1
|
Zhu Z, Liu J, Hu Y, Dong Y, Zhang L, Chen X, Zou L. Tailoring curcumin ternary complex nanocrystals via microfluidic mediated assembly: Stability, solubility, bioaccessibility and formation mechanism. Food Chem 2025; 480:143920. [PMID: 40112724 DOI: 10.1016/j.foodchem.2025.143920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/24/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
Microfluidic technique was employed to precisely modulate both the microenvironment and composition, enabling the dynamic assembly of curcumin, soy protein isolates, and rhamnolipid into ternary nanocrystals through hydrogen bonding and hydrophobic interactions. As the concentration of rhamnolipid increased, the loading capacity of curcumin in ternary complex nanocrystals rose from 4.23 % to 10.82 %, while its water dispersibility and bioaccessibility enhanced by 141.94- to 664.67-fold and 5.11- to 6.49-fold, respectively. Moreover, the stability of curcumin in ternary complex nanocrystals was significantly enhanced during both storage and exposure to UV light. The longest half-life of curcumin in the nanocrystals increased from 65.39 days to 385.08 days during storage at 25 °C, and from 87.74 min to 198.04 min under UV light. These findings provide important insights for the development of bio-assemblies, and the resulting complex nanocrystals can be used as pigment or bioactivity in foods, cosmetics and pharmaceuticals.
Collapse
Affiliation(s)
- Ziyi Zhu
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yue Hu
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yuqing Dong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Lexiang Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health); Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Xing Chen
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Liqiang Zou
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|
2
|
Liu W, Xu X, Liu W, Zeng X, Shi S, Zhang J, Tang J, Li Y, Pang J, Wu C. Construction of fucoxanthin-loaded multi-functional pea protein isolate-fucoidan nanoparticles at neutral pH: Structural characterization and functional verification. Int J Biol Macromol 2025; 309:142966. [PMID: 40216116 DOI: 10.1016/j.ijbiomac.2025.142966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
Fucoxanthin (FX), a marine-origin carotenoid, possesses various physiological activities. However, FX has instability and low water solubility. Encapsulation using nanoparticles effectively addresses these challenges. Nanoparticles loaded with FX were fabricated using a pH-driven method, with pea protein isolate (PPI) and fucoidan (FUC) serving as the raw materials. The optimal nanoparticles were prepared at pH = 7.0 with a PPI:FUC = 1:3, yielding a particle size of 166.60 ± 0.55 nm and a zeta potential of -40.88 ± 0.68 mV. The formation of FX@PPI/FUC nanoparticles were primarily driven by hydrogen bonding and hydrophobic interactions. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and fluorescence spectroscopy were used to research structure of nanoparticle and interaction during the formation. The FX@PPI/FUC nanoparticles demonstrated excellent thermal and pH stability in neutral and alkaline environments, effectively released FX and showcased antioxidant properties. Additionally, a W/O/W FX@PPI-FUC Pickering emulsion was formulated, containing 65 % of the oil phase, which exhibited a favorable particle size of 26.5 ± 0.28 μm and a zeta potential of -67.2 ± 0.94 mV. Furthermore, the FX@PPI-FUC Pickering emulsion demonstrated outstanding thermal and storage stability, indicating its potential for application in functional food.
Collapse
Affiliation(s)
- Wenhao Liu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoye Xu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wanjing Liu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xinxin Zeng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Si Shi
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jianxi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Junjie Tang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuanzhao Li
- College of Equipment Management and Support, Chinese People's Armed Police Force Engineering University, China
| | - Jie Pang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| | - Chunhua Wu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
3
|
Yu Y, He Y, Wang Y, McClements DJ, Xu X, Li X, Sun Q, Dai L, Li Y. Fabrication and characterization of oleogels stabilized by pea protein-curdlan microgels. Int J Biol Macromol 2025; 308:142200. [PMID: 40107551 DOI: 10.1016/j.ijbiomac.2025.142200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/24/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
The objective of this research was to create a food-grade oleogel as an alternative to traditional solid fats, with lower levels of trans and saturated fatty acids. Oleogels with a 30 % oil concentration were successfully prepared using pea protein isolate (PPI)-curdlan (CD) microgels via an emulsion-templating method. The PPI-CD microgels, with diameters ranging from 325 to 375 nm, demonstrated excellent emulsifying properties. After centrifugation at 10,000 rpm for 15 min, the oleogels retained approximately 98 % of the oil, showing strong oil-binding capacity. Confocal laser scanning microscopy (CLSM) revealed that the oil domains were effectively trapped within a dense, interconnected protein network, indicating good structural stability. Rheological analysis indicated that the PPI-CD-stabilized oleogels exhibited significantly higher gel strength, viscoelasticity, and thixotropic recovery than oleogels stabilized by PPI alone. These oleogels showed high recovery rates (55-97 %) after shear stress, suggesting strong self-healing capabilities. Thermal analysis through differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) confirmed that the oleogels had good thermal stability, further supporting their potential for use in food products. This study highlights the promise of PPI-CD microgels as a healthier alternative to traditional solid fats in food formulations.
