1
|
Lemos AA, Chapana AL, Lujan CE, Botella MB, Oviedo MN, Wuilloud RG. Eco-friendly solvents in liquid-liquid microextraction techniques for biological and environmental analysis: a critical review. Anal Bioanal Chem 2025; 417:1239-1259. [PMID: 39392506 DOI: 10.1007/s00216-024-05578-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
In recent years, green solvents have emerged as promising alternatives in the field of analytical chemistry, replacing conventional organic solvents known for their toxicity, volatility, and flammability. The combination of these solvents with liquid-liquid microextraction techniques has facilitated the development of simpler, faster, more economical, and environment-friendly methodologies for the analysis of samples of varying complexity. This review discusses the fundamental physicochemical properties and advantages of using deep eutectic solvents, ionic liquids, switchable-hydrophilicity solvents, supramolecular solvents, and surfactants as extractants. Furthermore, analytical methods based on liquid-liquid microextraction techniques developed in the last 5 years for the determination of organic compounds and metals in biological and environmental samples are presented and discussed, highlighting their applications and benefits to improve analytical performance and sustainability.
Collapse
Affiliation(s)
- Aldana A Lemos
- Laboratorio de Química Analítica Para Investigación y Desarrollo (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET UNCUYO, Padre J. Contreras 1300, (5500), Mendoza, Argentina
| | - Agostina L Chapana
- Laboratorio de Química Analítica Para Investigación y Desarrollo (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET UNCUYO, Padre J. Contreras 1300, (5500), Mendoza, Argentina
| | - Cecilia E Lujan
- Laboratorio de Química Analítica Para Investigación y Desarrollo (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET UNCUYO, Padre J. Contreras 1300, (5500), Mendoza, Argentina
| | - María B Botella
- Laboratorio de Química Analítica Para Investigación y Desarrollo (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET UNCUYO, Padre J. Contreras 1300, (5500), Mendoza, Argentina
| | - María N Oviedo
- Laboratorio de Química Analítica Para Investigación y Desarrollo (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET UNCUYO, Padre J. Contreras 1300, (5500), Mendoza, Argentina
| | - Rodolfo G Wuilloud
- Laboratorio de Química Analítica Para Investigación y Desarrollo (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET UNCUYO, Padre J. Contreras 1300, (5500), Mendoza, Argentina.
| |
Collapse
|
2
|
Altunay N, Hazer B, Lanjwani MF, Tuzen M. Ultrasound-assisted dispersive micro solid phase extraction of maneb in water and food samples with new hybrid block copolymer material prior to micro-spectrophotometric analysis. Food Chem 2025; 463:141098. [PMID: 39265405 DOI: 10.1016/j.foodchem.2024.141098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/04/2024] [Accepted: 08/31/2024] [Indexed: 09/14/2024]
Abstract
A simple and effective ultrasound-assisted dispersive micro solid-phase extraction (UA-dμSPE) method was developed for the spectrophotometric determination of traces maneb in food and water. In this study, a new hybrid block copolymer poly (vinyl benzyl chloride-b-dimethyl aminoethyl methacrylate) (Pvb-DMA) was synthesized and characterized using techniques such as FTIR, SEM-EDX. The synthesized Pvb-DMA was used as an adsorbent for the extraction of maneb for first time in this study. The effects of different experimental variables such as pH, adsorbent amount, sample volume, eluent type were optimized. The statistical toll factorial design was applied to estimate the individual and combined impact of parameters on the extraction of maneb. The applicability of different solvents such as acetone, methanol, ethanol, tetrahydrofuran, acetonitrile for maneb recovery from adsorbent was tested. The detection and quantification limits were found to be 3.3 ng mL-1 and 10.0 ng mL-1, respectively. In addition, the preconcentration factor and linear range was obtained 300 and 10-500 ng mL-1. The extraction recovery and relative standard deviation were found to be 95 % and 2.8 %, respectively.
