1
|
Yu Y, Wang F, Yang Y, Zhang J, Liu H, Liang Y, Wang J. Changes in rheological properties and structure of wheat gluten proteins induced by transglutaminase. Int J Biol Macromol 2025; 295:139599. [PMID: 39788262 DOI: 10.1016/j.ijbiomac.2025.139599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/25/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
To elucidate the effect of transglutaminase (TG) on the rheological properties of wheat gluten, this study investigates the underlying mechanisms by analyzing changes in gluten structure. The results demonstrated that the TG-treated gluten samples had higher storage modulus (G') and loss modulus (G″) compared to the control, conversely, creep and recovery strains followed an opposite trend. Notably, the most pronounced effects were observed with adding 2 U/g TG for 20-30 min. Size exclusion/reversed phase-high performance liquid chromatography profiles revealed that the treatment with TG elevated the levels of glutenin subunits, alongside reduced α- and γ-gliadins, promoting gluten aggregation. Moreover, the extractability of gluten gradually decreased due to TG-induced oxidation of sulfhydryl groups, which formed new disulfide bonds and cross-linked products. This structural modification reduced surface hydrophobic regions and promoted the aggregation of low molecular weight proteins into larger molecular weight aggregates. Microstructural analysis further confirmed that TG enhanced gluten network stability through covalent cross-linking. Overall, this study demonstrates that TG enhances the rheological characteristics of wheat gluten by facilitating the formation of a more robust network structure, driven by cross-linking reactions and disulfide bond formation.
Collapse
Affiliation(s)
- Yingtao Yu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Fengjiao Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yufan Yang
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Jiapeng Zhang
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Hao Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Chen Y, McClements DJ, He K, Zhang Z, Zhang R, Zhao J, Jin Z, Chen L. Effect of transglutaminase on the structure, properties and oil absorption of wheat flour. Food Chem 2025; 463:141117. [PMID: 39255700 DOI: 10.1016/j.foodchem.2024.141117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/02/2024] [Accepted: 09/01/2024] [Indexed: 09/12/2024]
Abstract
The structure, properties, as well as the oil absorption characteristics of wheat flour (WF) treated with varying concentrations of transglutaminase (TG) (0 U/g ∼ 50 U/g) were characterized. The content of free amino groups in WF modified by TG (TG-WF) decreased and protein aggregated. The isopeptide bonds and disulfide bonds played important roles in protein crosslinking. The thermal stability, the peak viscosity after gelatinization and protein secondary structure stability of TG-WF were improved. In addition, the oil absorption and surface oil content of TG-WF after frying were reduced. TG enhanced the protein-protein interactions in WF, so that protein played barrier roles in the process of high-temperature frying, protecting the starch particles covered by them from the infiltration of oil, thus reducing the oil absorption of TG-WF during frying. Among them, the oil content of TG-WF-30 U/g after frying was the lowest, which decreased by 10.73 % compared with the control group.
Collapse
Affiliation(s)
- Yuanhui Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | | | - Kuang He
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zipei Zhang
- Food Science Program, University of Missouri, Columbia, MO 65211, USA
| | - Ruojie Zhang
- Food Science Program, University of Missouri, Columbia, MO 65211, USA
| | - Jianwei Zhao
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
3
|
Zhang N, Xu Y, He T, Zhou M, Yu Y, Wang P, Wang Q. Rapid aggregation of amyloid-like protein enhanced by mTGase to prepare functional wool fabrics for efficient and sustainable remove heavy metals from wastewater. Int J Biol Macromol 2024; 273:133066. [PMID: 38866294 DOI: 10.1016/j.ijbiomac.2024.133066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
To counteract the increasing severity of water pollution and purify water sources, wastewater treatment materials are essential. In particular, it is necessary to improve the bonding strength between the adsorption material and the substrate in a long-term humid environment, and resist the invasion of microorganisms to prolong the service life. In this study, an amyloid-like aggregation method of lysozyme catalyzed by microbial transglutaminase (mTGase). Lysozyme self-assembles into an amyloid-like phase-transited lysozyme (PTL) in the presence of a reducing agent. Simultaneously, mTGase catalyzes acyl transfer reactions within lysozyme molecules or between lysozyme and keratin molecules, and driving PTL assembly on the wool fiber (TG-PTL@wool). This process enhances the grafting amount and fastness of PTL on the wool. Moreover, the tensile strength of wool fabric increased to 523 N. TG-PTL@wool achieves a 97.32 % removal rate of heavy metals, maintaining a removal rate of over 95 % after 5 cycles. TG-PTL@wool has excellent antibacterial property (99 %), and it remains above 90 % after 50 times of circulating washing. This study proved that mTGase can enhance the amyloid aggregation of lysozyme and enhance the bonding strength between PTL coating and substrate. Moreover, TG-PTL@wool provides a sustainable, efficient and cleaner solution for removing heavy metals from water.