Collapse
Affiliation(s)
- Yue Yu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuting He
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yifan Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yang Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
4
|
Yi J, Kang L, Luo D, Fan Y. Enhanced solubility, stability, bioaccessibility, and antioxidant activity of curcumin with hydrolyzed pea protein-based nano-micelles: pH-driven method vs ethanol-induced method. Int J Biol Macromol 2025; 291:139106. [PMID: 39725114 DOI: 10.1016/j.ijbiomac.2024.139106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Pea protein nano-micelles gained with partial hydrolysis by a proteolytic enzyme (Protamex) were employed as nanocarriers to encapsulate and stabilize liable and hydrophobic curcumin (CUR) with two various methods (pH-driven method (PDM) and ethanol-induced method (EIM)). Both CUR-loaded pea protein hydrolysates (PPHs) nano-micelles by PDM and EIM exhibited spherical shapes, and uniform particle size distributions. Highest CUR loading amount (3.21 %) was gained with PPHs by PDM. The interaction between PPHs nano-micelles and curcumin was comprehensively examined with optical spectroscopy. These outcomes obviously demonstrated the water solubility, storage stability against UV light and heating, bioaccessibility and in vitro antioxidant activity of CUR can be pronouncedly enhanced with PPHs-based nanocarriers. Interestingly, PPHs-CUR nano-micelles fabricated with PDM have higher loading amount, light stability, and better bioaccessibility as well as antioxidant activity than those by EIM. These results clearly show that PDM may be a better method than EIM and provide useful information in nutraceuticals encapsulation with vegetable proteins-based delivery systems.
Collapse
Affiliation(s)
- Jiang Yi
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ling Kang
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dixue Luo
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuting Fan
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
5
|
Cheng Y, Xu Q, Yu M, Dang C, Deng L, Chen H. Curcumin Nanoparticles-related Non-invasive Tumor Therapy, and Cardiotoxicity Relieve. Curr Med Chem 2025; 32:447-467. [PMID: 38918994 PMCID: PMC11826934 DOI: 10.2174/0109298673305616240610153554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/04/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024]
Abstract
Non-invasive antitumor therapy can treat tumor patients who cannot tolerate surgery or are unsuitable. However, tumor resistance to non-invasive antitumor therapy and cardiotoxicity caused by treatment seriously affect the quality of life and prognosis of patients. As a kind of polyphenol extracted from herbs, curcumin has many pharmacological effects, such as anti-inflammation, antioxidation, antitumor, etc. Curcumin plays the antitumor effect by directly promoting tumor cell death and reducing tumor cells' invasive ability. Curcumin exerts the therapeutic effect mainly by inhibiting the nuclear factor-κB (NF-κB) signal pathway, inhibiting the production of cyclooxygenase-2 (COX-2), promoting the expression of caspase-9, and directly inducing reactive oxygen species (ROS) production in tumor cells. Curcumin nanoparticles can solve curcumin's shortcomings, such as poor water solubility and high metabolic rate, and can be effectively used in antitumor therapy. Curcumin nanoparticles can improve the prognosis and quality of life of tumor patients by using as adjuvants to enhance the sensitivity of tumors to non-invasive therapy and reduce the side effects, especially cardiotoxicity. In this paper, we collect and analyze the literature of relevant databases. It is pointed out that future research on curcumin tends to alleviate the adverse reactions caused by treatment, which is of more significance to tumor patients.
Collapse
Affiliation(s)
- Yuhang Cheng
- Department of Cardiology, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150006, Heilongjiang, China
| | - Qian Xu
- Department of Cardiology, Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, No. 411, Guogeli Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Miao Yu
- Department of Cardiology, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150006, Heilongjiang, China
| | - Chenwei Dang
- Department of Cardiology, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150006, Heilongjiang, China
| | - Limei Deng
- Department of Cardiology, Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, No. 411, Guogeli Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Huijun Chen
- Department of Cardiology, Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, No. 411, Guogeli Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| |
Collapse
|
6
|
Wang Q, Li X, Hao J, Xu D. Stability mechanism of Monascus pigment-soy protein isolate-maltodextrin complex. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7173-7181. [PMID: 38619243 DOI: 10.1002/jsfa.13539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Monascus pigment (MP) is a natural food coloring with vital physiological functions but prone to degradation and color fading under light conditions. RESULTS This study investigated the effect of complex formation of soybean protein isolate (SPI), maltodextrin (MD), and MP on the photostability of MP. Light stability was assessed through retention rate and color difference. Fluorescence spectroscopy (FS), circular dichroism (CD), Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) explored MP, SPI, and MD interactions, clarifying the MP-SPI-MD complex mechanism on the light stability of MP. Microstructure and differential scanning calorimetry (DSC) analyzed the morphology and thermal properties. The retention rate of MP increased to approximately 80%, and minimal color difference was observed when adding SPI and MD simultaneously. FS revealed hydrophobic interaction between MP and SPI. FTIR analysis showed intensity changes and peak shifts in amide I band and amide II band, which proved the hydrophobic interaction. CD showed a decrease in α-helix content and an increase in β-sheet content after complex formation, indicating strengthened hydrogen bonding interactions. Scanning electron microscopy (SEM) analysis demonstrated that MP was attached to the surface and interior of complexes. XRD showed MP as crystalline, while SPI and MD were amorphous, complexes exhibited weakened or absent peaks, suggesting MP encapsulation. The results of DSC were consistent with XRD. CONCLUSION SPI and MD enveloped MP through hydrogen bonding and hydrophobic interaction, ultimately enhancing its light stability and providing insights for pigment-protein-polysaccharide interactions and improving pigment stability in the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiuyu Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Xiaoyu Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Jia Hao
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Duoxia Xu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
7
|
Wu X, Xin Y, Zhang H, Quan L, Ao Q. Biopolymer-Based Nanomedicine for Cancer Therapy: Opportunities and Challenges. Int J Nanomedicine 2024; 19:7415-7471. [PMID: 39071502 PMCID: PMC11278852 DOI: 10.2147/ijn.s460047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/18/2024] [Indexed: 07/30/2024] Open
Abstract
Cancer, as the foremost challenge among human diseases, has plagued medical professionals for many years. While there have been numerous treatment approaches in clinical practice, they often cause additional harm to patients. The emergence of nanotechnology has brought new directions for cancer treatment, which can deliver anticancer drugs specifically to tumor areas. This article first introduces the application scenarios of nanotherapies and treatment strategies of nanomedicine. Then, the noteworthy characteristics exhibited by biopolymer materials were described, which make biopolymers stand out in polymeric nanomedicine delivery. Next, we focus on summarizing the state-of-art studies of five categories of proteins (Albumin, Gelatin, Silk fibroin, Zein, Ferritin), nine varieties of polysaccharides (Chitosan, Starch, Hyaluronic acid, Dextran, cellulose, Fucoidan, Carrageenan, Lignin, Pectin) and liposomes in the field of anticancer drug delivery. Finally, we also provide a summary of the advantages and limitations of these biopolymers, discuss the prevailing impediments to their application, and discuss in detail the prospective research directions. This review not only helps readers understand the current development status of nano anticancer drug delivery systems based on biopolymers, but also is helpful for readers to understand the properties of various biopolymers and find suitable solutions in this field through comparative reading.