Collapse
Affiliation(s)
- Nail Altunay
- Sivas Cumhuriyet University, Science Faculty, Chemistry Department, Sivas, Turkey
| | - Baki Hazer
- Aircraft Airframe Engine Maintenance Department, Kapadokya University, Nevşehir, Turkey; Zonguldak Bülent Ecevit University, Nano Technology Engineering Department, 67100 Zonguldak, Turkey
| | - Muhammad Farooque Lanjwani
- Tokat Gaziosmanpasa University, Science and Arts Faculty, Chemistry Department, 60250 Tokat, Turkey; Dr M. A. Kazi Institute of Chemistry, University of Sindh, Jamshoro, Sindh, Pakistan
| | - Mustafa Tuzen
- Tokat Gaziosmanpasa University, Science and Arts Faculty, Chemistry Department, 60250 Tokat, Turkey.
| |
Collapse
|
3
|
Ozalp O, Uzcan F, Gumus ZP, Soylak M. Sample Preparation Methods for Metal Containing Pesticides in Food and Environmental Samples. Crit Rev Anal Chem 2024; 54:1109-1120. [PMID: 35913805 DOI: 10.1080/10408347.2022.2106118] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Metal-containing pesticides are used in many areas for purposes such as harvest efficiency and keeping pests away from the vegetable environment. Metal-containing pesticides are in the form of dithiocarbamate complexes and are named differently according to the type of metal they contain and are used for different purposes. Since the presence of these pesticides even at residue level threatens human and environmental health, their determination at trace level is important. In this review, studies on the determination of metal-containing dithiocarbamate pesticides in different matrices are discussed. This review on the analysis of dithiocarbamate pesticides with different techniques will shed light on the studies to be carried out for the determination of these pesticides one by one in different matrices.
Collapse
Affiliation(s)
- Ozgur Ozalp
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkiye
| | - Furkan Uzcan
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkiye
| | - Z Pinar Gumus
- Central Research Test and Analysis Laboratory Application and Research Center (EGE-MATAL), Ege University, İzmir, Turkiye
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkiye
- Technology Research and Application Center (ERU-TAUM), Erciyes University, Kayseri, Turkiye
- Turkish Academy of Sciences (TUBA), Ankara, Turkiye
| |
Collapse
|
4
|
Zarandi AF, Shirkhanloo H, Rakhtshah J. An immobilization of 2-(Aminomethyl) thiazole on multi-walled carbon nanotubes used for rapid extraction of manganese ions in hepatic patients. J Pharm Biomed Anal 2024; 240:115941. [PMID: 38211517 DOI: 10.1016/j.jpba.2023.115941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/13/2024]
Abstract
A new method based on the immobilization of 2-(Aminomethyl) thiazole on the multi-walled carbon nanotubes (AMTZ@MWCNTs) was used to extract manganese (Mn) in the human blood, serum, and urine samples. First, 20 mg of AMTZ@MWCNTs, 0.2 mL of acetone, and 0.1 g of ionic liquid (IL) were completely mixed and injected into 2.0 mL human samples by a microscale syringe at pH 5.5. After shaking and centrifuging, the Mn ions were extracted and separated through the ultrasound-assisted- ionic liquid-dispersive micro solid-phase extraction (UAS-IL-D-μ-SPE) before being determined by the graphite furnace atomic absorption spectrometry (GF-AAS). According to the results, manganese in the blood of hepatic patients had higher concentrations than healthy people (Aged 25-60, 50 N). The Mn adsorption capacities for the AMTZ@MWCNTs and MWCNTs adsorbents were achieved at 192.5 mg/g and 26.3 mg/g, respectively. In the high enrichment factor (HEF), the limit of detection (LOD), linear range (LR), and mean relative standard division (RSD%) were calculated at 15 ng/L, 0.05-3.8 μg/L, and 2.34, respectively (n = 10). The methodology was validated using certified reference material (CRM) and spiking standard solutions to human samples.