Collapse
Affiliation(s)
- Ning Zhang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Yujie Xu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Tong He
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
4
|
Galipeau HJ, Hinterleitner R, Leonard MM, Caminero A. Non-Host Factors Influencing Onset and Severity of Celiac Disease. Gastroenterology 2024; 167:34-50. [PMID: 38286392 PMCID: PMC11653303 DOI: 10.1053/j.gastro.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Celiac disease (CeD) is a chronic autoimmune condition driven by gluten ingestion in genetically predisposed individuals, resulting in inflammatory lesions in the proximal small intestine. Although the presence of specific HLA-linked haplotypes and gluten consumption are necessary for disease development, they alone do not account for the variable onset of CeD in susceptible individuals. This review explores the multifaceted role of non-host factors in CeD development, including dietary and microbial influences. We discuss clinical associations and observations highlighting the impact of these factors on disease onset and severity. Furthermore, we discuss studies in CeD-relevant animal models that offer mechanistic insights into how diet, the microbiome, and enteric infections modulate CeD pathogenesis. Finally, we address the clinical implications and therapeutic potential of understanding these cofactors offering a promising avenue for preventive and therapeutic interventions in CeD management.
Collapse
Affiliation(s)
- Heather J Galipeau
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | - Reinhard Hinterleitner
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Maureen M Leonard
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, MassGeneral Hospital for Children, Harvard Medical School, Boston, Massachusetts; Center for Celiac Research and Treatment, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alberto Caminero
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Zhang Y, Wu H, Fu L. A review of gluten detoxification in wheat for food applications: approaches, mechanisms, and implications. Crit Rev Food Sci Nutr 2024; 65:2100-2116. [PMID: 38470104 DOI: 10.1080/10408398.2024.2326618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
With the improved knowledge of gluten-related disorders, especially celiac disease (CD), the market of gluten-free food is growing. However, the current gluten-free diet still presents challenges in terms of nutrition, acceptability, and cost due to the absence of gluten. It is important to note that gluten-related allergies or sensitivities have different underlying causes. And individuals with mild non-celiac gluten disorder symptoms may not necessarily require the same gluten-free treatments. Scientists are actively seeking alternative solutions for these consumers. This review delves into the various strategies employed by researchers for detoxifying gluten or modifying its main protein, gliadin, including genetic treatment, transamidation and deamidation, hydrolysis, and microbial treatments. The mechanisms, constraints of these techniques, their current utilization in food items, as well as their implications for gluten-related disorders, are discussed in detail. Although there is still a gap in the application of these methods as alternative solutions in the real market, the summary provided by our review could be beneficial for peers in enriching their basic ideas and developing more applicable solutions for wheat gluten detoxification.
