1
|
Zhu Y, Zheng L, Gu L, Qiao Y, Xu C. Peptides from Mackerel Skin Prepared by the Mixed Proteases: Fractionation, Characterization and Bioactivities. Foods 2025; 14:1009. [PMID: 40232028 PMCID: PMC11941859 DOI: 10.3390/foods14061009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
Mackerel is widely favored by consumers as a high-yield, delicious marine fish. However, by-products generated during its processing, such as fish skins, are often underutilized, resulting in significant resource waste. This study aimed to extract high-activity mackerel protein peptides (HA-MPPs) from mackerel skins through targeted enzymatic hydrolysis (using a composite protease). The peptides were purified using ultrafiltration and HPLC, and their biological activity was evaluated through infrared imaging and antioxidant assays. Mass spectrometry identified the main peptide fragments (P1, P2, and P3). The optimal conditions for enzymatic hydrolysis were 0.22% enzyme concentration, a 2.03 h hydrolysis time, 55.05 °C, and a 1:3 solid-to-liquid ratio, yielding 59.66%. Infrared imaging showed that HA-MPPs exhibited significant biological repair activities, penetrating the hair cuticle to restore keratin and enhance hair strength. Additionally, antioxidant assays confirmed their abilities to reduce oxidative damage. This study presents a novel method for the targeted enzymatic extraction of HA-MPPs from mackerel by-products and the high-value utilization of their biological activity. It also demonstrates the potential of these peptides in hair repair, providing a theoretical foundation for the future development of hair care products with reparative functions.
Collapse
Affiliation(s)
- Yichen Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.Z.); (L.Z.)
| | - Leyi Zheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.Z.); (L.Z.)
| | - Lei Gu
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China; (L.G.); (Y.Q.)
| | - Yijiao Qiao
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China; (L.G.); (Y.Q.)
| | - Changhua Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.Z.); (L.Z.)
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China; (L.G.); (Y.Q.)
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
| |
Collapse
|
2
|
Li X, Deng Y, Qiu W, Feng Y, Jin Y, Chen L, Li L, Wang AL, Tao N, Jin Y. Effects of different ohmic heating treatments on parvalbumin structure and reduction of allergenicity in Japanese eel (Anguilla japonica). Food Chem 2024; 432:137257. [PMID: 37659327 DOI: 10.1016/j.foodchem.2023.137257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/28/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
We investigated the effects of ohmic heating (OH) on the structural properties and allergenicity of parvalbumin (PV). Compared to other heating methods (water bath heating (WH), OH combined with WH, and OH combined with air thermostatic heating (AH)), pure OH heating expended the least time and total energy. PV sensitization was reduced by approximately 65% by pure OH heating. SDS-PAGE, tricine-SDS-PAGE, and western blotting analyses revealed a molecular weight of sensitized β-PV of about 12 kDa. Band intensity decreased with increasing OH time, and significant changes were observed in amino acid content, secondary structure, microstructure, and dielectric properties. Reducing PV, allergenicity through protein unfolding and secondary structural changes, thereby possibly reducing the allergenicity of eel, provides a theoretical basis for developing hypoallergenic products.
Collapse
Affiliation(s)
- Xiaomin Li
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Yun Deng
- Department of Food Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Weiqiang Qiu
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Yuhui Feng
- Jilin Tobacco Industry Co., Ltd., Changbai Dong Road 2099, Yanji City, Jilin 133000, China
| | - Yingshan Jin
- College of Bioscience and Biotechnology, Yangzhou University, Wenhui Dong Road 48, Yangzhou City, Jiangsu 277600, China
| | - Lanming Chen
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Li Li
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Ashily Ling Wang
- ADM(Shanghai) Management Co. Ltd., Room 220, 2nd Floor, Juyang Building, 1200 Pudong Avenue, China (Shanghai) Pilot Free Trade Zone, Shanghai 200135, China
| | - Ningping Tao
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Yinzhe Jin
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China.