Collapse
Affiliation(s)
- Ali Faghihi Zarandi
- Environmental Health Engineering Research Center, Kerman university of Medical Science, Kerman, Iran; Department of Occupational Hygiene Engineering, Faculty of Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Shirkhanloo
- Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, Tehran, Iran.
| | - Jamshid Rakhtshah
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
5
|
Jin F, Yin X, Wan Y, Zhang J, Wang J, Fu X, Fu T, Liu B, Chen Y, Tian B, Feng Z. Ultrasonic-microwave synergistic supramolecular solvent liquid-liquid microextraction of trace biogenic amines in fish and beer based on solidification of floating organic droplet. Food Chem 2023; 429:136965. [PMID: 37516607 DOI: 10.1016/j.foodchem.2023.136965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023]
Abstract
It is important to detect the presence of biogenic amines (BAs) as indicators of food freshness. The purpose of this study was to develop a novel ultrasonic-microwave synergistic supramolecular solvent liquid-liquid microextraction based on solidification of floating organic droplet (UMS-SUPRAS-SFO-LLME) combined with high-performance liquid chromatography for the determination of BAs. The physical properties and microstructure of SUPRAS based on 1-dodecanol and tetrahydrofuran were studied, and the extraction conditions such as the SUPRAS volume, the UMS process, and the centrifugal conditions were optimized. The results for the extraction kinetics and thermodynamics showed that UMS-SUPRAS-SFO-LLME is a spontaneous, endothermic diffusion process. The linear ranges of this method are 0.1-2.0 × 105 ng·mL-1 (R2 > 0.994), the limits of detection are 4.0 × 10-3-6.0 × 10-2 ng·mL-1, and the recoveries were 96.28-103.15%. Compared with existing analysis methods, UMS-SUPRAS-SFO-LLME is a sensitive, green and economical sample pretreatment method for analyzing the enrichment of BAs in beer and fish.
Collapse
Affiliation(s)
- Furong Jin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyue Yin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yang Wan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Jindi Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiangbo Fu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianxin Fu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Buwei Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yongshi Chen
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Bo Tian
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Zhibiao Feng
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Hu J, Yang Y, Guan Y, Li R, Liu C, Yao G, Zhao W. Determination of benzimidazole pesticide residues in soil by ultrasound‐assisted supramolecular solvent microextraction. SEPARATION SCIENCE PLUS 2023. [DOI: 10.1002/sscp.202200143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- Jiabao Hu
- College of Bioscience and Resources Environment Beijing University of Agriculture Beijing P. R. China
- Key Laboratory of Urban Agriculture In North China Ministry of Agriculture and Rural Affairs, P. R. China, Beijing University of Agriculture Beijing P. R. China
| | - Yuqi Yang
- College of Bioscience and Resources Environment Beijing University of Agriculture Beijing P. R. China
- Key Laboratory of Urban Agriculture In North China Ministry of Agriculture and Rural Affairs, P. R. China, Beijing University of Agriculture Beijing P. R. China
| | - Yunlei Guan
- College of Bioscience and Resources Environment Beijing University of Agriculture Beijing P. R. China
- Key Laboratory of Urban Agriculture In North China Ministry of Agriculture and Rural Affairs, P. R. China, Beijing University of Agriculture Beijing P. R. China
| | - Rui Li
- College of Bioscience and Resources Environment Beijing University of Agriculture Beijing P. R. China
- Key Laboratory of Urban Agriculture In North China Ministry of Agriculture and Rural Affairs, P. R. China, Beijing University of Agriculture Beijing P. R. China
| | - Chunxiao Liu
- College of Bioscience and Resources Environment Beijing University of Agriculture Beijing P. R. China
- Key Laboratory of Urban Agriculture In North China Ministry of Agriculture and Rural Affairs, P. R. China, Beijing University of Agriculture Beijing P. R. China
| | - Guojun Yao
- Total Component Analysis Laboratory Nutrichem Co., Ltd. Beijing P. R. China
| | - Wenting Zhao
- College of Bioscience and Resources Environment Beijing University of Agriculture Beijing P. R. China
- Key Laboratory of Urban Agriculture In North China Ministry of Agriculture and Rural Affairs, P. R. China, Beijing University of Agriculture Beijing P. R. China
