1
|
Wang Z, He F, Xu X, Kuang H, Xu C. A paper-based visual colorimetric platform for rapid detection of arsenic in the environment. Analyst 2025; 150:1891-1898. [PMID: 40165482 DOI: 10.1039/d5an00131e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Arsenic is a highly toxic heavy metal that poses significant environmental and health risks. Major sources of arsenic pollution include wastewater and waste discharges from industrial and mining activities, as well as arsenic-containing pesticides and herbicides used in agriculture. This study employed the arsenic spot method, utilizing test strips prepared with mercury bromide as a reactive sensor, to conduct semi-quantitative detection of inorganic arsenic in water, soil, and oil field chemicals used in oil extraction processes. Detection was performed through colorimetric analysis. Experimental results revealed the following detection limits for the test strip: 0.05 mg L-1 for water samples, 0.25 mg L-1 for soil samples, and 0.05 mg L-1 for water-soluble oil field chemicals. The detection results aligned with those obtained via inductively coupled plasma mass spectrometry, confirming the reliability of the method. Consequently, the arsenic spot colorimetry technique is a rapid and effective tool for the semi-quantitative determination of inorganic arsenic in various samples, significantly reducing analysis time.
Collapse
Affiliation(s)
- Zhiqiang Wang
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Feng He
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Xinxin Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
2
|
Ullah N, Tuzen M, Saleh TA. A comprehensive review of portable syringe systems using micropipette-based extraction techniques for metal analysis. J Chromatogr A 2024; 1736:465423. [PMID: 39413567 DOI: 10.1016/j.chroma.2024.465423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
The release of harmful compounds, particularly dangerous metal ions, into the environment has drawn deep concern from the scientific community. Therefore, it has become common in research to evaluate and quantify the harmful concentrations in the presence of these metal ions in several real samples (food, water, and biological samples). To increase sensitivity and lessen the impact of the matrix, sample pretreatment is a helpful strategy to implement before analysis. The limitations of conventional methods have been recently significantly reduced by developing new analytical approaches such as microextraction techniques. The miniaturization of conventional solid-phase extraction (SPE) led to solid-phase microextraction (SPME), drastically reducing both adsorbent use and extraction phase volume. SPME is defined in the present context as a modified extraction technique that employs a portable syringe system attached to micropipette tips. The SPME is considered one of the most appropriate sample preparation tools due to its compatibility with different detection techniques for different metal ions. The current review focuses on SPME based on a portable syringe (attaches to a micropipette tip) system because it has many advantages over conventional solid-phase extraction. It can be designed very simply in a syringe system, a very small quantity of the sorbent has to be kept in the tip, tube, or inside a syringe as a plug and combined with various analytical instruments. Many researchers have designed their own by using homemade tips packed with a sorbent to increase extraction capability and selectivity. According to the current review, there is a lot of potential for increasing the efficacy and efficiency of metal ion extraction from complicated matrices using portable syringe SPME. Studies have shown that when compared to conventional approaches, it performs better in terms of sensitivity, selectivity, and user-friendliness. Furthermore, its application to a wider range of sample types has been enhanced by the flexibility in constructing unique sorbent tips. Conclusively, the developments in portable syringe SPME have addressed several limitations of conventional techniques, positioning it as a robust and versatile tool for environmental monitoring and analysis of hazardous metal ions.
Collapse
Affiliation(s)
- Naeem Ullah
- Tokat Gaziosmanpaşa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat, Turkey; Department of Chemistry, University of Turbat, Balochistan 92600, Pakistan
| | - Mustafa Tuzen
- Tokat Gaziosmanpaşa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat, Turkey
| | - Tawfik A Saleh
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
3
|
Ncube N, Thatyana M, Tancu Y, Mketo N. Quantitative analysis and health risk assessment of selected heavy metals in pet food samples using ultrasound assisted hydrogen peroxide extraction followed by ICP-OES analysis. Food Chem Toxicol 2024; 192:114915. [PMID: 39127121 DOI: 10.1016/j.fct.2024.114915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
There is a lack of information regarding the presence of heavy metals in feed ingredients for animals. Therefore, this study examines 10 feed samples collected from commercial pet food in South African market. The optimal working parameters for ultrasound assisted hydrogen peroxide extraction (UA-HPE) confirmed by multivariate optimization were sonication temperature at 80 °C for 60 min, sample mass of 0.1 g, and H2O2 concentration of 5 mol/L. The UA-HPE results demonstrated high accuracy of (>95%), reproducibility (≤1.9%), low method of detection limits (0.3498 and 0.49 μg/g), and strong linearity as confirmed by regression analysis. The environmental friendliness of the UA-HPE method was assessed using AGREEPrep metric tool that resulted with a score of 0.74. The concentration levels of Cd, Pb and As, ranged between 0.86 and 11.34, 4.50-11.45, and 2.61-12.5 μg/g, respectively greater than the standardized limits, whilst Cr, and Sn were below the limits of detection in all pet food. The health index calculations (HI > 1) revealed that the cat, dog, and horse feed pose health risk for animal consumption. Consequently, this study demonstrated a green, efficient, and cost-effective method for the analysis of animal feed with high accuracy.