| |
Collapse
|
3
|
Luan H, Lu J, Li Y, Xu C, Shi W, Lu Y. Simultaneous Identification and Species Differentiation of Major Allergen Tropomyosin in Crustacean and Shellfish by Infrared Spectroscopic Chemometrics. Food Chem 2023; 414:135686. [PMID: 36827779 DOI: 10.1016/j.foodchem.2023.135686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023]
Abstract
To solve the lack of rapid and accurate methods for allergen identification and traceability, an infrared spectroscopic chemometric analytical model (IR-CAM) was established by combining infrared spectroscopy with principal component and cluster analysis. By comparing the second derivative infrared (SD-IR) spectra of 5 proteins and 14 crustaceans and shellfish tropomyosin (TM), 8 shared peaks and unique fingerprint peaks in the amide III region were found for crabs, shrimps, and shellfish. Based on the unique fingerprint peaks coexisting with shared peaks, allergen TM in crustaceans and shellfish could be identified within 10 min (cf. ELISA ∼ 4 h). Concurrently, the species differentiation of TM at the Class/Family level was achieved based on IR-CAM. Validation by fermented aquatic products TM (n = 60) demonstrated that the developed IR-CAM could simultaneously identify and differentiate TM in crustaceans and shellfish accurately. It could be applied for allergen detection and traceability of aquatic products on an antibody-free basis.
Collapse
Affiliation(s)
- Hongwei Luan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China.
| | - Jiada Lu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Yaru Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Changhua Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China.
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
| | - Ying Lu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China.
| |
Collapse
|
4
|
Lin XW, Liu RH, Wang S, Yang JW, Tao NP, Wang XC, Zhou Q, Xu CH. Direct Identification and Quantitation of Protein Peptide Powders Based on Multi-Molecular Infrared Spectroscopy and Multivariate Data Fusion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37406208 DOI: 10.1021/acs.jafc.3c01841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Given that protein peptide powders (PPPs) from different biological sources were inherited with diverse healthcare functions, which aroused adulteration of PPPs. A high-throughput and rapid methodology, united multi-molecular infrared (MM-IR) spectroscopy with data fusion, could determine the types and component content of PPPs from seven sources as examples. The chemical fingerprints of PPPs were thoroughly interpreted by tri-step infrared (IR) spectroscopy, and the defined spectral fingerprint region of protein peptide, total sugar, and fat was 3600-950 cm-1, which constituted MIR finger-print region. Moreover, the mid-level data fusion model was of great applicability in qualitative analysis, in which the F1-score reached 1 and the total accuracy was 100%, and a robust quantitative model was established with excellent predictive capacity (Rp: 0.9935, RMSEP: 1.288, and RPD: 7.97). MM-IR coordinated data fusion strategies to achieve high-throughput, multi-dimensional analysis of PPPs with better accuracy and robustness which meant a significant potential for the comprehensive analysis of other powders in food as well.
Collapse
Affiliation(s)
- Xiao-Wen Lin
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P. R. China
- Shanghai Qinpu Biotechnology Pte Ltd, Shanghai 201306, China
| | - Run-Hui Liu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P. R. China
| | - Song Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P. R. China
- Shanghai Qinpu Biotechnology Pte Ltd, Shanghai 201306, China
| | - Jie-Wen Yang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P. R. China
| | - Ning-Ping Tao
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P. R. China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Xi-Chang Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P. R. China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Qun Zhou
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chang-Hua Xu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P. R. China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Shanghai 201306, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
- Shanghai Qinpu Biotechnology Pte Ltd, Shanghai 201306, China
| |
Collapse
|
5
|
Zhang Z, Li XM, Wang H, Lin H, Xiao H, Li Z. Seafood allergy: Allergen, epitope mapping and immunotherapy strategy. Crit Rev Food Sci Nutr 2023; 63:1314-1338. [PMID: 36825451 DOI: 10.1080/10408398.2023.2181755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Seafoods are fashionable delicacies with high nutritional values and culinary properties, while seafood belongs to worldwide common food allergens. In recent years, many seafood allergens have been identified, while the diversity of various seafood species give a great challenge in identifying and characterizing seafood allergens, mapping IgE-binding epitopes and allergen immunotherapy development, which are critical for allergy diagnostics and immunotherapy treatments. This paper reviewed the recent progress on seafood (fish, crustacean, and mollusk) allergens, IgE-binding epitopes and allergen immunotherapy for seafood allergy. In recent years, many newly identified seafood allergens were reported, this work concluded the current situation of seafood allergen identification and designation by the World Health Organization (WHO)/International Union of Immunological Societies (IUIS) Allergen Nomenclature Sub-Committee. Moreover, this review represented the recent advances in identifying the IgE-binding epitopes of seafood allergens, which were helpful to the diagnosis, prevention and treatment for seafood allergy. Furthermore, the allergen immunotherapy could alleviate seafood allergy and provide promising approaches for seafood allergy treatment. This review represents the recent advances and future outlook on seafood allergen identification, IgE-binding epitope mapping and allergen immunotherapy strategies for seafood allergy prevention and treatment.