Collapse
Affiliation(s)
- Xixi Wu
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Yuan Xin
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Hengtong Zhang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Liang Quan
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| |
Collapse
|
8
|
Gao X, Liu Z, Chen J, Zhu D, Liu H, Li J, Zhao X, Mi H. Encapsulation of luteolin by self-assembled Rha/SSPS/SPI nano complexes: Characterization, stability, and gastrointestinal digestion in vitro. Food Res Int 2024; 188:114532. [PMID: 38823889 DOI: 10.1016/j.foodres.2024.114532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 02/17/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024]
Abstract
Luteolin has anti-inflammatory, antioxidant, and anti-tumor functions, but its poor water solubility and stability limit its applications in foods as a functional component. In this study, the nanocomposites loading luteolin (Lut) with soybean protein isolate (SPI), soluble soybean polysaccharide (SSPS) and/or rhamnolipid (Rha) were prepared by layer-by-layer shelf assembly method, and their properties were also evaluated. The results showed that Rha/SPI/Lut had the smallest particle size (206.24 nm) and highest loading ratio (8.03 μg/mg) while Rha/SSPS/SPI/Lut had the highest encapsulation efficiency (82.45 %). Rha interacted with SPI through hydrophobic interactions as the main driving force, while SSPS attached to SPI with only hydrogen bonding. Furthermore, the synergistic effect between Rha and SSPS was observed in Rha/SSPS/SPI/Lut complex, in consequence, it had the best thermal and storage stability, and the slowest release in gastrointestinal digestion. Thus, this approach provided an alternative way for the application of luteolin in functional foods.
Collapse
Affiliation(s)
- Xiaoya Gao
- College of Food Science and Engineering, Bohai University, Jinzhou 121000, China
| | - Zuxin Liu
- College of Food Science and Engineering, Bohai University, Jinzhou 121000, China
| | - Jingxin Chen
- College of Food Science and Engineering, Bohai University, Jinzhou 121000, China.
| | - Danshi Zhu
- College of Food Science and Engineering, Bohai University, Jinzhou 121000, China
| | - He Liu
- College of Food Science and Engineering, Bohai University, Jinzhou 121000, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou 121000, China
| | - Xiaohui Zhao
- Department of Oncology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Hongbo Mi
- College of Food Science and Engineering, Bohai University, Jinzhou 121000, China.
| |
Collapse
|
9
|
Ortiz-Deleón AM, Román-Guerrero A, Sandoval-Castilla O, Cuevas-Bernardino JC. Characterization of O/W emulgels based on whey protein-alginate-inulin coacervates: Influence of temperature and ultrasound as protein preconditioning process. Int J Biol Macromol 2024; 265:131260. [PMID: 38599904 DOI: 10.1016/j.ijbiomac.2024.131260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/08/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
Preconditioning processes in proteins play a crucial role in enhancing their functional properties as surface active agents. Whey protein isolate (WPI, 20 wt%) was preconditioned via temperature (WPIT, 90 °C) or ultrasound (WPIUS, 20 kHz, 80 % amplitude). FTIR and zeta potential analysis demonstrated the effect of the preconditioning process on the secondary structure and surface properties of WPI. WPI-Alginate:Inulin (AI) complex coacervates (CCWPI:AI) were formed at pH 3.0 using WPIT and WPIUS, and the associative electrostatic interactions between WPI-AI led to coacervation yields >90 %, influenced by the preconditioning process employed. Viscoelastic properties outlined a predominantly solid-like behavior (G´ > G"). The CCWPI:AI system based on WPIT showed enhanced strength and gel-like structure compared to the WPIUS-based system. Oil-in-water (O/W) emulgels were formed and stabilized with the CCWPI:AI complexes, exhibiting spherical droplets (93.3-292.8 μm), whereas texture and rheological properties highlighted the formation of gel-like systems. The centrifugation STEP technology was used to evaluate the physical stability of emulgels, WPIT-based emulgels displayed superior stability against creaming than untreated WPI and WPIUS-based emulgels. These findings provide a basis for developing emulgels with prolonged stability and tunable functional properties, tailoring enhanced viscoelastic and texture attributes to meet specific needs for industrial applications where gel-like properties are pursued.