| |
Collapse
|
7
|
Liu C, Liu Z, Fang Y, Liao Z, Zhang Z, Yuan X, Yu T, Yang Y, Xiong M, Zhang X, Zhang G, Meng L, Zhang Z. Exposure to dithiocarbamate fungicide maneb in vitro and in vivo: Neuronal apoptosis and underlying mechanisms. ENVIRONMENT INTERNATIONAL 2023; 171:107696. [PMID: 36563597 DOI: 10.1016/j.envint.2022.107696] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Maneb, a widely-used dithiocarbamate fungicide, remains in the environment and exerts adverse health effects. Epidemiological evidence shows that maneb exposure is associated with a higher risk of Parkinson's disease (PD), one of the most common neurodegenerative diseases. However, the molecular mechanisms underlying maneb-induced neurotoxicity remain unclear. Here we investigated the toxic effects and the underlying mechanisms of maneb on the degeneration of dopaminergic cells and α-synuclein in A53T transgenic mice. In SH-SY5Y cells, exposure to maneb reduces cell viability, triggers neuronal apoptosis, induces mitochondrial dysfunction, and generates reactive oxidative species (ROS) in a dose-dependent manner. Furthermore, Western blot analysis found that the mitochondrial apoptosis pathway (Bcl-2, Bax, cytochrome c, activated caspase-3) and the PKA/CREB signaling pathway (PKA, PDE10A, CREB, p-CREB) were changed by maneb both in vitro and in vivo. In addition, the activation of the mitochondrial apoptosis pathway induced by maneb was attenuated by activating PKA. Therefore, these results suggest that the PKA/CREB signaling pathway is involved in maneb-induced apoptosis. This study provides novel insights into maneb-induced neurotoxicity and the underlying mechanisms, which may serve as a guide for further toxicological assessment and standard application of maneb.
Collapse
Affiliation(s)
- Chaoyang Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China.
| | - Zehua Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Yanyan Fang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Zizhuo Liao
- Department of Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibing Zhang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Xin Yuan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ting Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guoxin Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; TaiKang Center for Life and Medical Science, Wuhan University, Wuhan 430000, China.
| |
Collapse
|
8
|
Liu C, Liu Z, Fang Y, Du Z, Yan Z, Yuan X, Dai L, Yu T, Xiong M, Tian Y, Li H, Li F, Zhang J, Meng L, Wang Z, Jiang H, Zhang Z. Exposure to the environmentally toxic pesticide maneb induces Parkinson's disease-like neurotoxicity in mice: A combined proteomic and metabolomic analysis. CHEMOSPHERE 2022; 308:136344. [PMID: 36087732 DOI: 10.1016/j.chemosphere.2022.136344] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/03/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Maneb is a typical dithiocarbamate fungicide that has been extensively used worldwide. Epidemiological evidence shows that exposure to maneb is an environmental risk factor for Parkinson's disease (PD). However, the mechanisms underlying maneb-induced neurotoxicity have yet to be elucidated. In this study, we exposed SH-SY5Y cells to maneb at environmentally relevant concentrations (0, 0.1, 5, 10 mg/L) and found that maneb dose-dependently decreased the cell viability. Furthermore, maneb (60 mg/kg) induced PD-like motor impairment in α-synuclein A53T transgenic mice. The results of tandem mass tag (TMT) proteomics and metabolomics studies of mouse brain and serum revealed significant changes in proteins and metabolites in the pathways involved in the neurotransmitter system. The omics results were verified by targeted metabolomics and Western blot analysis, which demonstrated that maneb induced disturbance of the PD-related pathways, including the phenylalanine and tryptophan metabolism pathways, dopaminergic synapse, synaptic vesicle cycle, mitochondrial dysfunction, and oxidative stress. In addition, the PD-like phenotype induced by maneb was attenuated by the asparagine endopeptidase (AEP) inhibitor compound #11 (CP11) (10 mg/kg), indicating that AEP may play a role in maneb-induced neurotoxicity. To the best of our knowledge, this is the first study to investigate the molecular mechanisms underlying maneb-induced PD-like phenotypes using multiomics analysis, which identified novel therapeutic targets for PD associated with pesticides and other environmental pollutants.