Collapse
Affiliation(s)
- Nomatter Ncube
- Department of Chemistry, College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Roodepoort, 1710, Johannesburg, South Africa
| | - Maxwell Thatyana
- Department of Chemistry, College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Roodepoort, 1710, Johannesburg, South Africa
| | - Yolanda Tancu
- Water Centre, Council for Scientific and Industrial Research (CSIR), Pretoria, 0001, South Africa
| | - Nomvano Mketo
- Department of Chemistry, College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Roodepoort, 1710, Johannesburg, South Africa.
| |
Collapse
|
4
|
Yuan M, Huan X, Yang X, Fan M, Yin J, Ma Y, Deng B, Cao H, Han Y, Xu F. Simultaneous extraction of five heavy metal ions from root vegetables via dual-frequency ultrasound-assisted enzymatic digestion. Food Chem 2024; 454:139741. [PMID: 38805922 DOI: 10.1016/j.foodchem.2024.139741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
The dual-frequency ultrasound-assisted enzymatic digestion (DUED) technique was developed for synchronous green extraction of five heavy metal ions in root vegetables. The combination of α-amylase, cellulase, and papain showed significant advantageous in extracting heavy metal ions. Under optimized dual-frequency ultrasonic conditions, the extraction rates of Cr, As, Cd, Pb, and Hg in carrots reached 99.04%, 105.88%, 104.65%, 104.10%, and 103.13% respectively. And the extraction process is highly efficient, completing in just 15 min. Compared to conventional microwave-assisted acid hydrolysis method, this technique eliminates the need for high-temperature concentrated acid, enhancing its environmental sustainability while maintaining mild reaction conditions, making it ideal for biosensors application. Additionally, simultaneous extraction and detection of four heavy metals in lotus roots were successfully achieved by using DUED and a fluorescent paper-based microfluidic chip. The obtained results are consistent with those obtained using conventional methods.
Collapse
Affiliation(s)
- Min Yuan
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xinyan Huan
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Centre of Agri-products Quality and Safety, Shanghai 201708, China
| | - Xiaojun Yang
- Shanghai Centre of Agri-products Quality and Safety, Shanghai 201708, China
| | - Menghan Fan
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiaqi Yin
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - YingQing Ma
- Shanghai Centre of Agri-products Quality and Safety, Shanghai 201708, China
| | - Bo Deng
- Shanghai Centre of Agri-products Quality and Safety, Shanghai 201708, China
| | - Hui Cao
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yiyi Han
- Shanghai Centre of Agri-products Quality and Safety, Shanghai 201708, China.