Collapse
Affiliation(s)
- Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Haoyi Wu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Linglin Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| |
Collapse
|
6
|
Masiá C, Ong L, Logan A, Stockmann R, Gambetta J, Jensen PE, Rahimi Yazdi S, Gras S. Enhancing the textural and rheological properties of fermentation-induced pea protein emulsion gels with transglutaminase. SOFT MATTER 2023; 20:133-143. [PMID: 38054382 DOI: 10.1039/d3sm01001e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The aim of this study was to assess how transglutaminase (TG) impacts the microstructure, texture, and rheological properties of fermentation-induced pea protein emulsion gels. Additionally, the study examined the influence of storage time on the functional properties of these gels. Fermentation-induced pea protein gels were produced in the presence or absence of TG and stored for 1, 4, 8, 12, and 16 weeks. Texture analysis, rheological measurements, moisture content and microstructure evaluation with confocal laser scanning microscopy (CLSM) and 3D image analysis were conducted to explore the effects of TG on the structural and rheological properties of the fermented samples. The porosity of the protein networks in the pea gels decreased in the presence of TG, the storage modulus increased and the textural characteristics were significantly improved, resulting in harder and more springy gels. The gel porosity increased in gels with and without TG after storage but the effect of storage on textural and rheological properties was limited, indicating limited structural rearrangement once the fermentation-induced pea protein emulsion gels are formed. Greater coalescence was observed for oil droplets within the gel matrix after 16 weeks of storage in the absence of TG, consistent with these protein structures being weaker than the more structurally stable TG-treated gels. This study shows that TG treatment is a powerful tool to enhance the textural and rheological properties of fermentation-induced pea protein emulsion gels.
Collapse
Affiliation(s)
- Carmen Masiá
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark.
- Plant Based Application Department, Chr. Hansen A/S, Bøge Alle 10-12, 2970 Hørsholm, Denmark
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia
| | - Lydia Ong
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Amy Logan
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia
| | - Regine Stockmann
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia
| | - Joanna Gambetta
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia
| | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark.
| | - Saeed Rahimi Yazdi
- Plant Based Application Department, Chr. Hansen A/S, Bøge Alle 10-12, 2970 Hørsholm, Denmark
| | - Sally Gras
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
7
|
Mamone G, Di Stasio L, Vitale S, Picascia S, Gianfrani C. Analytical and functional approaches to assess the immunogenicity of gluten proteins. Front Nutr 2023; 9:1049623. [PMID: 36741992 PMCID: PMC9890883 DOI: 10.3389/fnut.2022.1049623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
Gluten proteins are the causative agents of celiac disease (CD), a lifelong and worldwide spread food intolerance, characterized by an autoimmune enteropathy. Gluten is a complex mixture of high homologous water-insoluble proteins, characterized by a high content of glutamine and proline amino acids that confers a marked resistance to degradation by gastrointestinal proteases. As a consequence of that, large peptides are released in the gut lumen with the potential to activate inflammatory T cells, in CD predisposed individuals. To date, several strategies aimed to detoxify gluten proteins or to develop immunomodulatory drugs to recover immune tolerance to gluten are under investigation. This review overviews the state of art of both analytical and functional methods currently used to assess the immunogenicity potential of gluten proteins from different cereal sources, including native raw seed flours and complex food products, as well as drug-treated samples. The analytical design to assess the content and profile of gluten immunogenic peptides, described herein, is based on the oral-gastro-intestinal digestion (INFOGEST model) followed by extensive characterization of residual gluten peptides by proteomic and immunochemical analyses. These approaches include liquid chromatography-high-resolution mass spectrometry (LC-MS/MS) and R5/G12 competitive ELISA. Functional studies to assess the immune stimulatory capabilities of digested gluten peptides are based on gut mucosa T cells or peripheral blood cells obtained from CD volunteers after a short oral gluten challenge.