Collapse
Affiliation(s)
- Ziye Zhang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology and Department of Otolaryngology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Hao Wang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hong Lin
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Zhenxing Li
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
6
|
Mukherjee S, Hanak P, Jilkova D, Musilova Z, Horka P, Lerch Z, Zdenkova K, Cermakova E. Simultaneous detection and quantification of two European anglerfishes by novel genomic primer. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Lin XW, Li FL, Wang S, Xie J, Pan QN, Wang P, Xu CH. A Novel Method Based on Multi-Molecular Infrared (MM-IR) AlexNet for Rapid Detection of Trace Harmful Substances in Flour. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Applications of Advanced Data Analytic Techniques in Food Safety and Risk Assessment. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Zhao X, Bi H. Evaluation of Allergic Cross-Reactivity Among Fishes by Microfluidic Chips and MALDI-TOF MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7525-7534. [PMID: 35695853 DOI: 10.1021/acs.jafc.2c02433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fish is one of the most common foods that cause allergic reactions. The study of cross-reactivity among fishes using mass spectrometry (MS) is still limited. We developed a strategy using microfluidic chips coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to evaluate cross-reactivity among fishes. The protocol employed commercial magnetic beads functionalized with anti-human IgE antibodies to carry out the IgEs immunomagnetic separation in blood samples, followed by the capture of allergens from seafood protein extracts in a single-straight microfluidic channel. After elution, the captured allergens were digested and identified by MALDI-TOF MS and high-performance liquid chromatography-tandem mass spectrometry and validated by enzyme-linked immunosorbent assay (ELISA). An investigation of the reproducibility revealed that the protocol can sense well the allergens in a food matrix. Seven fish species were analyzed to evaluate the allergic cross-reactivity among fishes. The commercial ELISA test gave consistent results with the presently developed strategy when the same allergenicity test was performed. Parvalbumins were detected from five of the seven analyzed fishes. The sequence alignment of parvalbumins revealed that the similarity of parvalbumins identified from the analyzed fishes is larger than 64%. Boiling may reduce the allergenicity of fish, as demonstrated by a marginal diminish in the parvalbumin content of crucian carp (Carassius carassius) muscle when boiling with water. The method can potentially be used to predict allergic cross-reactivity among fish species, provide advice and guidance to individuals with a history of seafood allergy, and ensure food safety in the food allergy community.
Collapse
Affiliation(s)
- Xin Zhao
- College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, Shanghai 201306, China
| | - Hongyan Bi
- College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, Shanghai 201306, China
| |
Collapse
|
10
|
Dong X, Raghavan V. A comprehensive overview of emerging processing techniques and detection methods for seafood allergens. Compr Rev Food Sci Food Saf 2022; 21:3540-3557. [PMID: 35676763 DOI: 10.1111/1541-4337.12987] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022]
Abstract
Seafood is rich in nutrients and plays a significant role in human health. However, seafood allergy is a worldwide health issue by inducing adverse reactions ranging from mild to life-threatening in seafood-allergic individuals. Seafood consists of fish and shellfish, with the major allergens such as parvalbumin and tropomyosin, respectively. In the food industry, effective processing techniques are applied to seafood allergens to lower the allergenicity of seafood products. Also, sensitive and rapid allergen-detection methods are developed to identify and assess allergenic ingredients at varying times. This review paper provides an overview of recent advances in processing techniques (thermal, nonthermal, combined [hybrid] treatments) and main allergen-detection methods for seafood products. The article starts with the seafood consumption and classification, proceeding with the prevalence and symptoms of seafood allergy, followed by a description of biochemical characteristics of the major seafood allergens. As the topic is multidisciplinary in scope, it is intended to provide information for further research essential for food security and safety.