Collapse
Affiliation(s)
- Chaoyang Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China; Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zehua Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Yanyan Fang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Zhen Du
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Zhi Yan
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Xin Yuan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Honghu Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Fei Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Jingdong Zhang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhihao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Haiqiang Jiang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
9
|
Zedan HE, Mortada WI, Khalifa ME. Microextraction procedures for preconcentration of Fe (III) in water and food samples prior to colorimetric detection: a comparative study. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractTwo extraction procedures, namely dispersive liquid-liquid microextraction (DLLME) and dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFOD), have been compared for the spectrophotometric determination of Fe (III). In both procedures, Fe (III) was extracted after complexation with gallic acid in the presence of cetyltrimethylammonium bromide (CTAB). Tetrachloroethylene and 1-undecanol were used as extraction solvents in DLLME and DLLME-SFOD, respectively, while acetone was used as dispersing solvents. The effects of various experimental parameters (solution pH, the concentration of ligand and CTAB, as well as nature and amount of extraction and disperser solvents) on the extraction efficiency were investigated. Under optimum conditions, the calibration graphs were linear in the range of 50.0–650.0 and 8.0–800.0 μg L−1 and the detection limits were 15.0 and 5.0 μg L−1 for DLLME and DLLME-SFOD, respectively. The presence of NaCl, up to 1.0% (w/v) did not impact the extraction procedures. The analyte was good tolerated in the presence of most concomitant ions. The procedures were applied for the determination of Fe (III) in standard reference materials and real samples with good recoveries (95.5–99.0%) for DLLME-SFOD while poor recoveries (68.0–82.5%) were obtained when DLLME was applied. The analytical figures of the procedures were comparable with those listed in the literature and it could be concluded that DLLME-SFOD may be considered one of the best tools used for preconcentration of Fe (III), owing to its simplicity, time-saving and the possibility of using in conventional analytical laboratories.
Graphical abstract
Collapse
|
10
|
Preconcentration of triazole fungicides using effervescent assisted switchable hydrophilicity solvent-based microextraction prior to high-performance liquid chromatographic analysis. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Kachangoon R, Vichapong J, Santaladchaiyakit Y, Burakham R, Srijaranai S. Sample Preparation Approach by In Situ Formation of Supramolecular Solvent Microextraction for Enrichment of Neonicotinoid Insecticide Residues. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Soylak M, Ozalp O, Uzcan F. Determination of Trace Ziram in Food by Magnesium Hydroxide Coprecipitation with Indirect Detection by Flame Atomic Absorption Spectrometry (FAAS). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2136191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
- Technology Research & Application Center (TAUM), Erciyes University, Kayseri, Turkey
- Turkish Academy of Sciences (TUBA), Ankara, Turkey
| | - Ozgur Ozalp
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
- Technology Research & Application Center (TAUM), Erciyes University, Kayseri, Turkey
| | - Furkan Uzcan
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
- Technology Research & Application Center (TAUM), Erciyes University, Kayseri, Turkey
| |
Collapse
|
13
|
Rakhtshah J, Shirkhanloo H, Dehghani Mobarake M. Simultaneously speciation and determination of manganese (II) and (VII) ions in water, food, and vegetable samples based on immobilization of N-acetylcysteine on multi-walled carbon nanotubes. Food Chem 2022; 389:133124. [PMID: 35526290 DOI: 10.1016/j.foodchem.2022.133124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022]
Abstract
A novel method based on the immobilization of N-acetylcysteine on chloro-functionalized multi-walled carbon nanotubes (MWCNTs@NAC) was used for the speciation of manganese ions [Mn (II) and Mn(VII)] in water samples. Also, the total manganese (TMn) in vegetables and food samples was determined by the AT-FAAS. By ultrasound-assisted-dispersive ionic liquid trap micro solid-phase extraction (UA-DILT-μ-SPE), the Mn (II)/Mn(VII) ions were extracted in the presence of MWCNTs@NAC for 50 mL of water samples at a pH of 6.5 and 3.0, respectively. The adsorption capacity of MWCNTs@NAC for Mn(II) and Mn(VII) ions was obtained at 146.7 mg g-1 and 138.8 mg g-1, respectively. Under the optimized conditions, the detection limits (LOD), linear range (LR), and enrichment factor (EF) for Mn(II) and Mn(VII) ions were obtained (0.12 μg L-1; 0.14 μg L-1), (0.48-36 μg L-1; 0.55-38.1 μg L-1) and (100.2; 94.5), respectively. The proposed methodology was successfully validated by the CRM samples.
