1
|
Li W, He J, Chen Q, Bao F, Huo Y, Deng J, Lin Q, Luo F. Enhancement of Oryzanol application by constructing modified β-CD inclusion complex and polycaprolactone-chitosan electrospun fiber membranes: Perspectives on wound dressings and grape preservation. Food Chem 2025; 473:143025. [PMID: 39855072 DOI: 10.1016/j.foodchem.2025.143025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Oryzanol has a variety of physiological activities and is widely used in food and medicine. However, its utilization form and bioavailability are limited by poor solubility and photothermal stability. In this paper, an inclusion complex (IC) was prepared by modifying β-cyclodextrin as a molecular carrier to encapsulate Oryzanol. Polycaprolactone-chitosan (PCL-CS) and IC were prepared into a fiber membrane (PCL-CS-IC) using an electrostatic spinning technique and applied to wound healing and grape preservation. The results showed that the prepared ICs had a drug loading rate of 43.18 % with good antimicrobial, wettability, and air permeability properties. The PCL-CS-IC effectively reduced the inflammation of mouse wounds, with obvious re-epithelialization and inflammatory factors reduction in skin tissues. Meanwhile, the PCL-CS-IC delayed the decay process of grapes and extended shelf life. In conclusion, this study effectively improved the utilization of oryzanol and provided potential ideas for wound dressing preparation and food packaging materials development.
Collapse
Affiliation(s)
- Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Jintao He
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Qijue Chen
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Feng Bao
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Yinqiang Huo
- College of Food Science and Technology, Hubei University of Arts and Science, Xiangyang, 441053, China.
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, JiangSu, China
| | - Feijun Luo
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| |
Collapse
|
2
|
Ito J, Kumagai N, Suzuki A, Shoji N, Parida IS, Takahashi M, Nakagawa K. Effect of microemulsion system on water dispersibility and bioavailability of γ-oryzanol. Biosci Biotechnol Biochem 2025; 89:633-637. [PMID: 39814578 DOI: 10.1093/bbb/zbaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
This study developed water-dispersible γ-oryzanol (WD-OZ) using a microemulsion system and assessed their absorption in rats. While OZ itself is hardly soluble in water, WD-OZ exhibited high water dispersibility, and OZ, along with its metabolites, was detected in rat plasma. These findings provide a solid basis for future application of the microemulsion-based approach to enhance the bioavailability of OZ in food.
Collapse
Affiliation(s)
- Junya Ito
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Naoko Kumagai
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Ayaka Suzuki
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Naoki Shoji
- Center for the Cooperation of Community Development and Research Promotion, Miyagi University, Miyagi, Japan
| | - Isabella Supardi Parida
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Kiyotaka Nakagawa
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| |
Collapse
|
3
|
Yamamoto S, Afifi OA, Lam LPY, Takeda-Kimura Y, Osakabe Y, Osakabe K, Bartley LE, Umezawa T, Tobimatsu Y. Disruption of aldehyde dehydrogenase decreases cell wall-bound p-hydroxycinnamates and improves cell wall digestibility in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2828-2845. [PMID: 39569987 DOI: 10.1111/tpj.17148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/20/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
In grass cell walls, ferulic acid (FA) serves as an important cross-linker between cell wall polymers, such as arabinoxylan (AX) and lignin, affecting the physicochemical properties of the cell walls as well as the utilization properties of grass lignocellulose for biorefinering. Here, we demonstrate that hydroxycinnamaldehyde dehydrogenase (HCALDH) plays a crucial role in the biosynthesis of the FA used for cell wall feruloylation in rice (Oryza sativa). Bioinformatic and gene expression analyses of aldehyde dehydrogenases (ALDHs) identified two rice ALDH subfamily 2C members, OsHCALDH2 (OsALDH2C2) and OsHCALDH3 (OsALDH2C3), potentially involved in cell wall feruloylation in major vegetative tissues of rice. CRISPR-Cas9 genome editing of OsHCALDH2 and OsHCALDH3 revealed that the contents of AX-bound ferulate were reduced by up to ~45% in the cell walls of the HCALDH-edited mutants, demonstrating their roles in cell wall feruloylation. The abundance of hemicellulosic sugars including arabinosyl units on AX was notably reduced in the cell walls of the HCALDH-edited mutants, whereas cellulose and lignin contents remained unaffected. In addition to reducing cell wall-bound ferulate, the loss of OsHCALDH2 and/or OsHCALDH3 also partially reduced cell wall-bound p-coumarate and sinapate in the vegetative tissues of rice, whereas it did not cause detectable changes in the amount of γ-oryzanol (feruloyl sterols) in rice seeds. Furthermore, the HCALDH-edited mutants exhibited improved cell wall saccharification efficiency, both with and without alkaline pretreatment, plausibly due to the reduction in cell wall cross-linking FA. Overall, HCALDH appears to present a potent bioengineering target for enhancing utilization properties of grass lignocellulose.
