derivative harmful products (MRDHPs) in plant-based meat products.
Collapse
Affiliation(s)
- Peng Deng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Siying Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Chaoyi Xue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
16
|
The Influence of Deep Eutectic Solvents Extract from Ginger on the Formation of Heterocyclic Amines and Advanced Glycation End Products in Roast Beef Patties. Foods 2022. [PMCID: PMC9601597 DOI: 10.3390/foods11203161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Heterocyclic amines (HAs) and advanced glycation end products (AGEs) are important harmful products formed simultaneously during the thermal processing of food. In order to develop a green, efficient method that can be used to control the production of two harmful products simultaneously in food processing. In the present study, deep eutectic solvents (DESs) were used to extract ginger, and this method produced significantly higher levels of total phenolic and flavonoid content as well as an antioxidant activity than ginger extracted using conventional solvents. Herein, we further investigated the inhibitory effects of DES extracts from ginger on the generation of HAs and AGEs in roast beef patties. All the nine DES extracts reduced the formation of HAs and AGEs, and the application of choline chloride–lactic-acid-based DES extract caused a signification reduction of 44.33%, 29.38%, 50.95%, 78.61%, 21.94%, and 17.52% of the PhIP, MeIQx, MeIQ, 4,8-DiMeIQx, Harmane, and Norhamane content, and those for Nε-(carboxymethyl)lysine (CML) and Nε-(carboxyethyl)lysine (CEL) were 49.08% and 58.50%, respectively. Furthermore, the proximate and texture profile changes of beef patties as well as the precursors (creatine, creatinine, and glucose) of HAs and AGEs were evaluated to determine the mechanism of ginger DES extracts on the formation of HAs and AGEs and the physical/chemical changes of ginger DES extracts on beef patties. This study develops a new method for reducing the amount of HAs and AGEs in meat, which will help food manufacturers produce healthier meat products.
Collapse
|
17
|
Xue C, Li Y, Quan W, Deng P, He Z, Qin F, Wang Z, Chen J, Zeng M. Unraveling inhibitory effects of Alpinia officinarum Hance and curcumin on methylimidazole and acrylamide in cookies and possible pathways revealed by electron paramagnetic resonance. Food Chem 2022; 389:133011. [PMID: 35500409 DOI: 10.1016/j.foodchem.2022.133011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/13/2022] [Accepted: 04/17/2022] [Indexed: 11/04/2022]
Abstract
The synchronous mitigative effects of Alpinia officinarum Hance (AOH) and curcumin on the generation of methylimidazole and acrylamide in cookies were investigated. Possible mechanisms related to quenching free radicals, reducing lipid oxidation and eliminating carbonyl intermediates were explored by electron paramagnetic resonance (EPR) and HPLC. The total methylimidazole and acrylamide contents raised with an increase in heating temperature and time, and reached a maximum at 200 °C for 11 min. AOH and curcumin reduced methylimidazole and acrylamide simultaneously; the maximum inhibition rates for methylimidazole and acrylamide were 51.55% (0.015% curcumin) and 73.66% (1.5% AOH). Alkyl free radicals and HO· were proved to be the critical free radicals for methylimidazole and acrylamide, AOH and curcumin quenched these radicals in a dose-dependent manner. The lipid oxidation, active carbonyl intermediates glyoxal, methylglyoxal, and acrylaldehyde were also reduced by AOH and curcumin simultaneously, which may be resulted from the quenching of free radicals.