Collapse
Affiliation(s)
- Jamshid Rakhtshah
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hamid Shirkhanloo
- Research Institute of Petroleum Industry(RIPI), West Entrance Blvd., Olympic Village, Tehran 14857-33111, Iran.
| | - Mostafa Dehghani Mobarake
- Research Institute of Petroleum Industry(RIPI), West Entrance Blvd., Olympic Village, Tehran 14857-33111, Iran; Department of Environment, Research Institute of Petroleum Industry(RIPI), West Entrance Blvd., Olympic Village, Tehran, 14857-33111, Iran
| |
Collapse
|
14
|
Soylak M, Ahmed HEH, Uzcan F. Determination of Sudan III in Food by Supramolecular Microextraction and Spectrophotometry. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
- Technology Research and Application Center, Erciyes University, Kayseri, Turkey
- Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkey
| | - Hassan Elzain Hassan Ahmed
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
- Technology Research and Application Center, Erciyes University, Kayseri, Turkey
- Sudan Atomic Energy Commission, Chemistry and Nuclear Physics Institute, Khartoum, Sudan
- Chemistry Section, College of Science-Scientific Laboratories Department, Sudan University of Science and Technology, Khartoum, Sudan
| | - Furkan Uzcan
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
- Technology Research and Application Center, Erciyes University, Kayseri, Turkey
| |
Collapse
|
15
|
Abdallah IA, Hammad SF, Bedair A, Abdelaziz MA, Danielson ND, Elshafeey AH, Mansour FR. A Gadolinium-Based Magnetic Ionic Liquid for Supramolecular Dispersive Liquid-Liquid Microextraction Followed by HPLC/UV for Determination of Favipiravir in Human Plasma. Biomed Chromatogr 2022; 36:e5365. [PMID: 35274347 DOI: 10.1002/bmc.5365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/06/2022]
Abstract
Favipiravir is a potential antiviral medication that has been recently licensed for COVID-19 treatment. In this work, a gadolinium based magnetic ionic liquid was prepared and used as an extractant in dispersive liquid-liquid microextraction (DLLME) of favipiravir in human plasma. The high enriching ability of DLLME allowed determination of favipiravir in real samples using HPLC/UV with sufficient sensitivity. The effects of several variables on extraction efficiency were investigated, including type of extractant, amount of extractant, type of disperser and disperser volume. The maximum enrichment was attained using 50mg of the Gd-MIL and 150μL of tetrahydrofuran. The Gd-based MIL could form a supramolecular assembly in the presence of tetrahydrofuran, which enhanced the extraction efficiency of favipiravir. The developed method was validated according to FDA bioanalytical method validation guidelines. The coefficient of determination was found to be 0.9999, for a linear concentration range of 25 to 1.0 × 105 ng/mL. The percent recovery (accuracy) varied from 99.83 to 104.2 %, with % RSD values (precision) ranging from 4.07 to 11.84 %. Total extraction time was about 12 min and the HPLC analysis time was 5 min. The method was found simple, selective and sensitive for determination of favipiravir in real human plasma.
Collapse
Affiliation(s)
- Inas A Abdallah
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Sherin F Hammad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Alaa Bedair
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Mohamed A Abdelaziz
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.,Department of Chemistry and Biochemistry, Miami University, Oxford, OH
| | - Neil D Danielson
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH
| | - Ahmed H Elshafeey
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt.,Pharmaceutical Services Center, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
16
|
Soylak M, Özalp Ö, Uzcan F. Ultrasound assisted supramolecular liquid phase microextraction procedure for Sudan I at trace level in environmental samples. Turk J Chem 2021; 45:1327-1335. [PMID: 34849051 PMCID: PMC8596535 DOI: 10.3906/kim-2104-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/12/2021] [Indexed: 11/29/2022] Open
Abstract
A method based on supramolecular liquid phase microextraction has been developed for the preconcentration and determination of trace levels of Sudan I. 1-decanol and tetrahydrofuran were used as supramolecular solvent components. Trace levels of Sudan I were extracted into the extraction solvent phase at pH = 4.0 Analytical parameters such as pH value, supramolecular solvent volume, ultrasonication, centrifugation, model solution volume, matrix effects have been optimized. The limit of detection and the limit of quantification values for Sudan I were calculated as 1.74 μg L−1 and 5.75 μg L−1, respectively. In order to determine the accuracy of the method, addition and recovery studies were carried out to environmental samples.