Collapse
Affiliation(s)
- Xin Dong
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
11
|
Simultaneous detection of mixed foodborne pathogens by multi-molecular infrared spectroscopy identification system. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Tang Y, Chen X, Yao H, Xie J, Shi W, Lu Y, Deng S, Tao N, Xu C. Development of a bifunctional edible coating for formaldehyde scavenging and preservation of aquatic products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1958-1967. [PMID: 34516665 DOI: 10.1002/jsfa.11534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/23/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Although exogenous and endogenous formaldehyde in squid has led to severe health threat, an in-depth study on natural edible scavengers for formaldehyde in squid is still lacking. RESULTS Response surface methodology (RSM) combined with experimental verification approaches was applied to obtain an optimal 'recipe' to achieve formaldehyde removal rate of >85%: 6 mg mL-1 tea polyphenols, 20 mg mL-1 chitosan, 3:2 (v/v) tea polyphenols and chitosan, a pH value of 3 and 60 min treatment time. Apart from the capability of removing formaldehyde, the scavenger derived from natural food exhibited a significant preservation effect (extension of preservation time up to 40%) on squid during chilled storage, and was safe and environmentally friendly. Meanwhile, a synergetic effect of the two components on scavenging formaldehyde was unraveled by multimolecular infrared spectroscopy. CONCLUSION An edible and bifunctional reagent composed of tea polyphenols and chitosan was developed for simultaneously removing artificially added or endogenous formaldehyde and for preservation of squid. The bifunctional coating shows promise as a formaldehyde scavenger and green preservative for aquatic products. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuyi Tang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Qinpu Biotechnology Pte Ltd, Shanghai, China
| | - Xifeng Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Hui Yao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Qinpu Biotechnology Pte Ltd, Shanghai, China
| | - Jun Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Qinpu Biotechnology Pte Ltd, Shanghai, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai, China
| | - Ying Lu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai, China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Ningping Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai, China
| | - Changhua Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai, China
| |
Collapse
|
13
|
Wang S, Hu XZ, Liu YY, Tao NP, Lu Y, Wang XC, Lam W, Lin L, Xu CH. Direct authentication and composition quantitation of red wines based on Tri-step infrared spectroscopy and multivariate data fusion. Food Chem 2022; 372:131259. [PMID: 34627087 DOI: 10.1016/j.foodchem.2021.131259] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/21/2022]
Abstract
A robust data fusion strategy integrating Tri-step infrared spectroscopy (IR) with electronic nose (E-nose) was established for rapid qualitative authentication and quantitative evaluation of red wines using Cabernet Sauvignon as an example. The chemical fingerprints of four types of wines were thoroughly interpreted by Tri-step IR, and the defined spectral fingerprint region of alcohol and sugar was 1200-950 cm-1. The wine types were authenticated by IR-based principal component analysis (PCA). Furthermore, ten quantitative models by partial least squares (PLS) were built to evaluate alcohol and total sugar contents. In particular, the model based on the fusion datasets of spectral fingerprint region and E-nose was superior to the others, in which RMSEP reduced by 47.95% (alcohol) and 79.90% (total sugar), rp increased by 11.95% and 43.47%, and RPD >3.0. The developed methodology would be applicable for mass screening and rapid multi-chemical-component quantification of wines in a more comprehensive and efficient manner.
Collapse
Affiliation(s)
- Song Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Qinpu Biotechnology Pte Ltd, Shanghai 201306, China
| | - Xiao-Zhen Hu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China
| | - Yan-Yan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Qinpu Biotechnology Pte Ltd, Shanghai 201306, China
| | - Ning-Ping Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China
| | - Ying Lu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China
| | - Xi-Chang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China
| | - Wing Lam
- Department of Pharmacology, Yale University, New Haven, CT 06520, US
| | - Ling Lin
- Comprehensive Technology Service Center of Quanzhou Customs, Quanzhou 362018, PR China.
| | - Chang-Hua Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Department of Pharmacology, Yale University, New Haven, CT 06520, US; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China.