Collapse
Affiliation(s)
- Chaoyi Xue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Quan
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Peng Deng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
18
|
Conte G, Dimauro C, Daghio M, Serra A, Mannelli F, McAmmond BM, Van Hamme JD, Buccioni A, Viti C, Mantino A, Mele M. Exploring the relationship between bacterial genera and lipid metabolism in bovine rumen. Animal 2022; 16:100520. [PMID: 35468508 DOI: 10.1016/j.animal.2022.100520] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/01/2022] Open
Abstract
The rumen is characterised by a complex microbial ecosystem, which is particularly active in lipid metabolism. Several studies demonstrated a role of diet and breed on bacterial community profile, with the effect on metabolic pathways. Despite the knowledge achieved on metabolism and the bacterial profile, little is known about the relationship between individual bacteria and metabolic pathways. Therefore, a multivariate approach was used to search for possible relationships between bacteria and products of several pathways. The correlation between rumen bacterial community composition and rumen lipid metabolism was assessed in 40 beef steers (20 Maremmana and 20 Aubrac) reared with the same system and fed the same diet. A canonical discriminant analysis combined with a canonical correlation analysis (CCA) was performed to explore this correlation. The variables showing a Pearson correlation higher than 0.6 as absolute value and significant were retained for CCA considering the relationship of bacterial composition with several metabolic pathways. The results indicated that some bacterial genera could have significant impacts on the presence of several fatty acids. However, the relationship between genera and fatty acid changes according to the breed, demonstrating that the metabolic pathways change according to the host genetic background, related to breed evolution, although there is also an intra-breed genetic background which should not be ignored. In Maremmana, Succiniclasticum and Rikenellaceae_RC9_gut_group showed a high positive correlation with dimethylacetals (DMAs) DMAC13:0, DMAC14:0, DMAC14:0iso, DMAC15:0, DMAC15:0iso, and DMAC18:0. Prevotellaceae_UCG-003 correlates with C18:3c9c12c15 and C18:1t11, while Fibrobacter and Succiniclasticum correlate with C18:2c9t11 and Lachnospiraceae_NK3A20_group correlates with C18:1c12. Prevotellaceae_UCG-003, Ruminococcaceae_UCG-010, and Oribacterium showed a positive correlation with C13:0iso, and C17:0. Conversely, in Aubrac, Treponema_2 and Rikenellaceae_RC9_gut_group correlated with DMAC14:0iso, DMAC16:0iso, DMAC17:0iso, while Ruminococcaceae_UCG-010, Christensenellaceae_R-7_group and Ruminococcaceae_NK4A214_group correlated with DMAC18:1t11, DMAC14:0, DMAC18:1c12. Acetitomaculum correlated with C18:2c9c12, C18:1c12, C18:1c13, C18:1t12 and Lachnospiraceae_NK3A20_group with C18:1t6-8 and C18:1t9. Saccharofermentas, Ruminococcaceae_UCG-010 and Rikenellaceae_RC9_gut_group correlated with C18:2c9t11 while, Prevotellaceae_UCG-001 and Ruminococcus_1 correlated with C14:0iso, C15:0, C15:0iso, C17:0. Saccharofermentans, Rikenellaceae_RC9_gut_group, Ruminococcaceae_NK4A214_group, and Ruminococcaceae_UCG-010 correlated with C13:1c12 and C16:0iso. These results lead to hypothesise a possible association between several metabolic pathways and one or a few bacterial genera. If these associations are confirmed by further investigations that verify the causality of a bacterial genus with a particular metabolic process, it will be possible to deepen the knowledge on the activity of the rumen population in lipid metabolism. This approach appears to be a promising tool for uncovering the correlation between bacterial genera and products of rumen lipid metabolism.
Collapse
Affiliation(s)
- G Conte
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - C Dimauro
- Dipartimento di Scienze Agrarie, University of Sassari, Via de Nicola 9, 07100 Sassari, Italy
| | - M Daghio
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy.