Collapse
Affiliation(s)
- Senri Yamamoto
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Osama Ahmed Afifi
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Lydia Pui Ying Lam
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Center for Crossover Education, Graduate School of Engineering Science, Akita University, Tegata Gakuen-machi 1-1, Akita City, Akita, 010-8502, Japan
| | - Yuri Takeda-Kimura
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata, 997-8555, Japan
| | - Yuriko Osakabe
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, 226-8502, Japan
| | - Keishi Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, 770-8503, Japan
| | - Laura E Bartley
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Institute of Biological Chemistry, Washington State University, Pullman, 99164, WA, USA
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
4
|
Huang W, Liu B, Shi D, Cheng A, Chen G, Liu F, Dong J, Lan J, Hong B, Zhang S, Ren C. Research Progress on the Quality, Extraction Technology, Food Application, and Physiological Function of Rice Bran Oil. Foods 2024; 13:3262. [PMID: 39456324 PMCID: PMC11507353 DOI: 10.3390/foods13203262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Rice bran oil is recommended by the World Health Organization as one of the three major healthy edible oils (along with corn and sesame oils), owing to its unique fatty acid composition and functional components. This study screened, organized, and analyzed a large number of studies retrieved through keyword searches, and investigated the nutritional value and safety of rice bran oil. It reviews the stability of raw rice bran materials and the extraction and refining process of rice bran oil and discusses food applications and sub-health regulations. Research has found that a delayed stabilization treatment of rice bran seriously affects the overall quality of rice bran oil. Compared with traditional solvent extraction, the new extraction technologies have improved the yield and nutritional value of rice bran oil, but most of them are still in the research stage. Owing to the lack of economical and applicable supporting production equipment, extraction is difficult to industrialize, which is a challenging research area for the future. Rice bran oil has stronger antioxidant stability than other edible oils and is more beneficial to human health; however, its application scope and consumption are limited owing to the product price and lack of understanding. Rice bran oil has significant antioxidant, anti-inflammatory, anti-cancer, hypoglycemic, lipid-lowering, and neuroprotective effects. Further exploratory research on other unknown functions is required to lay a scientific basis for the application and development of rice bran oil.
Collapse
Affiliation(s)
- Wengong Huang
- Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (W.H.); (B.L.); (D.S.); (A.C.); (G.C.); (F.L.); (J.D.); (J.L.)
- Key Laboratory of Quality and Safety of Cereals and Their Products, State Administration for Market Regulation, Harbin 150086, China
| | - Baohai Liu
- Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (W.H.); (B.L.); (D.S.); (A.C.); (G.C.); (F.L.); (J.D.); (J.L.)
- Key Laboratory of Quality and Safety of Cereals and Their Products, State Administration for Market Regulation, Harbin 150086, China
| | - Dongmei Shi
- Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (W.H.); (B.L.); (D.S.); (A.C.); (G.C.); (F.L.); (J.D.); (J.L.)
- Key Laboratory of Quality and Safety of Cereals and Their Products, State Administration for Market Regulation, Harbin 150086, China
| | - Aihua Cheng
- Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (W.H.); (B.L.); (D.S.); (A.C.); (G.C.); (F.L.); (J.D.); (J.L.)
- Key Laboratory of Quality and Safety of Cereals and Their Products, State Administration for Market Regulation, Harbin 150086, China
| | - Guofeng Chen
- Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (W.H.); (B.L.); (D.S.); (A.C.); (G.C.); (F.L.); (J.D.); (J.L.)
- Key Laboratory of Quality and Safety of Cereals and Their Products, State Administration for Market Regulation, Harbin 150086, China
| | - Feng Liu
- Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (W.H.); (B.L.); (D.S.); (A.C.); (G.C.); (F.L.); (J.D.); (J.L.)