Collapse
Affiliation(s)
- Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri Turkey.,Technology Research & Application Center (TAUM), Erciyes University, Kayseri Turkey.,Turkish Academy of Sciences (TUBA), Ankara Turkey
| | - Özgür Özalp
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri Turkey.,Technology Research & Application Center (TAUM), Erciyes University, Kayseri Turkey
| | - Furkan Uzcan
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri Turkey.,Technology Research & Application Center (TAUM), Erciyes University, Kayseri Turkey
| |
Collapse
|
17
|
Dowlatshah S, Saraji M, Pedersen-Bjergaard S, Ramos-Payán M. Microfluidic liquid-phase microextraction based on natural deep eutectic solvents immobilized in agarose membranes. J Chromatogr A 2021; 1657:462580. [PMID: 34624712 DOI: 10.1016/j.chroma.2021.462580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 01/25/2023]
Abstract
In liquid-phase microextraction (LPME), the sample and the acceptor are separated by a synthetic organic solvent, which is immobilized in a porous polymeric membrane of polypropylene or polyvinylidene fluoride. The organic solvent serves as extraction phase, while the polymeric membrane serves as support membrane. The combination of extraction phase and support membrane is termed supported liquid membrane (SLM). In this paper, we developed for the first time fully green and biodegradable supported SLMs, based on natural deep eutectic solvents as extraction phase and agarose as support membrane. This highly green approach was developed and studied with sulfonamide pharmaceuticals as model analytes, and performance was compared with LPME using conventional SLMs. All experiments were conducted in a microfluidic device. Model analytes were extracted from acidic sample (pH1.0) and into alkaline acceptor (pH12.0). Both sample and acceptor were pumped at 1 μL min-1 into the microfluidic device, and the optimal SLM was based on 3 µL of coumarin and thymol (1:2 molar ratio) as the extraction phase. The proposed green microfluidic device was successfully applied for the determination of sulfonamides in urine samples with spiking recoveries in the range of 77-100%. LPME with deep eutectic solvent immobilized in agarose showed similar performance as with conventional SLMs. Thus, the data presented in this paper demonstrate that highly green microextraction systems may be developed in the future, based on natural solvents and biodegradable materials.
Collapse
Affiliation(s)
- Samira Dowlatshah
- Department of Analytical Chemistry, Faculty of Chemistry, University of Seville, c/Prof. García González s/n, Seville 41012, Spain; Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammad Saraji
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Stig Pedersen-Bjergaard
- Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, Oslo 0316, Norway; Department of Pharmacy, Faculty of Health and Medical Sciences University of Copenhagen, Universitetesparken 2, Copenhagen Ø 2100, Denmark
| | - María Ramos-Payán
- Department of Analytical Chemistry, Faculty of Chemistry, University of Seville, c/Prof. García González s/n, Seville 41012, Spain.
| |
Collapse
|
18
|
Jagirani MS, Ozalp O, Soylak M. New Trend in the Extraction of Pesticides from the Environmental and Food Samples Applying Microextraction Based Green Chemistry Scenario: A Review. Crit Rev Anal Chem 2021; 52:1343-1369. [PMID: 33560139 DOI: 10.1080/10408347.2021.1874867] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review focused on the green microextraction methods used for the extraction of pesticides from the environmental and food samples. Microextraction techniques have been explored and applied in various fields of analytical chemistry since its beginning, as evinced by the numerous reviews published. The success of any technique in science and technology is measured by the simplicity, environmentally friendly, and its applications; and the microextraction technique is highly successive. Deliberations were attentive to studies where efforts have been made to validate the methods through the inter-laboratory comparison study to assess the analytical performance of microextraction techniques against conventional methods. Succinctly, developed microextraction methods are shown to impart significant benefits over conventional techniques. Provided that the analytical community continues to put forward attention and resources into the growth and validation of the microextraction technique, a promising future for microextraction is forecasted.
Collapse
Affiliation(s)
- Muhammad Saqaf Jagirani
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Ozgur Ozalp
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| |
Collapse
|