| | - Fei Xu
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
5
|
Tokalıoğlu Ş, Demirişler MS, Şahan H, Patat Ş. Environmentally friendly nanoflower Al 2O 3@carbon spheres as adsorbent for dispersive solid-phase microextraction of copper and lead in food and water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5846-5854. [PMID: 37874290 DOI: 10.1039/d3ay01579c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A fast and simple dispersive solid-phase microextraction method (d-SPμE) was described for the determination of copper and lead in food, water, and sediments using FAAS. Firstly, nanoflower Al2O3@carbon spheres composite (NF Al2O3@CSs) was synthesized and then characterized. The obtained NF Al2O3@CSs was used for the d-SPμE of copper and lead in aqueous solutions. The influence of important parameters like pH, contact time, eluent conditions, volume of sample, and competing ion effects on the d-SPμE efficiency of copper and lead was investigated. They were pH, 7; eluent, 2 mol L-1 HCl (2 mL); sample volume, 250 mL for copper and 150 mL for lead with recoveries ≥90%. The adsorption and elution of analytes on NF Al2O3@CSs were realized quickly without vortexing. The LODs of the d-SPμE for copper and lead were found to be 0.69 μg L-1 and 2.8 μg L-1, respectively, while its PF was 125 for copper and 75 for lead. The intra-day precision and inter-day repeatability (RSD%, n = 7) were 1.3% and 1.6% for Cu(II) and 2.3% and 3.2% for Pb(II), respectively. Finally, the accuracy of the d-SPμE was investigated by determination of the analytes in four certified reference materials (TMDA-53.3 Lake water, NW-TMDA-54.6 Lake water, NIST 1573a Tomato leaves, and NIST RM 8704 Buffalo River Sediment). The analyte recoveries together with analyses of dam water, river water, wastewater, sea water, sumac, tea, chocolate, and lentils were studied. The results indicate that recoveries ranged from 90 to 103% in water samples and 91 to 110% in food samples.
Collapse
Affiliation(s)
- Şerife Tokalıoğlu
- Erciyes University, Faculty of Sciences, Chemistry Department, 38039, Kayseri, Turkey.
| | | | - Halil Şahan
- Kayseri University, Department of Basic Sciences of Engineering, 38280, Kayseri, Turkey
| | - Şaban Patat
- Erciyes University, Faculty of Sciences, Chemistry Department, 38039, Kayseri, Turkey.
| |
Collapse
|
6
|
JAGIRANI MS, SOYLAK M. Arsenic speciation by using emerging sample preparation techniques: a review. Turk J Chem 2023; 47:991-1006. [PMID: 38173749 PMCID: PMC10760823 DOI: 10.55730/1300-0527.3590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/31/2023] [Accepted: 06/23/2023] [Indexed: 01/05/2024] Open
Abstract
Arsenic is a hazardous element that causes environmental pollution. Due to its toxicological effects, it is crucial to quantify and minimize the hazardous impact on the ecology. Despite the significant advances in analytical techniques, sample preparation is still crucial for determining target analytes in complex matrices. Several factors affect the direct analysis, such as trace-level analysis, advanced regulatory requirements, complexity of sample matrices, and incompatible with analytical instrumentation. Along with the development in the sample preparation process, microextraction methods play an essential role in the sample preparation process. Microextraction techniques (METs) are the newest green approach that replaces traditional sample preparation and preconcentration methods. METs have minimized the limitation of conventional sample preparation methods while keeping all their benefits. METs improve extraction efficacy, are fast, automated, use less amount of solvents, and are suitable for the environment. Microextraction techniques with less solvent consumption, such as solid phase microextraction (SPME) solvent-free methods, and liquid phase microextraction (LPME), are widely used in modern analytical procedures. SPME development focuses on synthesizing new sorbents and applying online sample preparation, whereas LPME research investigates the utilization of new solvents.
Collapse
Affiliation(s)
- Muhammad Saqaf JAGIRANI
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri,
Turkiye
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R.
China
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, P. R.
China
- National Center of Excellence in Analytical Chemistry University of Sindh, Kayseri,
Turkiye
| | - Mustafa SOYLAK
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri,
Turkiye
- Technology Research and Application Center (ERUTAUM), Erciyes University, Kayseri,
Turkiye
- Turkish Academy of Sciences (TÜBA), Ankara,
Turkiye
| |
Collapse
|
7
|
Kang B, Liu H, Chen G, Lin H, Chen S, Chen T. Novel covalent organic frameworks based electrospun composite nanofiber membranes as pipette-tip strong anion exchange sorbent for determination of inorganic arsenic in rice. Food Chem 2023; 408:135192. [PMID: 36592546 DOI: 10.1016/j.foodchem.2022.135192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Novel covalent organic frameworks (COFs) based PAN@TpBD(NH2)2 electrospun composite nanofiber membranes (ECNMs) were fabricated as strong anion exchange sorbent by implementing electrospinning technology. The finished sorbent was characterized, and key parameters of pipette-tip solid phase extraction (PTSPE) procedures were investigated. Inorganic arsenic (iAs) was successfully separated from rice under the optimal precondition conditions, and quantified by hydride generation-atomic fluorescence spectrometry (HG-AFS). This PTSPE-HG-AFS methodology achieved 0.015 μg L-1 detection limit, 4.67 % relative standard deviation, and 86.48~99.11 % recoveries. In this work, preparation and characterization of this novel COFs-based anion exchange sorbent, PAN@TpBD(NH2)2 ECNMs, is described and its suitability for PTSPE applications is demonstrated.