- Key Laboratory of Quality and Safety of Cereals and Their Products, State Administration for Market Regulation, Harbin 150086, China
| | - Jiannan Dong
- Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (W.H.); (B.L.); (D.S.); (A.C.); (G.C.); (F.L.); (J.D.); (J.L.)
- Key Laboratory of Quality and Safety of Cereals and Their Products, State Administration for Market Regulation, Harbin 150086, China
| | - Jing Lan
- Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (W.H.); (B.L.); (D.S.); (A.C.); (G.C.); (F.L.); (J.D.); (J.L.)
- Key Laboratory of Quality and Safety of Cereals and Their Products, State Administration for Market Regulation, Harbin 150086, China
| | - Bin Hong
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.H.); (S.Z.)
| | - Shan Zhang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.H.); (S.Z.)
| | - Chuanying Ren
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.H.); (S.Z.)
| |
Collapse
|
5
|
Yao Y, Yuan H, Zheng Y, Wang M, Li C. An Insight into the Thermal Degradation Pathway of γ-Oryzanol and the Effect on the Oxidative Stability of Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5757-5765. [PMID: 38445360 DOI: 10.1021/acs.jafc.3c08903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Thermal stability and antioxidant ability of γ-oryzanol in oil have been widely studied. However, further research is needed to explore its thermal degradation products and degradation pathways. The thermal degradation products of γ-oryzanol in stripped soybean oil were identified and quantified by employing high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) during heating at 180 °C. The results revealed that γ-oryzanol undergoes ester bond cleavage to form trans-ferulic acid and free sterols, and trans-ferulic acid generated intermediate compound 4-vinylguaiacol, which ultimately generated vanillin. Analysis of kinetic and thermodynamic parameters revealed the thermal stability ranking of the four components of γ-oryzanol as follows: CampFA > CAFA > 24MCAFA > SitoFA. Furthermore, γ-oryzanol exhibited superior antioxidant activity at lower temperatures. The results of this study provide a theoretical basis for a better understanding of the thermal stability and antioxidant properties of γ-oryzanol in oil under thermal oxidation conditions.
Collapse
Affiliation(s)
- Yunping Yao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huiping Yuan
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yue Zheng
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengda Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Changmo Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
6
|
Liu Z, Liu X, Ma Z, Guan T. Phytosterols in rice bran and their health benefits. Front Nutr 2023; 10:1287405. [PMID: 37899831 PMCID: PMC10600523 DOI: 10.3389/fnut.2023.1287405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
With the continuous technological innovation in the high-value utilization of rice bran byproducts, rice bran oil retains a higher concentration of beneficial components such as a well-balanced composition of fatty acids and abundant phytosterols. This makes it a highly nutritious and healthy vegetable oil. This review provides an overview of the advancements made in separating, purifying, and processing phytosterols in rice bran oil. The review also introduces techniques for assessing the stability of rice bran oil. Moreover, the review emphasizes the nutritional value of phytosterols found in rice bran oil, highlighting their various health benefits, including their anticancer, anti-inflammatory, anti-allergic, antibacterial, cholesterol-lowering, skin-protective, anti-obesity, anti-diabetic, neuroprotective, gastroprotective, and immune-enhancing effects. Attaining a comprehensive understanding of the research progress made in phytosterols derived from rice bran oil can offer valuable guidance for the efficient utilization of rice bran.