Collapse
Affiliation(s)
- Anthony M Ortiz-Deleón
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Leyes de Reforma 1ª secc., 09310, Iztapalapa, CDMX, Mexico
| | - Angélica Román-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Leyes de Reforma 1ª secc., 09310, Iztapalapa, CDMX, Mexico.
| | - Ofelia Sandoval-Castilla
- Departamento de Ingeniería Agroindustrial, Universidad Autónoma Chapingo, km 38.5 Carretera México-Texcoco, 56230 Texcoco, Estado de México, Mexico
| | - Juan Carlos Cuevas-Bernardino
- CONACYT - Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Subsede Sureste, Parque Científico Tecnológico de Yucatán, Km 5.5. Carretera Sierra Papacal-Chuburná Puerto, 97302 Mérida, Yucatán, Mexico
| |
Collapse
|
10
|
Li B, Luan H, Qin J, Zong A, Liu L, Xu Z, Du F, Xu T. Effect of soluble dietary fiber on soy protein isolate emulsion gel properties, stability and delivery of vitamin D 3. Int J Biol Macromol 2024; 262:129806. [PMID: 38325693 DOI: 10.1016/j.ijbiomac.2024.129806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/25/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
Emulsion gels with denser network microstructure and stronger mechanical properties have attracted increasing attentions for delivering lipophilic compounds. In this study, the effect of three distinct soluble dietary fiber (inulin (IN), resistant dextrin (RD) and stachyose (ST)) on the rheological, mechanical and microstructural properties of soy protein isolate (SPI) emulsion gel were firstly investigated. Compared with RD and IN, ST significantly accelerated water holding capacity and thermal stability, which exhibited more compact microstructure and more uniform emulsified oil droplets. Subsequently, the stability and bioavailability of vitamin D3 (VD3) in different delivery systems (medium chain triglycerides (MCT) embedding, SPI-ST emulsion embedding, SPI emulsion gel embedding and SPI-ST emulsion gel embedding) were continue evaluated. In vitro simulated digestion experiment demonstrated that the bioaccessibility of encapsulated VD3 in SPI-ST emulsion gel (69.95 %) was much higher than that of free embedding (48.99 %). In vivo pharmacokinetic experiment revealed that the bioavailability of VD3 was significantly enhanced in SPI-ST gel (p < 0.05), with the AUC0-24h value of 25-OH VD3 (the main circulating form of VD3) were 1.34-fold, 1.23-fold higher than that of free embedding, MCT embedding, respectively. These findings provide a possible approach for the development of high protein/fiber functional foods containing enhanced hydrophobic bioactives.
Collapse
Affiliation(s)
- Baorui Li
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Shandong Engineering Research Center of Food for Special Medical Purpose, Jinan, PR China
| | - Hui Luan
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Shandong Engineering Research Center of Food for Special Medical Purpose, Jinan, PR China; College of Food Science and Engineering, Shandong Agricultural University/Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, Tai'an, PR China
| | - Jingya Qin
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Shandong Engineering Research Center of Food for Special Medical Purpose, Jinan, PR China; College of Food Science and Engineering, Shandong Agricultural University/Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, Tai'an, PR China
| | - Aizhen Zong
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Shandong Engineering Research Center of Food for Special Medical Purpose, Jinan, PR China
| | - Lina Liu
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Shandong Engineering Research Center of Food for Special Medical Purpose, Jinan, PR China
| | - Zhixiang Xu
- College of Food Science and Engineering, Shandong Agricultural University/Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, Tai'an, PR China
| | - Fangling Du
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Shandong Engineering Research Center of Food for Special Medical Purpose, Jinan, PR China.
| | - Tongcheng Xu
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Shandong Engineering Research Center of Food for Special Medical Purpose, Jinan, PR China; College of Food Science and Engineering, Shandong Agricultural University/Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, Tai'an, PR China.
| |
Collapse
|
11
|
Yan JN, Wang YQ, Zhang ZJ, Du YN, Wu HT. Improving the physicochemical stability and release properties of curcumin using κ-carrageenan/scallop hydrolysates hydrogel beads. Food Chem 2024; 434:137471. [PMID: 37741237 DOI: 10.1016/j.foodchem.2023.137471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023]
Abstract
Scallop (Patinopecten yessoensis) male gonad hydrolysates (SMGHs)/κ-carrageenan (KC)/KCl beads with SMGHs:KC ratios (0:10-5:5) were investigated. SMGHs/KC/KCl-Cur bead (5:5) exhibited the most intact spherical morphology and highest Cur loading content of 0.063 mg/0.1 g bead, ascribing to a shortened T23 from 1607.9 to 966.4 ms, and red and blueshifts of OH, NH, amide I and II bands. The undetected fingerprint region within 7.82°-28.90° of SMGHs/KC/KCl-Cur beads indicated successful Cur entrapment. Moreover, SMGHs/KC/KCl-Cur beads exhibited shrinkage network backbones and larger void pores as SMGHs increased, with vessel percentage area, total number of junctions, total vessel length decreasing from 52.1, 1446.8, 57931.4 to 39.7, 530.5, 34458.4, and lacunarity increasing from 0.048 to 0.111, respectively. Furthermore, Cur showed approximately 50% release contents in colon phase and above 90% retention rate during 30 days of storage at 4 °C. These results suggested that SMGHs/KC/KCl-Cur beads exhibited sustained-release of Cur and promised stable Cur preservation.
