1
|
Căpruciu R, Gheorghiu CN. Methods for Synthesis and Extraction of Resveratrol from Grapevine: Challenges and Advances in Compound Identification and Analysis. Foods 2025; 14:1091. [PMID: 40238202 PMCID: PMC11988528 DOI: 10.3390/foods14071091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Resveratrol is the most important biopotential phytoalexin of the stilbene group (natural polyphenolic secondary metabolites), synthesized naturally by the action of biotic and abiotic factors on the plant. The yield of individual bioactive compounds isolated from grapevine components, products and by-products is directly dependent on the conditions of the synthesis, extraction and identification techniques used. Modern methods of synthesis and extraction, as well as identification techniques, are centred on the use of non-toxic solvents that have the advantages of the realisation of rapid extractions, maintenance of optimal parameters, and low energy consumption; this is a challenge with promising results for various industrial applications. Actionable advances in identifying and analysing stilbenes consist of techniques for coupling synthesis/extraction/identification methods that have proven accurate, reproducible and efficient. The main challenge remains to keep resveratrol compositionally unaltered while increasing its microbiome solubility and stability as a nutraceutical in the food industry.
Collapse
Affiliation(s)
- Ramona Căpruciu
- Department of Horticulture and Food Science, Faculty of Horticulture, University of Craiova, 13 A.I. Cuza Street, 200585 Craiova, Romania;
| | | |
Collapse
|
2
|
Ge Z, Wang D, Zhao W, Wang P, Dong M, Zhao X. Characterization of Sayram ketteki freeze-dried yogurt with fortified resveratrol. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2024; 18:7388-7401. [DOI: 10.1007/s11694-024-02725-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/22/2024] [Indexed: 01/06/2025]
|
3
|
Bao X, Rong S, Fu Q, Liu H, Han Y, Liu F, Ye Z, Chen S. Zein-yeast carboxymethyl glucan particles formed by anti-solvent precipitation for encapsulating resveratrol. Int J Biol Macromol 2023; 253:127557. [PMID: 37865360 DOI: 10.1016/j.ijbiomac.2023.127557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
In the work, zein-yeast carboxymethyl glucan (ZY) particles were fabricated by a novel ultrasonic assisted anti-solvent precipitation (ASP) method, which was a good delivery system for resveratrol. The particle size and zeta-potential of ZY samples were detected by Zetasizer Pro analyzer, they gradually increased as the mass ratio of zein and yeast carboxymethyl glucan (YCG) changed from 10:1 to 10:5. The intermolecular interactions were investigated by zeta-potentiometric analyzer, Fourier transform infrared spectroscopy and fluorescence spectroscopy. Electrostatic interaction, hydrogen bonding and hydrophobic effects between zein and YCG molecules were identified as the main driving forces in the formation of ZY particles. The optimized ZY (10:3) binary particles were used as delivery system for encapsulating and protecting resveratrol. They had high encapsulation efficiency (85.4 %) and loading capacity (6.1 %), and increased the retention rate of resveratrol by 2.10 and 1.21 folds after exposure to light and heat conditions, effectively protect resveratrol against light and thermal degradation. These particles also delayed the release of resveratrol in simulated gastrointestinal digestion, which might improve its oral bioavailability. In conclusion, ZY binary particles could be regarded as a useful and promising delivery vehicle, which might contribute to the application of hydrophobic bioactive ingredients in functional foods.
Collapse
Affiliation(s)
- Xiaoying Bao
- School of Public Health, Wuhan University, 430071, China.
| | - Shuang Rong
- School of Public Health, Wuhan University, 430071, China.
| | - Qi Fu
- School of Public Health, Wuhan University, 430071, China.
| | - Hao Liu
- Hubei Provincial Center for Disease Control and Prevention, 430079, China.
| | - Yahong Han
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest Agriculture & Forestry University, Yangling, China.
| | - Zhan Ye
- School of Food Science and Technology, Jiangnan University, China.
| | - Shuai Chen
- School of Public Health, Wuhan University, 430071, China.
| |
Collapse
|
4
|
Silva PM, Gonçalves C, Pastrana LM, Coimbra MA, Vicente AA, Cerqueira MA. Recent advances in oral delivery systems of resveratrol: foreseeing their use in functional foods. Food Funct 2023; 14:10286-10313. [PMID: 37947452 DOI: 10.1039/d3fo03065b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Herein, we review the current state-of-the-art on the use of micro- and nano-delivery systems, a possible solution to some of the drawbacks associated with the incorporation of resveratrol in foods. Specifically, we present an overview of a wide range of micro-nanostructures, namely, lipidic and polymeric, used for the delivery of resveratrol. Also, the gastrointestinal fate of resveratrol-loaded micro-nanostructures, as a critical parameter for their use as functional food, is explored in terms of stability, bioaccessibility, and bioavailability. Different micro-nanostructures are of interest for the development of functional foods given that they can provide different advantages and properties to these foods and even be tailor-made to address specific issues (e.g., controlled or targeted release). Therefore, we discuss a wide range of micro-nanostructures, namely, lipidic and polymeric, used to deliver resveratrol and aimed at the development of functional foods. It has been reported that the use of some production methodologies can be of greater interest than others, for example, emulsification, solvent displacement and electrohydrodynamic processing (EHDP) enable a greater increase in bioaccessibility. Additionally, the use of coatings facilitates further improvements in bioaccessibility, which is likely due to the increased gastric stability of the coated micro-nanostructures. Other properties, such as mucoadhesion, can also help improve bioaccessibility due to the increase in gut retention time. Additionally, cytotoxicity (e.g., biocompatibility, antioxidant, and anti-inflammatory) and possible sensorial impact of resveratrol-loaded micro- and nano-systems in foods are highlighted.