Collapse
Affiliation(s)
- Binbin Kang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PR China; Fujian Vocational College of Bioengineering, Fuzhou 350005, Fujian, PR China
| | - Haoliang Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PR China
| | - Guoying Chen
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Hetong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PR China
| | - Shaojun Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PR China.
| | - Tuanwei Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PR China.
| |
Collapse
|
8
|
Liu Q, Wei L, Chen X, Gao X, Zhao J. Self-collected 3D nano-adsorbent GR@p(POSS-co-DMAEMA) applied to the dispersive solid-phase microextraction in parabens detection of condiments. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
9
|
Zheng J, Kuang Y, Zhou S, Gong X, Ouyang G. Latest Improvements and Expanding Applications of Solid-Phase Microextraction. Anal Chem 2023; 95:218-237. [PMID: 36625125 DOI: 10.1021/acs.analchem.2c03246] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Juan Zheng
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yixin Kuang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Suxin Zhou
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinying Gong
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Gangfeng Ouyang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
10
|
Microwave assisted effective synthesis of CdS nanoparticles to determine the copper ions in artichoke leaves extract samples by flame atomic absorption spectrometry. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Selective recognition of Pb(II) and Cr(III) by novel maleic hydrazide-based 1,2,3-triazole linked derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Aslan F, Tor A. Determination and speciation of trace inorganic arsenic species in water samples by using metal organic framework mixed-matrix membrane and EDXRF spectrometry. CHEMOSPHERE 2022; 307:135661. [PMID: 35820479 DOI: 10.1016/j.chemosphere.2022.135661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
A facile method to selectively determine trace As(V) species in the existence of As(III) one in water samples was developed, which was based on the batch adsorption process by using a miniaturized MIL-101(Fe) mixed-matrix membrane (MOF-MMM) followed by a direct determination through energy dispersive X-ray fluorescence (EDXRF) spectrometry. The quantitative adsorption of As(V) was achieved at pH (3-6) from 30 mL sample in 120 min of equilibrium time by employing the membrane with a monolayer adsorption capacity of Qo = 1.953 mg g-1. The direct determination of As(V) adsorbed on the membrane by EDXRF spectroscopy provided a method, not only easy-to-use and operable without elution stage, but also cost effective due to low gas consumption during the analysis. With a limit of detection of 0.094 μg L-1, analytical performance of the method, which was evaluated on fortified real water samples with three levels of As(V) (5, 10 and 50 μg L-1), demonstrated good recoveries in the range of 98(±3)-105(±10)%. Furthermore, the speciation of As(III) and As(V) in the fortified real samples containing other ionic species was also successfully achieved by described approach with characteristics of simple, cheap, viable and reproducible.
Collapse
Affiliation(s)
- Fuat Aslan
- Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya, Turkey
| | - Ali Tor
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Turkey.
| |
Collapse
|
13
|
Ullah N, Tuzen M. A New Trend and Future Perspectives of the Miniaturization of Conventional Extraction Methods for Elemental Analysis in Different Real Samples: A Review. Crit Rev Anal Chem 2022; 54:1729-1747. [PMID: 36197714 DOI: 10.1080/10408347.2022.2128635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Sample preparation is one of the viable procedures to be used before analysis to enhance sensitivity and reduce the matrix effect. The current review is mainly emphasized the latest outcome and applications of microextraction techniques based on the miniaturization of the classical conventional methods based on liquid-phase and solid-phase extraction for the quantitative elemental analysis in different real samples. The limitation of the conventional sample preparation methods (liquid and solid phase extraction) has been overcome by developing a new way of reducing size as compared with the conventional system through the miniaturization approach. Miniaturization of the sample preparation techniques has received extensive attention due to its extraction at microlevels, speedy, economical, eco-friendly, and high extraction capability. The growing demand for speedy, economically feasible, and environmentally sound analytical approaches is the main intention to upgrade the conventional procedures apply for sample preparation in environmental investigation. A growing trend of research has been perceived to quantify the trace for elemental analysis in different natures of real samples. This review also recapitulates the current futuristic scenarios for the green and economically viable procedure with special overemphasis and concentrates on eco-friendly miniaturized sample-preparation techniques such as liquid-phase microextraction (LPME) and solid-phase microextraction (SPME). This review also emphasizes the latest progress and applications of the LPME and SPME approach and their future perspective.