Collapse
Affiliation(s)
- Jia-Nan Yan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, China
| | - Yu-Qiao Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhu-Jun Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yi-Nan Du
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hai-Tao Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, China.
| |
Collapse
|
12
|
Li Y, Xu J, Guan Q, Zhang H, Ding Z, Wang Q, Wang Z, Han J, Liu M, Zhao Y. Impact of hypromellose acetate succinate and Soluplus® on the performance of β-carotene solid dispersions with the aid of sorbitan monolaurate: In vitro-in vivo comparative assessment. Int J Biol Macromol 2023; 253:126639. [PMID: 37657570 DOI: 10.1016/j.ijbiomac.2023.126639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Solid dispersions (SDs) possess the potential to enhance the bioavailability of insoluble active pharmaceutical ingredients (APIs) by effectively converting them into amorphous state. However, SDs have a tendency to recrystallize unless appropriate excipients are employed. The objective of this study was to evaluate the ability of hypromellose acetate succinate HF (HPMCAS-HF) and Soluplus® to inhibit the recrystallization of β-carotene and improve its in vivo bioavailability through the fabrication of ternary β-carotene solid dispersions (SDs) with the aid of specific surfactant. Due to rapid micellization, the dissolution profiles of β-carotene SDs based on HPMCAS-HF/Span 20 (5:5, w/w) or Soluplus®/Span 20 (6:4, w/w) combinations exhibited significant improvement, which were almost 7-10 times higher than β-carotene bulk powder. DSC and PXRD analysis indicated a notable reduction in the crystallinity degree of β-carotene within the SDs. The stability study demonstrated a half-life of β-carotene in the SDs exceeding 30 days. Additionally, the in vivo pharmacokinetics analysis confirmed that the cellulose derivatives/surfactant combinations significantly enhanced the bioavailability of β-carotene by 1.37-fold and 2.3-fold, respectively. Notably, the HPMCAS-HF/Span 20 combination exhibited superior performance. Consequently, the HPMCAS-HF/Span 20 combination held potential for the advancement of an effective drug delivery system for β-carotene.
Collapse
Affiliation(s)
- Yinglan Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Jie Xu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Qingran Guan
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Huaizhen Zhang
- School of Geography and Environment, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Zhuang Ding
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Zhengping Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China.
| | - Yanna Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China.
| |
Collapse
|
13
|
Borah MS, Tiwari A, Sridhar K, Narsaiah K, Nayak PK, Stephen Inbaraj B. Recent Trends in Valorization of Food Industry Waste and By-Products: Encapsulation and In Vitro Release of Bioactive Compounds. Foods 2023; 12:3823. [PMID: 37893717 PMCID: PMC10606574 DOI: 10.3390/foods12203823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Food by-products and waste are a boundless source of bioactives, nutraceuticals, and naturally occurring substances that are good for human health. In fact, a lot of by-products and wastes are generated by several food businesses. Therefore, waste management and by-product utilization are the most important aspects of the food sector. According to various studies, many bioactive compounds such as phenolics, carotenoids, and proteins can be recovered as feed stock from various industries' by-products and wastes using potential technologies. As a result, current trends are shifting attention to the sustainable valorisation of food sector waste management and by-products utilization. Thus, the circular economy principles have been applied to the field of food science. The aim of the circular economy is to ensure environmental protection and promote economic development while minimizing the environmental impact of food production. All of these aspects of the circular economy, at present, have become a challenging area of research for by-product valorisation as well. Hence, this review aims to highlight the emerging trends in the efficient utilization of food industry waste and by-products by focusing on innovative encapsulation techniques and controlled release mechanisms of bioactive compounds extracted from food industry waste and by-products. This review also aims to suggest future research directions, and addresses regulatory and toxicity considerations, by fostering knowledge dissemination and encouraging eco-friendly approaches within the food industry. This review reveals the role of encapsulation strategies for the effective utilization of bioactive compounds extracted from food industry waste and by-products. However, further research is needed to address regulatory and toxicity considerations of encapsulated bioactive compounds and health-related concerns.
Collapse
Affiliation(s)
| | - Ajita Tiwari
- Department of Agricultural Engineering, Assam University, Silchar 788011, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Kairam Narsaiah
- Agriculture Engineering Division, Indian Council of Agricultural Research, New Delhi 110012, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India
| | | |
Collapse
|
14
|
Liu H, Song J, Zhou L, Peng S, McClements DJ, Liu W. Construction of curcumin-fortified juices using their self-derived extracellular vesicles as natural delivery systems: grape, tomato, and orange juices. Food Funct 2023; 14:9364-9376. [PMID: 37789722 DOI: 10.1039/d3fo02605a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Different fruit and vegetable juices were first used to encapsulate curcumin to improve its solubility, stability, and bioaccessibility, which is expected to enable designing of polyphenol-enriched beverages and impact human health and well-being. Briefly, fruit and vegetable-derived extracellular vesicles usually serve as transport and communication tools between different cells, which means they also may be utilized as delivery carriers for other bioactive agents. Curcumin, as a model polyphenol with many physiological activities, typically has low water-solubility, stability, and bioaccessibility. Therefore, extracellular vesicles were applied to load curcumin to overcome these challenges and to facilitate its incorporation into fruit and vegetable juices. Three kinds of curcumin-loaded fruit and vegetable juices, including curcumin-loaded grape (Cur-G), tomato (Cur-T), and orange (Cur-O) juices, exhibited higher encapsulation efficiency (>80%) than others. The patterns of XRD and FTIR confirmed that curcumin moved into extracellular vesicles in the amorphous form and that the hydrogen bonding force was found between them. Three kinds of fruit and vegetable juices can significantly enhance the solubility, stability and bioavailability of curcumin, but the degrees of improvement are different. For instance, Cur-O exhibited the highest encapsulation efficiency, chemical stability, and effective bioaccessibility than Cur-G and Cur-T. In summary, this study shows that natural fruit and vegetable juices can effectively improve the solubility, stability and bioaccessibility of active polyphenols, which is expected to enable successful designing of nutrient-enriched beverages with a simple method according to various needs of people and be directly applied to food processing and home production.