Collapse
Affiliation(s)
- Pedro M Silva
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal.
- Associate Laboratory (LABBELS), Braga/Guimarães, Portugal
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Catarina Gonçalves
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Lorenzo M Pastrana
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Manuel A Coimbra
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Antonio A Vicente
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal.
- Associate Laboratory (LABBELS), Braga/Guimarães, Portugal
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| |
Collapse
|
5
|
Rai R, Nitin N. Apple-derived 3D scaffold for improving gastrointestinal viability and in-situ growth of probiotics. Food Res Int 2023; 168:112758. [PMID: 37120209 DOI: 10.1016/j.foodres.2023.112758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/21/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
This study develops a novel low-cost microbial delivery system by transforming common food materials such as apple tissue into a 3D scaffold. Apple tissue scaffold was constructed by decellularization of intact tissue using a minimal amount of sodium dodecyl sulfate (0.5 % w/v). Vacuum-assisted infusion of model probiotic Lactobacillus cells led to a high encapsulation yield of probiotic cells (1010 CFU/g of scaffold) in 3D scaffolds on a wet basis. The bio-polymer coated 3D scaffolds with infused cells significantly enhanced the survivability of infused probiotic cells during simulated gastric and intestinal digestions. In addition, imaging and plate counting results validate the growth of the infused cells in the 3D scaffold after 1-2 days of fermentation in MRS media, while cells without infusion in the scaffold had limited attachment with the intact apple tissue. Overall, these results highlight the potential of the apple tissue-derived 3D scaffold to deliver probiotic cells and include the biochemical compositions to support the growth of delivered microbial cells in the colon.
Collapse
|
6
|
de Andrade EWV, Hoskin RT, da Silva Pedrini MR. Ultrasound-assisted encapsulation of curcumin and fisetin into Saccharomyces cerevisiae cells: a multistage batch process protocol. Lett Appl Microbiol 2022; 75:1538-1548. [PMID: 36036364 DOI: 10.1111/lam.13820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/27/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022]
Abstract
Some of the challenges of yeast encapsulation protocols are low phytochemical internalization rates and limited intracellular compartment of yeasts. This study uses an ultrasound-assisted batch encapsulation (UABE) protocol to optimize the encapsulation of curcumin and fisetin by recovering non-encapsulated biomaterial and further incorporating it into non-loaded yeasts in three encapsulation stages (1ES, 2ES, and 3ES). The effect of selected acoustic energies (166.7 and 333.3 W L-1 ) on the encapsulation efficiency (EE), yield (EY), and antioxidant activity retention were evaluated, and then, compared with a control process (without ultrasound treatment). Compared to the control, enhanced EEs were achieved for both curcumin (10.9% control to 58.5% UABE) and fisetin (18.6% control to 76.6% UABE) after 3ES and the use of 333.3 W L-1 . Similarly, the yeast maximum loading capacity was improved from 6.6 to 13.4 mg g-1 for curcumin; and from 11.1 to 26.4 mg g-1 for fisetin after UABE protocol. The antioxidant activity of produced biocapsules was positively correlated with the bioactive loaded content of yeasts when ultrasound treatment was applied. Overall, results from this study provide valuable information regarding UABE processes, and moreover, bring new and creative perspectives for the ultrasound technology in the food industry.