| | - A Serra
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - F Mannelli
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy
| | - B M McAmmond
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada
| | - J D Van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada
| | - A Buccioni
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy
| | - C Viti
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy
| | - A Mantino
- Istituto di Scienze della Vita, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - M Mele
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
19
|
Song Y, Ding Z, Wu Y, Zhang T, Tang Z, Yu Y, Wang Y. Formation and source analysis of potentially hazardous compounds in fried pepper sauce under different high‐temperature stir‐fry conditions. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuting Song
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province School of Liquor and Food Engineering Guizhou University Guiyang Guizhou 550025 China
| | - Zhuhong Ding
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province School of Liquor and Food Engineering Guizhou University Guiyang Guizhou 550025 China
| | - Yongjun Wu
- College of Life Sciences Guizhou University Guiyang 550025 China
| | - Ting Zhang
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province School of Liquor and Food Engineering Guizhou University Guiyang Guizhou 550025 China
| | - Zhongyue Tang
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province School of Liquor and Food Engineering Guizhou University Guiyang Guizhou 550025 China
| | - Yihong Yu
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province School of Liquor and Food Engineering Guizhou University Guiyang Guizhou 550025 China
| | - Yi Wang
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province School of Liquor and Food Engineering Guizhou University Guiyang Guizhou 550025 China
| |
Collapse
|
20
|
Dini C, Quiroga AV, Viña SZ, García MA. Extraction and Characterization of Proteins from Pachyrhizus ahipa Roots: an Unexploited Protein-Rich Crop. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:179-188. [PMID: 33755896 DOI: 10.1007/s11130-021-00890-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 05/14/2023]
Abstract
Pachyrhizus ahipa is an unexploited crop known to be rich in proteins compared to other edible roots and tubers. These proteins are not prolamins, thus ahipa represents an interesting new source of ingredients for gluten-free foods. In this work, ahipa proteins (AP) were extracted and partially characterized in pursuit of their use as food ingredients. The effect of ultrasound treatment on protein extraction efficiency was evaluated. AP were characterized by their size, amino acid composition, surface hydrophobicity, intrinsic fluorescence, FTIR spectra, solubility, and thermal and emulsifying properties. AP were efficiently removed from the vegetal tissue using PBS or water, regardless of the use of ultrasound, but not easily recovered by precipitation. This protein fraction was composed of small proteins, with sizes ranging from 9 to 30 kDa, and highly polar. AP resulted particularly rich in aspartic acid (59% of the total amino acid content), for which they can be classified as Asp-rich proteins. Their elevated content of acidic groups was evidenced in the ATR-FTIR spectrum. The amide I band deconvolution as well as the low surface hydrophobicity and denaturation enthalpy indicated that these proteins are mainly unordered structures. The emulsifying properties of AP were enhanced when the concentration was increased from 0.1 to 1% (w/v) but resulted lower than those of soy protein. The high polarity, small size, and low isoelectric point make AP particularly suitable for acidic food matrices.
Collapse
Affiliation(s)
- Cecilia Dini
- CIDCA (Centro de Investigación y Desarrollo en Criotecnología de Alimentos), Facultad de Ciencias Exactas UNLP - CONICET La Plata - CICPBA, 47 y 116 S/N, 1900, La Plata, Buenos Aires, Argentina.
| | - A V Quiroga
- CIDCA (Centro de Investigación y Desarrollo en Criotecnología de Alimentos), Facultad de Ciencias Exactas UNLP - CONICET La Plata - CICPBA, 47 y 116 S/N, 1900, La Plata, Buenos Aires, Argentina
| | - S Z Viña
- CIDCA (Centro de Investigación y Desarrollo en Criotecnología de Alimentos), Facultad de Ciencias Exactas UNLP - CONICET La Plata - CICPBA, 47 y 116 S/N, 1900, La Plata, Buenos Aires, Argentina
- Curso de Bioquímica y Fitoquímica, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, 60 y 119 S/N, 1900, La Plata, Buenos Aires, Argentina
| | - M A García
- CIDCA (Centro de Investigación y Desarrollo en Criotecnología de Alimentos), Facultad de Ciencias Exactas UNLP - CONICET La Plata - CICPBA, 47 y 116 S/N, 1900, La Plata, Buenos Aires, Argentina
| |
Collapse
|