Collapse
Affiliation(s)
- Hang Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, P. R. China.
| | - Jiawen Song
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, P. R. China.
| | - Lei Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, P. R. China.
| | - Shengfeng Peng
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, P. R. China.
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Wei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, P. R. China.
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| |
Collapse
|
15
|
Zhang X, Li C, Hu W, Abdel-Samie MA, Cui H, Lin L. An overview of tea saponin as a surfactant in food applications. Crit Rev Food Sci Nutr 2023; 64:12922-12934. [PMID: 37737159 DOI: 10.1080/10408398.2023.2258392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The residue of Camellia seeds after oil extraction contains many bioactive ingredients, including tea saponin. Tea saponin has many pharmacological effects and is an excellent nonionic surfactant. The development of natural surfactants has become a hot topic in food research. This review gathers the applications of tea saponin as a surfactant in food. It focuses on the application of tea saponin in emulsions, delivery systems, extraction and fermentation, as well as the challenges and development prospects in food applications. Tea saponin shows great potential as a surfactant in food applications, which can replace some synthetic surfactants. The full utilization of tea saponin improves the comprehensive utilization value of Camellia seed residue, contributes to the sustainable development of Camellia industry and avoids resource waste.
Collapse
Affiliation(s)
- Xueli Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Wei Hu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Mohamed A Abdel-Samie
- Department of Food and Dairy Sciences and technology, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| |
Collapse
|
16
|
Li G, Lan N, Huang Y, Mo C, Wang Q, Wu C, Wang Y. Preparation and Characterization of Gluten/SDS/Chitosan Composite Hydrogel Based on Hydrophobic and Electrostatic Interactions. J Funct Biomater 2023; 14:jfb14040222. [PMID: 37103311 PMCID: PMC10146719 DOI: 10.3390/jfb14040222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Gluten is a natural byproduct derived from wheat starch, possessing ideal biocompatibility. However, its poor mechanical properties and heterogeneous structure are not suitable for cell adhesion in biomedical applications. To resolve the issues, we prepare novel gluten (G)/sodium lauryl sulfate (SDS)/chitosan (CS) composite hydrogels by electrostatic and hydrophobic interactions. Specifically, gluten is modified by SDS to give it a negatively charged surface, and then it conjugates with positively charged chitosan to form the hydrogel. In addition, the composite formative process, surface morphology, secondary network structure, rheological property, thermal stability, and cytotoxicity are investigated. Moreover, this work demonstrates that the change can occur in surface hydrophobicity caused by the pH-eading influence of hydrogen bonds and polypeptide chains. Meanwhile, the reversible non-covalent bonding in the networks is beneficial to improving the stability of the hydrogels, which shows a prominent prospect in biomedical engineering.
Collapse
Affiliation(s)
- Guangfeng Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510642, China
| | - Ni Lan
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510642, China
| | - Yanling Huang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510642, China
| | - Chou Mo
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiaoli Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510642, China
| | - Chaoxi Wu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510642, China
- Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Guangzhou 510642, China
| | - Yifei Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510642, China
- Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Guangzhou 510642, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510642, China
| |
Collapse
|
17
|
Tang Z, Tao Y, Huang Q, Huang Y, Huang J, Wu Y, Jing X, Yang T, Li X, Liang J, Sun Y. Fabrication, Characterization, and Emulsifying Properties of Complex Based on Pea Protein Isolate / Pectin for the Encapsulation of Pterostilbene. Food Chem X 2023; 18:100663. [PMID: 37064496 PMCID: PMC10090216 DOI: 10.1016/j.fochx.2023.100663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
In this study, pectin (PEC) and pea protein isolate(PPI) was successfully used to create complexes as a novel delivery system for pterostilbene (PT). When the mass ratio of PEC to PPI was 0.5, the particle size and ζ-potential of PPI-PEC-PT were 119.41 ± 5.68 nm and -23.26 ± 0.61 mV, respectively, and the encapsulation efficiency (EE) of PT was 90.92 ± 2.08%. The photochemical stability of PT was enhanced after encapsulation. The results of the molecular docking and multispectral analysis demonstrated that the PPI and PT binding was spontaneous and mostly fueled by hydrophobic interactions. The hydrophobicity of PPI was significantly decreased and the emulsification activity and emulsion stability were significantly improved after production with PEC and PT. The best emulsification impact was demonstrated by the PPI-PEC-PT complex. PPI-PEC is an effective PT delivery material, and the PPI-PEC-PT complex is a new functional emulsification material with significant potential in liquid and semi-liquid food and health products.