| |
Collapse
|
14
|
Fan L, Xian C, Tang S, Ding W, Xu CH, Wang XC. Effect of frozen storage temperature on lipid stability of hepatopancreas of Eriocheir sinensis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Gao M, Xie J, Yao H, Yan Y, Li F, Wang S, Shi W, Lu Y, Deng S, Xu C. An in‐situ method to track the quality change of frozen surimi as a whole: Multi‐molecular infrared spectroscopy in combination with LF‐NMR. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ming‐Hui Gao
- College of Food Science & Technology Shanghai Ocean University Shanghai P.R. China
- Shanghai Qinpu Biotechnology Pte Ltd Shanghai China
| | - Jun Xie
- College of Food Science & Technology Shanghai Ocean University Shanghai P.R. China
- Shanghai Qinpu Biotechnology Pte Ltd Shanghai China
| | - Hui Yao
- College of Food Science & Technology Shanghai Ocean University Shanghai P.R. China
- Shanghai Qinpu Biotechnology Pte Ltd Shanghai China
| | - Yu Yan
- College of Food Science & Technology Shanghai Ocean University Shanghai P.R. China
| | - Fei‐Li Li
- College of Food Science & Technology Shanghai Ocean University Shanghai P.R. China
- Shanghai Qinpu Biotechnology Pte Ltd Shanghai China
| | - Song Wang
- College of Food Science & Technology Shanghai Ocean University Shanghai P.R. China
- Shanghai Qinpu Biotechnology Pte Ltd Shanghai China
| | - Wen‐Zheng Shi
- College of Food Science & Technology Shanghai Ocean University Shanghai P.R. China
- Shanghai Engineering Research Center of Aquatic‐Product Processing & Preservation Shanghai China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai) Ministry of Agriculture Shanghai China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Shanghai China
| | - Ying Lu
- College of Food Science & Technology Shanghai Ocean University Shanghai P.R. China
- Shanghai Engineering Research Center of Aquatic‐Product Processing & Preservation Shanghai China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai) Ministry of Agriculture Shanghai China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Shanghai China
| | - Shang‐Gui Deng
- College of Food and Pharmacy Zhejiang Ocean University Zhoushan China
| | - Chang‐Hua Xu
- College of Food Science & Technology Shanghai Ocean University Shanghai P.R. China
- Shanghai Engineering Research Center of Aquatic‐Product Processing & Preservation Shanghai China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai) Ministry of Agriculture Shanghai China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Shanghai China
| |
Collapse
|
16
|
Zhao X, Lu J, Long S, Soko WC, Qin Q, Qiao L, Bi H. MALDI-TOF MS and Magnetic Beads for Rapid Seafood Allergen Tests. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12909-12918. [PMID: 34613741 DOI: 10.1021/acs.jafc.1c04723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We developed a strategy using immunomagnetic separation (IMS) coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to test seafood allergens. The protocol employed commercial magnetic beads (MBs) functionalized with anti-human IgE antibodies to carry out the IMS of IgEs in blood samples, followed by capture of allergens from seafood protein extracts for allergy analysis. After elution, the captured allergens were identified by MALDI-TOF MS and HPLC-MS/MS. The non-specific adsorption of MBs to biomolecules, the reproducibility and sensitivity of the protocol were investigated. The method shows consistent results with enzyme-linked immunosorbent assay tests. The false positive rate of the present method for the allergy test is 0%. The protocol was applied to detect the allergens in greasy-back shrimp for checking the allergenicity of patients' serum. Cooking fish as soup may effectively decrease the allergenicity. The method can be potentially used to identify unknown allergens of seafood to ensure the safety of allergic patients.
Collapse
Affiliation(s)
- Xin Zhao
- College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, 201306 Shanghai, China
| | - Jiayin Lu
- Department of Chemistry, Fudan University, Songhu Road 2005, Yangpu District, 200433 Shanghai, China
| | - Shuping Long
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Middle Yanchang Road 301, JingAn District, 200040 Shanghai, China
| | - Winnie C Soko
- College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, 201306 Shanghai, China
| | - Qin Qin
- Changhai Hospital, The Naval Military Medical University, Changhai Road 168, Yangpu District, 200433 Shanghai, China
| | - Liang Qiao
- Department of Chemistry, Fudan University, Songhu Road 2005, Yangpu District, 200433 Shanghai, China
| | - Hongyan Bi
- College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, 201306 Shanghai, China
| |
Collapse
|
17
|
Aptamer-Based Fluorescent Biosensor for the Rapid and Sensitive Detection of Allergens in Food Matrices. Foods 2021; 10:foods10112598. [PMID: 34828878 PMCID: PMC8623274 DOI: 10.3390/foods10112598] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023] Open
Abstract
Food allergies have seriously affected the life quality of some people and even endangered their lives. At present, there is still no effective cure for food allergies. Avoiding the intake of allergenic food is still the most effective way to prevent allergic diseases. Therefore, it is necessary to develop rapid, accurate, sensitive, and reliable analysis methods to detect food allergens from different sources. Aptamers are oligonucleotide sequences that can bind to a variety of targets with high specificity and selectivity, and they are often combined with different transduction technologies, thereby constructing various types of aptamer sensors. In recent years, with the development of technology and the application of new materials, the sensitivity, portability, and cost of fluorescence sensing technology have been greatly improved. Therefore, aptamer-based fluorescence sensing technology has been widely developed and applied in the specific recognition of food allergens. In this paper, the classification of major allergens and their characteristics in animal and plant foods were comprehensively reviewed, and the preparation principles and practical applications of aptamer-based fluorescence biosensors are summarized. In addition, we hope that this article can provide some strategies for the rapid and sensitive detection of allergens in food matrices.