Collapse
Affiliation(s)
- Zhaoguo Liu
- Changchun Institute of Technology, Changchun, China
| | - Xiaoxiao Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Zheng Ma
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Tianzhu Guan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Pang M, Kang S, Liu L, Ma T, Zheng Z, Cao L. Physicochemical Properties and Cookie-Making Performance as Fat Replacer of Wax-Based Rice Bran Oil Oleogels. Gels 2022; 9:gels9010013. [PMID: 36661781 PMCID: PMC9858516 DOI: 10.3390/gels9010013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Reducing the intake of trans and saturated fatty acids is a trend in healthy eating. In this study, the oleogels were prepared from rice bran oil (RBO), candle wax (CDW), beeswax (BW), rice bran wax (RBW), and carnauba wax (CRW), respectively, and the results based on their physicochemical properties and crystal structures at critical concentrations, 6 wt.%, 8 wt.%, and 10 wt.%, were determined to further investigate the oleogels as a shortening substitute in cookie recipes. Oleogel has a smooth, spreadable β' crystal shape which creates excellent sensory properties and improves the texture, but also has some economic benefits. A comparison between the oleogels formed at critical concentrations and those with improved mass fractions was performed in several analyses such as PLM and texture, and the oleogels with higher mass fractions had a greater hardness and stickiness and denser crystal structures. This study was used to optimize the cookie recipe by partially replacing shortening with oleogel and preparing the cookies according to the 0:1, 3:7, 1:1, 7:3, 1:0 oleogel shortening mixture, respectively. Based on the results of the textural analysis, a colorimetric and sensory evaluation of the optimized formulation of oleogels in cookies, it was evident that BW and RBW oleogels have more potential to replace shortening in cookies than CDW and CRW oleogels. In particular, oleogels with a concentration of 6 wt.% RBW (RBW-6) and at a 7:3 (oleogel:shortening) shortening replacement exhibited a hardness and crispness of 15.75 N and 97.73 g, respectively, with an L* value of 66.66 and a sensory score of 22.32 ± 0.09. The value for the color perception difference (dE) between the cookies and the control group was -3.73, which allowed us to obtain a good product with a quality and characteristics similar to shortening. This supports the feasibility of new solid fats to replace traditional plastic fats in baked goods.
Collapse
Affiliation(s)
- Min Pang
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei 230009, China
| | - Shengmei Kang
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei 230009, China
| | - Lin Liu
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei 230009, China
| | - Tengfei Ma
- Anhui Tianxiang Grain & Oil Food Co., Ltd., Fuyang 236000, China
| | - Zhi Zheng
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei 230009, China
| | - Lili Cao
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei 230009, China
- Correspondence:
| |
Collapse
|
8
|
Steryl ferulates composition in twenty-two millet samples: Do “microwave popping” and fermentation affect their content? Food Chem 2022; 391:133222. [DOI: 10.1016/j.foodchem.2022.133222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 11/23/2022]
|
9
|
Sun W, Shi J, Hong J, Zhao G, Wang W, Zhang D, Zhang W, Shi J. Natural variation and underlying genetic loci of γ-oryzanol in Asian cultivated rice seeds. THE PLANT GENOME 2022; 15:e20201. [PMID: 35762101 DOI: 10.1002/tpg2.20201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/18/2022] [Indexed: 06/15/2023]
Abstract
γ-oryzanol is the most studied component in rice (Oryza sativa L.) bran oil. It is not only associated with physiological processes of rice growth and development but also grain quality that is related to human health. Previous studies focused mainly on γ-oryzanol composition and content in various rice cultivars, while its biosynthetic and regulatory pathways remain unknown. Here we present the quantitative identification of γ-oryzanol in rice seeds across 179 Asian cultivated accessions using ultra-performance liquid chromatography-time-of-flight mass spectrometry (UPLC-TOF/MS), which revealed a significant natural variation in γ-oryzanol content among these tested rice accessions. In addition, we present, for the first time, the genome-wide association study (GWAS) on rice seed γ-oryzanol, which identified 187 GWAS signal hot spots and 13 candidate genes that are associated with variable γ-oryzanol content and provided the top 10 rice haplotypes with high γ-oryzanol content for breeding. Collectively, our study provides valuable germplasms for breeding rice cultivars rich in γ-oryzanol and genetic resources for elucidating genetic and biochemical bases of variable γ-oryzanol in rice.