Collapse
Affiliation(s)
- Zonghui Tang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Laboratory for Agro-products Processing, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Yuting Tao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Laboratory for Agro-products Processing, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Qiuye Huang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Laboratory for Agro-products Processing, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Yousheng Huang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Laboratory for Agro-products Processing, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Jun Huang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Laboratory for Agro-products Processing, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Yisu Wu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Laboratory for Agro-products Processing, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei, China
| | - Xinyu Jing
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Laboratory for Agro-products Processing, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Tao Yang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Laboratory for Agro-products Processing, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Xueling Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Laboratory for Agro-products Processing, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Jin Liang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Laboratory for Agro-products Processing, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Yue Sun
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Laboratory for Agro-products Processing, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
- Corresponding author.
| |
Collapse
|
18
|
Dong H, Wang P, Yang Z, Li R, Xu X, Shen J. Dual improvement in curcumin encapsulation efficiency and lyophilized complex dispersibility through ultrasound regulation of curcumin-protein assembly. ULTRASONICS SONOCHEMISTRY 2022; 90:106188. [PMID: 36209635 PMCID: PMC9562415 DOI: 10.1016/j.ultsonch.2022.106188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Ultrasound has a recognized ability to modulate the structure and function of proteins. Discovering the influential mechanism of ultrasound on the intramolecular interactions of egg-white protein isolate-curcumin (EPI-Cur) nanoparticles and their intermolecular interaction during freeze drying and redispersion is meaningful. In this study, under the extension of pre-sonication time, the protein solubility, surface hydrophobicity, and curcumin encapsulation rate showed an increasing trend, reaching the highest value at 12 min of treatment. However, the values decreased under the followed extension of ultrasound time. After freeze drying and redispersion were applied, the EPI-Cur sample under 12 min of ultrasound treatment exhibited minimal aggregation degree and loss of curcumin. The retention and loading rates of curcumin in the lyophilized powder reached 96 % and 33.60 mg/g EPI, respectively. However, under excessive ultrasound of >12 min, scanning electron microscopy showed distinct blocky aggregates. Overexposure of the hydrophobic region of the protein triggered protein-mediated hydrophobic aggregation after freeze drying. X-ray diffraction patterns showed the highest crystallinity, indicating that the free curcumin-mediated hydrophobic aggregation during freeze drying was enhanced by the concentration effect and intensified the formation of larger aggregates. This work has practical significance for developing the delivery of hydrophobic active substances. It provides theoretical value for the dynamic dispersity change in protein-hydrophobic active substances during freeze drying and redissolving.
Collapse
Affiliation(s)
- Hualin Dong
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Peng Wang
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Zongyun Yang
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Ru Li
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xinglian Xu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Juan Shen
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
19
|
Zhang M, Li Z, Dai M, He H, Liang B, Sun C, Li X, Ji C. Fabrication and Characterization of Chitosan-Pea Protein Isolate Nanoparticles. Molecules 2022; 27:6913. [PMID: 36296504 PMCID: PMC9611140 DOI: 10.3390/molecules27206913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Chitosan (CS) and pea protein isolate (PPI) were used as raw materials to prepare nanoparticles. The structures and functional properties of the nanoparticles with three ratios (1:1, 1:2 1:3, CS:PPI) were evaluated. The particle sizes of chitosan-pea protein isolate (CS-PPI) nanoparticles with the ratios of 1:1, 1:2, and 1:3 were 802.95 ± 71.94, 807.10 ± 86.22, and 767.75 ± 110.10 nm, respectively, and there were no significant differences. Through the analysis of turbidity, endogenous fluorescence spectroscopy and Fourier transform infrared spectroscopy, the interaction between CS and PPI was mainly caused by electrostatic mutual attraction and hydrogen bonding. In terms of interface properties, the contact angles of nanoparticles with the ratio of 1:1, 1:2, and 1:3 were 119.2°, 112.3°, and 107.0°, respectively. The emulsifying activity (EAI) of the nanoparticles was related to the proportion of protein. The nanoparticle with the ratio of 1:1 had the highest potential and the best thermal stability. From the observation of their morphology by transmission electron microscopy, it could be seen that the nanoparticles with a ratio of 1:3 were the closest to spherical. This study provides a theoretical basis for the design of CS-PPI nanoparticles and their applications in promoting emulsion stabilization and the delivery of active substances using emulsions.
Collapse
Affiliation(s)
- Man Zhang
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Zikun Li
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Mengqi Dai
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Hongjun He
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Bin Liang
- College of Food Engineering, Ludong University, Yantai 264025, China
| | - Chanchan Sun
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Xiulian Li
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Changjian Ji
- Department of Physics and Electronic Engineering, Qilu Normal University, Jinan 250200, China
| |
Collapse
|
20
|
Pea protein based nanocarriers for lipophilic polyphenols: Spectroscopic analysis, characterization, chemical stability, antioxidant and molecular docking. Food Res Int 2022; 160:111713. [DOI: 10.1016/j.foodres.2022.111713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/02/2022] [Accepted: 07/18/2022] [Indexed: 01/04/2023]
|
21
|
Hu Y, Yu B, Wang L, McClements DJ, Li C. Study of dextrin addition on the formation and physicochemical properties of whey protein-stabilized emulsion: Effect of dextrin molecular dimension. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
22
|
Chang C, Li J, Su Y, Gu L, Yang Y, Zhai J. Protein particle-based vehicles for encapsulation and delivery of nutrients: Fabrication, digestion, and release properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.106963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Physicochemical characterization and in vitro biological activities of water-extracted polysaccharides fractionated by stepwise ethanol precipitation from Rosa roxburghii Tratt fruit. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Zhao Q, Xie T, Hong X, Zhou Y, Fan L, Liu Y, Li J. Modification of functional properties of perilla protein isolate by high-intensity ultrasonic treatment and the stability of o/w emulsion. Food Chem 2022; 368:130848. [PMID: 34479088 DOI: 10.1016/j.foodchem.2021.130848] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 01/19/2023]
Abstract
This study investigated the effects of ultrasonic treatment on the structural characteristics and functional properties of perilla protein isolate (PPI). Besides, the performance of the emulsions stabilized by ultrasonic-treated PPI was analyzed, aiming at exploring the potential mechanism of ultrasonic technology to improve emulsion stability. Results showed that ultrasonic treatment reduced the particle size, induced the exposure of hydrophobic groups and changes in the secondary structure and tertiary conformation of PPI. However, the molecular weight and the crystalline regions were remained unchanged. Apart from this, ultrasonic treatment improved the solubility, water/oil holding capacity, foaming and emulsifying capacity of PPI. Furthermore, the emulsions prepared by ultrasonic-treated PPI possessed the highest stability, which might be due to the smaller droplets size and reduced droplets attraction by higher proportion of interfacial adsorbed protein. This findings will provide a new insight into the application of ultrasonic to improve the stability of PPI-stabilized emulsions.