Collapse
Affiliation(s)
- Gianfranco Mamone
- Institute of Food Science, Department of Biology, Agriculture and Food Sciences, National Research Council of Italy, Avellino, Italy
| | - Luigia Di Stasio
- Institute of Food Science, Department of Biology, Agriculture and Food Sciences, National Research Council of Italy, Avellino, Italy
| | - Serena Vitale
- Institute of Biochemistry and Cell Biology, Department of Biomedical Sciences, National Research Council of Italy, Naples, Italy
| | - Stefania Picascia
- Institute of Biochemistry and Cell Biology, Department of Biomedical Sciences, National Research Council of Italy, Naples, Italy
| | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology, Department of Biomedical Sciences, National Research Council of Italy, Naples, Italy,*Correspondence: Carmen Gianfrani,
| |
Collapse
|
8
|
Secretion of Bacillus amyloliquefaciens Transglutaminase from Lactococcus lactis and Its Enhancement of Food Gel Properties. Gels 2022; 8:gels8100674. [PMID: 36286175 PMCID: PMC9601987 DOI: 10.3390/gels8100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Microbial transglutaminases (MTGase) catalyze protein crosslink. This is useful in the food industry to improve gelation, water holding capacity, and emulsifying capacity during foodstuff manufacturing. The production of MTGase in wild-type strains renders low yield and high costs of downstream purification, limiting its industrial applications. (2) Methods: In this work, MTGase from Bacillus amyloliquefaciens BH072 (BaMTGase) has been heterologously expressed in Lactococcus lactis, using the signal peptide Usp45 to direct the secretion of recombinant BaMTGase out of the cell for easier purification. (3) Results: In these conditions, MTGase was purified with a high yield (48.7 ± 0.2 mg/L) and high enzyme activity (28.6 ± 0.5 U/mg). Next, BaMTGase was tested for industrial applications. Recombinant BaMTGase and commercial MTGase were used for SPI solution crosslinking. BaMTGase formed a harder gel with higher water-holding capacity and a dense and smooth gel microstructure. (4) Conclusions: This work provides an attractive food-grade cell factory for the food industry and offers a suitable chassis for MTGase production.
Collapse
|
9
|
Garvey SM, Guice JL, Hollins MD, Best CH, Tinker KM. Fungal digestive enzymes promote macronutrient hydrolysis in the INFOGEST static in vitro simulation of digestion. Food Chem 2022; 386:132777. [PMID: 35364497 DOI: 10.1016/j.foodchem.2022.132777] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022]
Abstract
The objective of this study was to test the hydrolytic efficacy of 6 fungal enzymes in the INFOGEST static in vitro simulation of gastrointestinal (GI) digestion. First, the INFOGEST protocol was adapted for testing of exogenous enzymes. Second, a dose-response study of 3 individual fungal proteases, a lipase, and an amylase with glucoamylase demonstrated improved dietary protein, lipid, and carbohydrate hydrolysis, respectively, from an oral nutritional supplement (ONS) under simulated gastric or GI conditions, compared to pepsin and pancreatin-based control conditions. Third, a combination of the 6 enzymes (BC-006) improved macronutrient digestion, including enhanced release of individual amino acids from ONS and mixed meal substrates. Finally, we validated digestive models of aging and proton pump inhibitor (PPI) use, and showed that BC-006 improved gastric digestion under these compromised digestive conditions. The INFOGEST static simulation is a feasible tool to rapidly screen and profile exogenous enzymes for digestive efficacy in vitro.
Collapse
Affiliation(s)
- Sean M Garvey
- Department of Research and Development, BIO-CAT, Inc., 9117 Three Notch Rd, Troy, VA 22974, USA.
| | - Justin L Guice
- Department of Research and Development, BIO-CAT, Inc., 9117 Three Notch Rd, Troy, VA 22974, USA
| | - Morgan D Hollins
- Department of Research and Development, BIO-CAT, Inc., 9117 Three Notch Rd, Troy, VA 22974, USA
| | - Caroline H Best
- Department of Research and Development, BIO-CAT, Inc., 9117 Three Notch Rd, Troy, VA 22974, USA
| | - Kelly M Tinker
- Department of Research and Development, BIO-CAT, Inc., 9117 Three Notch Rd, Troy, VA 22974, USA.