Collapse
Affiliation(s)
- Wenli Sun
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Jin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Jun Hong
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Guochao Zhao
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal Univ., Shanghai, 200234, China
| | - Wensheng Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Wei Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| |
Collapse
|
10
|
Balli D, Cecchi L, Pieraccini G, Innocenti M, Benedettelli S, Mulinacci N. What’s new on total phenols and γ-oryzanol derivatives in wheat? A comparison between modern and ancient varieties. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Yang F, Wang M, Chao X, Yan X, Zhang W, Yuan C, Zeng Q. Rice bran oil deacidification by immobilized Aspergillus Niger lipase catalyzed esterification with D-isoascorbic acid. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Noureen H, Alam S, Al Ayoubi S, Qayyum A, Sadiqi S, Atiq S, Naz A, Bibi Y, Ahmed W, Khan MM, Sammi S, Liaquat M, Ahmad S. Mechanism of rice bran lipase inhibition through fermentation activity of probiotic bacteria. Saudi J Biol Sci 2021; 28:5841-5848. [PMID: 34588899 PMCID: PMC8459157 DOI: 10.1016/j.sjbs.2021.06.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/04/2021] [Accepted: 06/13/2021] [Indexed: 11/28/2022] Open
Abstract
Rice bran oil is known as wonder oil and it is the most important vegetable oil in Asia. Rice bran oil is extracted from bran that is the outer hard layer of rice. It is an emerging category in edible oil with a lot of nutritional properties and health benefits. Rice bran oil is heart-friendly, boosts up immunity, and prevents from other diseases occurring commonly in Pakistan. The current study aimed to stabilize rice bran oil through different probiotic isolates and to assess the nutritional content of rice bran oil after stabilization. The study was aimed to inactivate naturally occurring lipases that can hydrolyze oil into glycerol and free fatty acid which is a serious problem that gives it a rancid taste and smell. Antilipase activity was used to inactivate naturally occurring lipases that are a huge threat to the stabilization process. The fermentation process utilizes antilipase activity without affecting the nutritional value of oil. Lactobacillus strains were used for the stabilization of rice bran oil. Rice bran oil was extracted in the Soxhlet apparatus. The probiotic lab isolates Lactobacillus delbrueckii S2, Lactobacillus casei S5 and Lactobacillus plantarum S13 were applied to it to increase its shelf life and prevent oxidative rancidity. The extraction temperature of rice bran oil was maintained above 40 °C to inhibit lipase activity. Rice bran oil samples were stored at refrigeration temperature to arrest lipase activity. Probiotics maintained acidic pH to keep oil stabilization. Qualitative analysis was done to confirm rice bran oil stabilization. Determination of Free Fatty Acid (FFA) and saponification value confirmed that oxidative rancidity of rice bran oil was controlled by probiotics. FFA count was less than 10% and Saponification Value (SV) was 180. GC analysis was performed to analyze the FFA profile. Gas Chromatography results have shown 3 fatty acids. Statistical analysis has shown non-significant effect on different incubation temperatures of Lactobacillus isolates. Among the biological methods of stabilization, the use of probiotics is a novel concept and recommended for commercial application.
Collapse
Affiliation(s)
- Haleema Noureen
- Department of Microbiology, The University of Haripur, Haripur 22620, Pakistan
| | - Sadia Alam
- Department of Microbiology, The University of Haripur, Haripur 22620, Pakistan
| | - Samha Al Ayoubi
- Department of General Sciences, Prince Sultan University, Rafha Street, Riyadh, Saudi Arabia
| | - Abdul Qayyum
- Department of Agronomy, The University of Haripur, Haripur 22620, Pakistan
| | - Shahida Sadiqi
- Department of Microbiology, Hazara University, Mansehra 21120, Pakistan
| | - Samia Atiq
- Department of Microbiology, The University of Haripur, Haripur 22620, Pakistan
| | - Alia Naz
- Department of Environmental Sciences, The University of Haripur, Haripur 22620, Pakistan
| | - Yamin Bibi
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan
| | - Waqas Ahmed
- Department of Microbiology, The University of Haripur, Haripur 22620, Pakistan
| | | | - Shehla Sammi
- Department of Food Sciences & Technology, The University of Haripur, Haripur 22620, Pakistan
| | - Muhammad Liaquat
- Department of Food Sciences & Technology, The University of Haripur, Haripur 22620, Pakistan
| | - Shakil Ahmad
- Central Library, Prince Sultan University, Rafha Street, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Yamashita S, Soga M, Nguma E, Kinoshita M, Miyazawa T. Protective Mechanism of Rice-Derived Lipids and Glucosylceramide in an In Vitro Intestinal Tract Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10206-10214. [PMID: 34455784 DOI: 10.1021/acs.jafc.1c04562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We previously reported that the ethanol extract from polished rice suppresses inflammation and the formation of aberrant crypt foci in the mouse colon and particularly focused on the plant sphingolipid glucosylceramide (GlcCer). Here, we investigated the effects of rice lipid fractions and GlcCer on differentiated Caco-2 cells treated with lipopolysaccharide (LPS), in particular, we evaluated the mechanism of action of GlcCer using related substances and metabolic enzyme inhibitors. Rice-derived polar lipids suppressed the LPS-induced reduction in the number of cells. The polar lipids with higher GlcCer content exerted a better effect than the other fractions. GlcCer-related substances reversed the LPS-induced reduction in the number of cells, and GlcCer-metabolic inhibitors, including a sphingosine kinase inhibitor, suppressed the beneficial effects of GlcCer-related substances. These results suggest that GlcCer is a rice component with intestinal protection. Secondly, GlcCer is metabolized during inflammation and protects intestinal cells by maintaining the sphingolipid levels in cells and producing sphingoid base-1-phosphate.