Collapse
Affiliation(s)
- Naeem Ullah
- Faculty of Science and Arts, Chemistry Department, Tokat Gaziosmanpaşa University, Tokat, Turkey
- Department of Chemistry, University of Turbat, Balochistan, Pakistan
| | - Mustafa Tuzen
- Faculty of Science and Arts, Chemistry Department, Tokat Gaziosmanpaşa University, Tokat, Turkey
- Research Institute, Center for Environment and Marine Studies, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
14
|
He K, Yu X, Qin L, Wu Y. CdS QDs: Facile synthesis, design and application as an “on–off” sensor for sensitive and selective monitoring Cu2+, Hg2+ and Mg2+ in foods. Food Chem 2022; 390:133116. [DOI: 10.1016/j.foodchem.2022.133116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/04/2022]
|
15
|
Rakhtshah J, Shirkhanloo H, Dehghani Mobarake M. Simultaneously speciation and determination of manganese (II) and (VII) ions in water, food, and vegetable samples based on immobilization of N-acetylcysteine on multi-walled carbon nanotubes. Food Chem 2022; 389:133124. [PMID: 35526290 DOI: 10.1016/j.foodchem.2022.133124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022]
Abstract
A novel method based on the immobilization of N-acetylcysteine on chloro-functionalized multi-walled carbon nanotubes (MWCNTs@NAC) was used for the speciation of manganese ions [Mn (II) and Mn(VII)] in water samples. Also, the total manganese (TMn) in vegetables and food samples was determined by the AT-FAAS. By ultrasound-assisted-dispersive ionic liquid trap micro solid-phase extraction (UA-DILT-μ-SPE), the Mn (II)/Mn(VII) ions were extracted in the presence of MWCNTs@NAC for 50 mL of water samples at a pH of 6.5 and 3.0, respectively. The adsorption capacity of MWCNTs@NAC for Mn(II) and Mn(VII) ions was obtained at 146.7 mg g-1 and 138.8 mg g-1, respectively. Under the optimized conditions, the detection limits (LOD), linear range (LR), and enrichment factor (EF) for Mn(II) and Mn(VII) ions were obtained (0.12 μg L-1; 0.14 μg L-1), (0.48-36 μg L-1; 0.55-38.1 μg L-1) and (100.2; 94.5), respectively. The proposed methodology was successfully validated by the CRM samples.
Collapse
Affiliation(s)
- Jamshid Rakhtshah
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hamid Shirkhanloo
- Research Institute of Petroleum Industry(RIPI), West Entrance Blvd., Olympic Village, Tehran 14857-33111, Iran.
| | - Mostafa Dehghani Mobarake
- Research Institute of Petroleum Industry(RIPI), West Entrance Blvd., Olympic Village, Tehran 14857-33111, Iran; Department of Environment, Research Institute of Petroleum Industry(RIPI), West Entrance Blvd., Olympic Village, Tehran, 14857-33111, Iran
| |
Collapse
|
16
|
Altunay N, Elik A, Farooque Lanjwani M, Tuzen M. Assessment of arsenic in water, rice and honey samples using new and green vortex-assisted liquid phase microextraction procedure based on deep eutectic solvent: Multivariate study. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Yu YL, Zhu SC, Shi MZ, Liu FM, Cao J. Two-step micelle-to-solvent stacking of arsenic species from foods in permanently coated tubing for capillary electrophoresis. J Chromatogr A 2022; 1673:463112. [DOI: 10.1016/j.chroma.2022.463112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/19/2022] [Accepted: 05/01/2022] [Indexed: 10/18/2022]
|
18
|
Yilmaz E, Erbas Z, Soylak M. Hydrolytic enzyme modified magnetic nanoparticles: An innovative and green microextraction system for inorganic species in food samples. Anal Chim Acta 2021; 1178:338808. [PMID: 34482859 DOI: 10.1016/j.aca.2021.338808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 11/18/2022]
Abstract