Collapse
|
18
|
Li FL, Xie J, Wang S, Wang Y, Xu CH. Direct qualitative and quantitative determination methodology for massive screening of DON in wheat flour based on multi-molecular infrared spectroscopy (MM-IR) with 2T-2DCOS. Talanta 2021; 234:122653. [PMID: 34364462 DOI: 10.1016/j.talanta.2021.122653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/20/2022]
Abstract
Deoxynivalenol (DON) contamination in wheat flour induces a number of adverse health effects to consumers and livestock, even at very low concentrations. Direct detection methods for massive screening of DON in wheat flour is still lacking. A new methodology integrating multi-molecular infrared spectroscopy (MM-IR) with two-trace two-dimensional correlation spectroscopy (2T-2DCOS) was developed for in-situ qualitative and quantitative determination of DON in wheat flour as a whole. Typical spectral variation of wheat flour samples with diverse concentration of DON were stepwise characterized by MM-IR and tiny spectral profile differences resulting from concentration variation of DON were visually disclosed by 2T-2DCOS. Based on the obtained key spectral features of DON, 180 of wheat flour samples with DON higher and lower than 1.00 mg/kg were undoubtedly classified by Principal Component Analysis (PCA) and Support Vector Machines (SVM) with an accuracy rate up to 100% (for Second derivative spectra consisted of selected bands, SD-SS). Furthermore, a robust quantitative prediction model was established based on partial least squares (PLS) of SD-SS (Rc: 0.998, RMSEC: 0.135; Rp: 0.968, RMSEP: 0.421), and its excellent predictive capacity of model was validated by both residual prediction deviation (RPD) value of 3.2 and t-test. It was demonstrated that the developed methodology was applicable for screening and quantitative detection of DON in wheat flour based on the novel correlation analysis methods (SD-2DCOS-IR and 2T-2DCOS-IR) with chemometrics tools, which could be utilized both at laboratory and industrial level for quality control purposes of a large wheat flour sample set.
Collapse
Affiliation(s)
- Fei-Li Li
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Qinpu Biotechnology Pte Ltd, Shanghai, 201306, China
| | - Jun Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Qinpu Biotechnology Pte Ltd, Shanghai, 201306, China
| | - Song Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Qinpu Biotechnology Pte Ltd, Shanghai, 201306, China
| | - Yang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300112, China
| | - Chang-Hua Xu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai, 201306, China.
| |
Collapse
|
19
|
Yao H, Xu YL, Liu W, Lu Y, Gan JH, Liu Y, Tao NP, Wang XC, Xu CH. Taste compounds generation and variation of broth in pork meat braised processing by chemical analysis and an electronic tongue system. J Food Biochem 2021; 46:e13766. [PMID: 34060115 DOI: 10.1111/jfbc.13766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/27/2021] [Accepted: 04/18/2021] [Indexed: 11/26/2022]
Abstract
The aim was to unveil the generation and variation rule of the main taste components in braised broth for 10 quantitative repeated braising cycles. The major taste compounds of three groups (MS, broth cooked with meat and spices; M, broth cooked with meat; and S, broth cooked with spices) were systematically analyzed by the state-of-art chromatography and electronic sensory technology. As braising cycles progressed, contents of free 5'-nucleotides and amino acids were increased in MS and M, while those nucleotides were not detected in S. A significant discrimination of taste in MS and M was revealed by electronic tongue evaluation during the process. As the formation rates (FR) of taste compounds and the transformation rates (TR) of taste compounds to volatile compounds were mainly accounting for the generation and variation of flavor in broth, a hypothesis was proposed to illustrate the whole variation of taste compounds in the process integrally that the ratio of FR/TR dividing the process into three stages, Degradation, Balance, and Accumulation. PRACTICAL APPLICATIONS: The traditional braising process and formula are empirical and extensive, which impede the increase in meat products output. Nowadays, the industry of braising products is facing a problem of standardization and quality control, and needs to carry out scientific and quantitative process improvement efficiently. Therefore, the developed comprehensive approach demonstrates great potential for braised meat broth flavor monitoring and quality control in an objective and holistic manner. It provides data support and new ideas of technology development for quality control in the process of meat braising.