Collapse
Affiliation(s)
- Shinji Yamashita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Michiru Soga
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Ephantus Nguma
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Mikio Kinoshita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Teruo Miyazawa
- Food Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
14
|
Rubalya Valantina S. Measurement of dielectric constant: A recent trend in quality analysis of vegetable oil - A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Liu C, Xi X, Liu Y, Lu Y, Che F, Gu Y, Yu Y, Li H, Liu J, Wei Y. Isolation of Four Major Compounds of γ-Oryzanol from Rice Bran Oil by Ionic Liquids Modified High-Speed Countercurrent Chromatography and Antimicrobial Activity and Neuroprotective Effect of Cycloartenyl Ferulate In Vitro. Chromatographia 2021. [DOI: 10.1007/s10337-021-04044-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Manasa V, Chaudhari SR, Tumaney AW. Spice fixed oils as a new source of γ-oryzanol: nutraceutical characterization of fixed oils from selected spices. RSC Adv 2020; 10:43975-43984. [PMID: 35517146 PMCID: PMC9058449 DOI: 10.1039/d0ra07794a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/20/2020] [Indexed: 12/28/2022] Open
Abstract
γ-Oryzanol is an important group of nutraceuticals that play a key role in addressing metabolic disorders. This study, for the first time, examined volatile-free spice fixed oils (FOs) as an alternate plant source for γ-oryzanol and other nutraceuticals (phenolics, flavonoids, phytosterols, and tocopherols) using HPLC, HR-MS and NMR. The in vitro antioxidant activities of FOs were also analysed. The selected spices were Alpinia galanga, Cinnamomum zeylanicum, Trigonella foenum-graecum, Foeniculum vulgare and Myristica fragrans. The major polyphenols and flavonoids quantified were gallic, protocatechuic, vanillic, syringic, para-coumaric, ferulic, rutin, trans-cinnamic, and quercetin. T. foenum-graecum FOs recorded high levels of ergosterol (48.56 mg/100 g) and stigmasterol (247.36 mg/100 g). The fucosterol levels were high in A. galanga (268.31 mg/100 g) FOs, whereas C. zeylanicum FOs showed high content of β-sitosterols (7037.77 mg/100 g). C. zeylanicum and T. foenum-graecum FOs recorded high α-tocopherol content (47.55 and 15.96 mg/100 g respectively). C. zeylanicum FOs showed high levels of three ferulates, namely, cycloartenyl ferulate, 24-methylene cycloartenyl ferulate and β-sitosteryl ferulate, whose contents were 89.42, 170.23 and 50.23 mg/100 g respectively which was confirmed by HRMS with a molecular mass (m/z) of 601.45, 615.47, and 589.45 respectively. Further, γ-oryzanol ferulates in C. zeylanicum FOs were confirmed by 1H-NMR analysis. The acidified methanolic extractives of FOs showed high free radical scavenging activity and antioxidant potential. These spice FOs have excellent antioxidant activities, and are novel potential functional ingredients against lifestyle disorders.
Collapse
Affiliation(s)
- Vallamkondu Manasa
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 201002 India
- Department of Lipid Science, Council of Scientific and Industrial Research - Central Food Technological Research Institute Mysore - 570 020 India
| | - Sachin R Chaudhari
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 201002 India
- Department of Spices and Flavour Sciences, Council of Scientific and Industrial Research - Central Food Technological Research Institute Mysore - 570 020 India
| | - Ajay W Tumaney
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 201002 India
- Department of Lipid Science, Council of Scientific and Industrial Research - Central Food Technological Research Institute Mysore - 570 020 India
| |
Collapse
|