In the presented study, the usability of hydrolytic enzyme immobilized magnetic nanoparticles as an extraction agent for the microextraction of metal ions from food samples was investigated. α-amylase modified magnetic carbon nanotubes (α-amylase-Fe3O4/MWCNTs) was used as an extraction agent for direct microextraction of trace arsenic from food sample phase into liquid phase medium prior to its ICP-MS determination. In extraction studies using hydrolytic enzymes, it is impossible to recover the free soluble enzyme after extraction without losing its activity. In our study, this problem was overcome by immobilizing the hydrolytic enzyme on magnetic support. In this way, α-amylase-Fe3O4/MWCNTs as an extraction agent with a reuse property of at least six times was used. α-amylase-Fe3O4/MWCNTs was characterized by FT-IR, XRD, SEM, SEM-EDX, VSM, TGA, and DTG techniques. Optimization of the presented method was performed using 1568 A rice flour certified reference material. Analytical parameters such as type of hydrolytic enzyme, pH and volume of the aqueous phase, extraction temperature and ultrasonic irridation time were optimized. The microextraction step was performed in ultrasonic water bath within only ∼15 min. Limit of detection (LOD), limit of quantification (LOQ) and relative standard deviation (RSD %) values for the developed method were found to be 14.3 μg kg-1, 47.3 μg kg-1 and 7.5%, respectively. The method was successfully applied to the analysis of arsenic contents of different rice and flour samples.
Collapse
Affiliation(s)
- Erkan Yilmaz
- Erciyes University, Faculty of Pharmacy, Department of Analytical Chemistry, 38039, Kayseri, Turkey; Technology Research & Application Center (TAUM), Erciyes University, 38039, Kayseri, Turkey; ERNAM Erciyes University, Nanotechnology Application and Research Center, 38039, Kayseri, Turkey
| | - Zeliha Erbas
- Technology Research & Application Center (TAUM), Erciyes University, 38039, Kayseri, Turkey; Erciyes University, Faculty of Sciences, Department of Chemistry, 38039, Kayseri-Turkey; Science and Technology Application and Research Center, Yozgat Bozok University, 66200, Yozgat, Turkey
| | - Mustafa Soylak
- Technology Research & Application Center (TAUM), Erciyes University, 38039, Kayseri, Turkey; Erciyes University, Faculty of Sciences, Department of Chemistry, 38039, Kayseri-Turkey; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkey.
| |
Collapse
|
19
|
Shi Z, Xia L, Li G, Hu Y. Platinum nanoparticles-embedded raspberry-liked SiO 2 for the simultaneous electrochemical determination of eugenol and methyleugenol. Mikrochim Acta 2021; 188:241. [PMID: 34212233 DOI: 10.1007/s00604-021-04892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/11/2021] [Indexed: 11/29/2022]
Abstract
Based on platinum nanoparticle-embedded raspberry-liked SiO2, a sensitive and selective electrochemical sensor was developed for simultaneous determination of eugenol (EU) and methyleugenol (MEU). Raspberry-liked SiO2 (RL-SiO2) was characterized with open pores on the surface, which can be used as a path for utilizing the inner space fully. So, platinum nanoparticles (Pt NPs) could be embedded in the inner and outer surface of RL-SiO2. As a carrier, RL-SiO2 not only avoided the agglomeration of the Pt NPs but also improved the catalytic performance. Therefore, the prepared Pt NPs@RL-SiO2/GCE exhibited excellent electrocatalytic activity for simultaneous determination of EU and MEU; the linearity ranges were 0.50 ~ 60 μmol/L for EU at a working potential of 0.65 V (vs. saturated calomel electrode) and 0.50 ~ 50 μmol/L for MEU at a working potential of 1.10 V; the detection limits were 0.12 μmol/L and 0.16 μmol/L (S/N=3); and the relative standard deviations (RSDs) were 3.2% and 4.5%, respectively. In addition, Pt NPs@RL-SiO2/GCE was successfully applied to the analysis of fish samples; the obtained recoveries were between 92.0 and 107%. Notably, the results conducted on samples were highly consistent with those obtained from high-performance liquid chromatography. It can be concluded that the study provided a simple method for simultaneous electrochemical determination of EU and MEU in fish samples. Schematic illustration of the preparation of RL-SiO2@Pt NPs/GCE for simultaneous determination of eugenol and methyleugenol in fish samples.
Collapse
Affiliation(s)
- Zhaoxia Shi
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yufei Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|