| |
Collapse
|
10
|
Treppiccione L, Maurano F, Rossi S, Luongo D, Rossi M. Transamidated wheat gliadin induces differential antigen recognition in the small intestine of HLA/DQ8 transgenic mice. Food Funct 2022; 13:8941-8950. [PMID: 35929785 DOI: 10.1039/d2fo02032g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A lifelong gluten-free diet (GFD) is currently the only available therapy for coeliac disease (CD). However, GFD compliance is difficult and alternative strategies are envisaged in the near future. We previously found that wheat gliadin following transamidation by microbial transglutaminase (mTG) does not induce IFN-γ secretion by intestinal T cells from CD patients. Fully transamidated gliadin with lysine ethyl ester can be recovered in a soluble protein fraction (spf) generated by the enzymatic treatment of wheat flour. Herein, we analysed the performance of transamidation by mTG on a pilot-scale (1L) by evaluating the reaction kinetics and its biological effect on the intestinal immune response in HLA/DQ8 transgenic mice, a model of gluten sensitivity. At 1 h, all gliadin fractions showed a faster electrophoretic mobility by acid-polyacrylamide gel electrophoresis (A-PAGE) following transamidation in comparison with their native counterparts. In parallel, the yield of residual native gliadin dropped (30% at 180 min), confirming our previous findings on a lab scale. Mucosal sensitisation of mice with gliadin via the intranasal route induced a Th1 phenotype in mesenteric lymph nodes (MLNs). Importantly, IFN-γ secretion was significantly reduced when gliadin-specific MLN cells were challenged in vitro with spf (P < 0.001). Multiplex analysis revealed that the adaptive immune response evoked by spf involved a distinct cell population characterised by secretion of IL-2, IL-3 and IL-5. Notably, spf stimulated in vitro a reduced or null secretion of all of the examined pro-inflammatory markers mainly associated to innate immunity. In conclusion, our data revealed the ability of transamidated gliadin to modulate both innate and adaptive mechanisms involved in the inflammatory response induced by wheat gliadin in the small intestine of DQ8 mice.
Collapse
Affiliation(s)
| | - Francesco Maurano
- Institute of Food Sciences, National Research Council, Avellino, Italy.
| | - Stefano Rossi
- Institute of Food Sciences, National Research Council, Avellino, Italy.
| | - Diomira Luongo
- Institute of Food Sciences, National Research Council, Avellino, Italy.
| | - Mauro Rossi
- Institute of Food Sciences, National Research Council, Avellino, Italy.
| |
Collapse
|
11
|
Actinidin reduces gluten-derived immunogenic peptides reaching the small intestine in an in vitro semi-dynamic gastrointestinal tract digestion model. Food Res Int 2022; 159:111560. [DOI: 10.1016/j.foodres.2022.111560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022]
|
12
|
Kaczynska K, Wouters AG, Delcour JA. Microbial transglutaminase induced modification of wheat gliadin based nanoparticles and its impact on their air-water interfacial properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Beneficial Role of Microbial Transglutaminase in the Pathogenetic Mechanisms of Coeliac Disease. J Pediatr Gastroenterol Nutr 2022; 74:728-733. [PMID: 35442226 DOI: 10.1097/mpg.0000000000003451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Coeliac disease (CD) is caused by immunological intolerance to wheat gluten and related proteins of rye and barley. Consequently, gluten-free (GF) products have been developed but technological implementation is required to improve their intrinsic rheological properties. One alternative for increasing the functional properties of GF foodstuff is the incorporation of microbial transglutaminase (mTG), which allows for the cross-linking of proteins that can substitute for the gluten network in the bakery industry. mTG has been, however, suggested to mimic tissue transglutaminase and to be immunogenic in CD patients. Recently, both mTG and gliadin were found to be transported to the endoplasmic reticulum of enterocytes, suggesting cross-presentation and potential interaction with immune cells in CD. Although pathogenetic activity of mTG has not been found to date, these data naturally raise concerns among clinicians and patients about the use of mTG as a food additive. On the contrary, different studies have shown that treatment with mTG was effective in reducing the inflammatory immune response of gluten in CD. In this article, we take advantage of recent advances in gut physiology and CD pathogenesis to revise the literature data on mTG. An updated and unbiased overview of the role of mTG in this pathology allowed us to definitively highlight the beneficial use of this food additive by CD patients.