Collapse
Affiliation(s)
- Qiaoli Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | | | - Xin Hong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yulin Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
25
|
Guo Q, Shu X, Su J, Li Q, Tong Z, Yuan F, Mao L, Gao Y. Interfacial properties and antioxidant capacity of pickering emulsions stabilized by high methoxyl pectin-surfactant-pea protein isolate-curcumin complexes: Impact of different types of surfactants. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Zhang H, Feng H, Ling J, Ouyang XK, Song X. Enhancing the stability of zein/fucoidan composite nanoparticles with calcium ions for quercetin delivery. Int J Biol Macromol 2021; 193:2070-2078. [PMID: 34774592 DOI: 10.1016/j.ijbiomac.2021.11.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
In this study, zein and fucoidan-based composite nanoparticles were prepared by the antisolvent precipitation method. The effects of different calcium ion (Ca2+, 0-3.0 mM) concentrations on the stability of the composite nanosystems loaded with quercetin were studied under different conditions (pH, temperature, salt concentration, and ultraviolet light irradiation), and the composite nanoparticles were characterized. Electrostatic interactions, hydrogen bonding, and hydrophobic interactions are the main forces underlying the formation of composite nanoparticles. The addition of Ca2+ led to improved release of the active substances from the composite nanoparticles in simulated digestive solutions (especially when the Ca2+ concentration was 1.5 mM). The composite nanosystems based on alcohol-soluble proteins and anionic polysaccharides with added Ca2+ can be potentially applied for the delivery of active substances.
Collapse
Affiliation(s)
- Hong Zhang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Haozhan Feng
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Xiaoyong Song
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine, 355 Xinqiao Road, Zhoushan 316000, PR China.
| |
Collapse
|
27
|
Zhang L, Wei Y, Liao W, Tong Z, Wang Y, Liu J, Gao Y. Impact of trehalose on physicochemical stability of β-carotene high loaded microcapsules fabricated by wet-milling coupled with spray drying. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Huang K, Yuan Y, Baojun X. A Critical Review on the Microencapsulation of Bioactive Compounds and Their Application. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1963978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kehao Huang
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, China
- Department Of Food Science And Agricultural Chemistry, McGill University, Quebec, Canada
| | - Yingzhi Yuan
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, China
- Department Of Biochemistry, University College London, London, UK
| | - Xu Baojun
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, China
| |
Collapse
|
29
|
Gonçalves A, Estevinho BN, Rocha F. Methodologies for simulation of gastrointestinal digestion of different controlled delivery systems and further uptake of encapsulated bioactive compounds. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
30
|
Guo Q, Bayram I, Shu X, Su J, Liao W, Wang Y, Gao Y. Improvement of stability and bioaccessibility of β-carotene by curcumin in pea protein isolate-based complexes-stabilized emulsions: Effect of protein complexation by pectin and small molecular surfactants. Food Chem 2021; 367:130726. [PMID: 34352698 DOI: 10.1016/j.foodchem.2021.130726] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/27/2022]
Abstract
The impact of different complexes on the properties of β-carotene-loaded emulsions was investigated by measuring the droplet size, encapsulation efficiency, droplet morphology, and physical stability. The photo and thermal stability of β-carotene and its bioaccessibility during digestion were also analyzed. Comparing to the emulsions stabilized by other complexes, the emulsion stabilized by the high methoxyl pectin-rhamnolipid-pea protein isolate-curcumin (HMP-Rha-PPI-Cur) complex had the smallest droplet size (17.53 ± 0.15 μm) and the maximum encapsulation efficiency for curcumin (90.33 ± 0.03 %) and β-carotene (92.16 ± 0.01 %). The emulsion stabilized by the HMP-Rha-PPI-Cur complex exhibited better physical stability against creaming. The retention rate of β-carotene in the HMP-Rha-PPI-Cur complex-stabilized emulsion was 17.75 ± 0.02 and 33.64 ± 0.02 % after UV irradiation and thermal treatment. The HMP-Rha-PPI-Cur complex-stabilized emulsion also had a higher level of free fatty acid released (43.67 %) and higher bioaccessibility of β-carotene (32.35 ± 0.02 %).
Collapse
Affiliation(s)
- Qing Guo
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ipek Bayram
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Xin Shu
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jiaqi Su
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wenyan Liao
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuan Wang
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiang Gao
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|