Collapse
Affiliation(s)
- Eduardo Wagner Vasconcelos de Andrade
- Bioprocess Laboratory, Chemical Engineering Department, Universidade Federal do Rio Grande do Norte, Lagoa Nova, 59078-900, Natal, RN, Brazil.,Laboratory of Bioactive Compounds, Chemical Engineering Department, Universidade Federal do Rio Grande do Norte, Lagoa Nova, 59078-900, Natal, RN, Brazil
| | - Roberta Targino Hoskin
- Laboratory of Bioactive Compounds, Chemical Engineering Department, Universidade Federal do Rio Grande do Norte, Lagoa Nova, 59078-900, Natal, RN, Brazil
| | - Márcia Regina da Silva Pedrini
- Bioprocess Laboratory, Chemical Engineering Department, Universidade Federal do Rio Grande do Norte, Lagoa Nova, 59078-900, Natal, RN, Brazil
| |
Collapse
|
7
|
Barber TM, Kabisch S, Randeva HS, Pfeiffer AFH, Weickert MO. Implications of Resveratrol in Obesity and Insulin Resistance: A State-of-the-Art Review. Nutrients 2022; 14:nu14142870. [PMID: 35889827 PMCID: PMC9320680 DOI: 10.3390/nu14142870] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Resveratrol is a polyphenol chemical that naturally occurs in many plant-based dietary products, most notably, red wine. Discovered in 1939, widespread interest in the potential health benefits of resveratrol emerged in the 1970s in response to epidemiological data on the cardioprotective effects of wine. Objective: To explore the background of resveratrol (including its origins, stability, and metabolism), the metabolic effects of resveratrol and its mechanisms of action, and a potential future role of dietary resveratrol in the lifestyle management of obesity. Data sources: We performed a narrative review, based on relevant articles written in English from a Pubmed search, using the following search terms: “resveratrol”, “obesity”, “Diabetes Mellitus”, and “insulin sensitivity”. Results: Following its ingestion, resveratrol undergoes extensive metabolism. This includes conjugation (with sulfate and glucuronate) within enterocytes, hydrolyzation and reduction within the gut through the action of the microbiota (with the formation of metabolites such as dihydroresveratrol), and enterohepatic circulation via the bile. Ex vivo studies on adipose tissue reveal that resveratrol inhibits adipogenesis and prevents the accumulation of triglycerides through effects on the expression of Peroxisome Proliferator-activated Receptor γ (PPARγ) and sirtuin 1, respectively. Furthermore, resveratrol induces anti-inflammatory effects, supported by data from animal-based studies. Limited data from human-based studies reveal that resveratrol improves insulin sensitivity and fasting glucose levels in patients with Type 2 Diabetes Mellitus and may improve inflammatory status in human obesity. Although numerous mechanisms may underlie the metabolic benefits of resveratrol, evidence supports a role in its interaction with the gut microbiota and modulation of protein targets, including sirtuins and proteins related to nitric oxide, insulin, and nuclear hormone receptors (such as PPARγ). Conclusions: Despite much interest, there remain important unanswered questions regarding its optimal dosage (and how this may differ between and within individuals), and possible benefits within the general population, including the potential for weight-loss and improved metabolic function. Future studies should properly address these important questions before we can advocate the widespread adoption of dietary resveratrol supplementation.
Collapse
Affiliation(s)
- Thomas M. Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
| | - Stefan Kabisch
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany; (S.K.); (A.F.H.P.)
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany; (S.K.); (A.F.H.P.)
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße, 85764 Neuherberg, Germany
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 2TU, UK
- Correspondence:
| |
Collapse
|
8
|
Zhang X, Lu Y, Zhao R, Wang C, Wang C, Zhang T. Study on simultaneous binding of resveratrol and curcumin to β-lactoglobulin: Multi-spectroscopic, molecular docking and molecular dynamics simulation approaches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107331] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Choi I, Li N, Zhong Q. Co-loading curcumin and quercetin in freeze-dried mushroom microparticles to inhibit lipid oxidation in beef patties. Food Chem 2021; 374:131625. [PMID: 34823941 DOI: 10.1016/j.foodchem.2021.131625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/04/2021] [Accepted: 11/14/2021] [Indexed: 11/18/2022]
Abstract
Curcumin (CCM) and quercetin (QCT) are natural antioxidants. In this study, the two antioxidants (5:1 w/w) were loaded into freeze-dried mushroom microparticles (FDMMs) to achieve synergistic antioxidative effect, and CCM-QCT-loaded FDMMs were incorporated in cooked beef patties to inhibit lipid oxidation. The loading was done by diffusing CCM-QCT dissolved in ethanol and polyethylene glycol-400 (40:60 v/v) into FDMMs. The loading capacity was 4.3% and 1.3% (w/w) for CCM and QCT, respectively. Crystalline CCM and QCT became amorphous within FDMMs according to X-ray diffraction and scanning electron microscopy. Confocal laser scanning microscopy confirmed the diffusion of CCM and QCT into the intracellular matrix of FDMMs. Both CCM and QCT were effectively preserved within FDMMs during UV irradiation at 253 nm. The minimum 2-thiobarbituric acid reactive values were observed for the patties with CCM-QCT-loaded FDMMs. Our results demonstrate the potential of porous mushroom matrices for loading lipophilic antioxidants to improve food quality.
Collapse
Affiliation(s)
- Inseob Choi
- Department of Food Science, The University of Tennessee, Knoxville, TN 37996, United States
| | - Nan Li
- Department of Food Science, The University of Tennessee, Knoxville, TN 37996, United States
| | - Qixin Zhong
- Department of Food Science, The University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
10
|
Encapsulation of Mānuka Essential Oil in Yeast Microcarriers for Enhanced Thermal Stability and Antimicrobial activity. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|