Collapse
|
14
|
Šmídová Z, Rysová J. Gluten-Free Bread and Bakery Products Technology. Foods 2022; 11:foods11030480. [PMID: 35159630 PMCID: PMC8834121 DOI: 10.3390/foods11030480] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Gluten, a protein fraction from wheat, rye, barley, oats, their hybrids and derivatives, is very important in baking technology. The number of people suffering from gluten intolerance is growing worldwide, and at the same time, the need for foods suitable for a gluten-free diet is increasing. Bread and bakery products are an essential part of the daily diet. Therefore, new naturally gluten-free baking ingredients and new methods of processing traditional ingredients are sought. The study discusses the use of additives to replace gluten and ensure the stability and elasticity of the dough, to improve the nutritional quality and sensory properties of gluten-free bread. The current task is to extend the shelf life of gluten-free bread and bakery products and thus extend the possibility of its distribution in a fresh state. This work is also focused on various technological possibilities of gluten-free bread and the preparation of bakery products.
Collapse
|
15
|
A Case Study of the Response of Immunogenic Gluten Peptides to Sourdough Proteolysis. Nutrients 2021; 13:nu13061906. [PMID: 34206002 PMCID: PMC8229354 DOI: 10.3390/nu13061906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Celiac disease is activated by digestion-resistant gluten peptides that contain immunogenic epitopes. Sourdough fermentation is a potential strategy to reduce the concentration of these peptides within food. However, we currently know little about the effect of partial sourdough fermentation on immunogenic gluten. This study examined the effect of a single sourdough culture (representative of those that the public may consume) on the digestion of immunogenic gluten peptides. Sourdough bread was digested via the INFOGEST protocol. Throughout digestion, quantitative and discovery mass spectrometry were used to model the kinetic release profile of key immunogenic peptides and profile novel peptides, while ELISA probed the gluten's allergenicity. Macrostructural studies were also undertaken. Sourdough fermentation altered the protein structure, in vitro digestibility, and immunogenic peptide release profile. Interestingly, sourdough fermentation did not decrease the total immunogenic peptide concentration but altered the in vitro digestion profile of select immunogenic peptides. This work demonstrates that partial sourdough fermentation can alter immunogenic gluten digestion, and is the first study to examine the in vitro kinetic profile of immunogenic gluten peptides from sourdough bread.
Collapse
|
16
|
Ogilvie O, Roberts S, Sutton K, Gerrard J, Larsen N, Domigan L. The effect of dough mixing speed and work input on the structure, digestibility and celiac immunogenicity of the gluten macropolymer within bread. Food Chem 2021; 359:129841. [PMID: 33940468 DOI: 10.1016/j.foodchem.2021.129841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/23/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022]
Abstract
Modern high-speed mechanical dough development (MDD) alters the gluten macropolymer's (GMP) structure. Changes to both the protein and food matrix structure can influence protein digestibility and immunogenicity. This study investigated the relationship between protein structural changes imparted by MDD and gluten's digestibility plus celiac reactivity. Dough was prepared at three mixing speeds (63 rpm, 120 rpm and 200 rpm) to different degrees of development (between 10 and 180% wh.kg-1). Protein structural changes were characterised by confocal microscopy, free thiol determination and protein extractability assays. MDD altered the structure of gluten within bread, changing the protein's surface area and macrostructure. Breads were digested using the INFOGEST in vitro protocol. Gluten's antigenicity and digestibility were monitored using ELISA and mass spectrometry, by monitoring the concentration of six immunogenic peptides causative of celiac disease. The structural changes imparted by mixing did not affect bread's digestibility or celiac reactivity.
Collapse
Affiliation(s)
- Olivia Ogilvie
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; Plant & Food Research, Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand.
| | - Sarah Roberts
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; Plant & Food Research, Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand.
| | - Kevin Sutton
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; Plant & Food Research, Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand.
| | - Juliet Gerrard
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Nigel Larsen
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; Plant & Food Research, Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand
| | - Laura Domigan
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; Department of Chemical and Materials Engineering University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|