Collapse
Affiliation(s)
- Hui Yao
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Ye-Ling Xu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Wei Liu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Ying Lu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, P.R. China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
| | - Jian-Hong Gan
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ning-Ping Tao
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, P.R. China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China.,National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai, China
| | - Xi-Chang Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, P.R. China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China.,National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai, China
| | - Chang-Hua Xu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, P.R. China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China.,National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai, China
| |
Collapse
|
20
|
Taking the leap between analytical chemistry and artificial intelligence: A tutorial review. Anal Chim Acta 2021; 1161:338403. [DOI: 10.1016/j.aca.2021.338403] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/01/2023]
|
21
|
Pan Q, Xie J, Lin L, Hong MS, Wang XC, Sun SQ, Xu CH. Direct identification and quantitation of fluorescent whitening agent in wheat flour based on multi-molecular infrared (MM-IR) spectroscopy and stereomicroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119353. [PMID: 33422880 DOI: 10.1016/j.saa.2020.119353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/27/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Fluorescent brighteners, illegally used to whitening wheat flour, are detrimental to people health. The aim was to establish a rapid and direct method to identify and quantify fluorescent whitening agent OB-1 (FWA OB-1) in wheat flour by using multi-molecular infrared (MM-IR) spectroscopy combined with stereomicroscopy. Characteristic peak profile of FWA OB-1 used as a judgment basis was spatially revealed by stereomicroscopy with group-peak matching of MM-IR at 1614 cm-1, 1501 cm-1 and 893 cm-1 and were further unveiled by the second derivative infrared spectroscopy (SD-IR) and its two-dimensional correlation infrared (SD-2DCOS IR) spectroscopy for higher resolution, and were validated by high-performance liquid chromatography (HPLC). Moreover, a quantitative prediction model based on IR spectra was established by partial least squares 1 (PLS1) (R2, 98.361; SEE, 5.032; SEP, 5.581). The developed method was applicable for rapid and direct analysis of FWA OB-1 (low to 10 ppm) in flour with relative standard deviation (RSD) of 5%. The capabilities of MM-IR with spectral qualitative and quantitative analysis would be applicable to direct identification and quantitation of fluorescent whitening agents or other IR-active compounds in powder objects.
Collapse
Affiliation(s)
- Qiannan Pan
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Qinpu Biotechnology Pte Ltd, Shanghai 201306, PR China
| | - Jun Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Qinpu Biotechnology Pte Ltd, Shanghai 201306, PR China
| | - Ling Lin
- Comprehensive Technology Service Center of Quanzhou Customs, Quanzhou 362018, PR China
| | - Miao-Si Hong
- Shanghai Sixty People's Hospital East, Shanghai 201306, PR China
| | - Xi-Chang Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, PR China
| | - Su-Qin Sun
- Analysis Center, Tsinghua University, Beijing 10084, PR China.
| | - Chang-Hua Xu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, PR China.
| |
Collapse
|
22
|
Micro-nano particle formation and transformation mechanisms of broth in meat braised processing. Food Chem 2020; 342:128383. [PMID: 33097328 DOI: 10.1016/j.foodchem.2020.128383] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/25/2020] [Accepted: 10/10/2020] [Indexed: 11/23/2022]
Abstract
The formation and transformation mechanisms of micro-nano particles (MNPs) in broth during meat braising were systematically investigated through a sophisticated controlled process. Dynamic changes in the morphology, composition and spatial distribution of MNPs were comprehensively characterized, and subsequently the mechanisms were visually uncovered from microcosmic-spatial perspectives. MNPs formed as circular-shape colloidal systems with an aggrandizing tendency for particle number and size and gradually stabilize eventually. Specifically, the major MNPs gradually increased the size from <400 nm to ~1500 nm and accumulated triglycerides and glycoconjugates resulting from lipid oxidation, Maillard reaction, etc. Continuous formation of MNPs in broth progressively facilitated the spatial coalescence and self-assembly of free substances driven by intermolecular interactions, and consequently principal nutrients and flavor compounds further accumulated in the MNPs by the braising process. Hence, this work not only revealed the MNP formation and transformation mechanisms but offered a foundation for investigating MNP-dependent effect on broth flavor.
Collapse
|