1
|
Pan X, Bi S, Xu Y, Lao F, Guo X, Xiao Z, Wu J. Investigation of noncovalent interaction between chelate-soluble pectin from muskmelon and selected volatile during thermal processing using multiple spectroscopy and molecular dynamics. Food Chem 2025; 469:142489. [PMID: 39708652 DOI: 10.1016/j.foodchem.2024.142489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/01/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
The effect of thermal processing on the binding between methional and chelated-soluble pectin obtained from muskmelon was investigated. Particle size measurements demonstrated that the formed complex between methional and chelated-soluble pectin exhibited small sizes after thermal processing. Pyrene fluorescence analysis showed that the interaction between methional and pectin occurred in the hydrophilic region. Fourier transform infrared and nuclear magnetic resonance analysis revealed that the interaction between chelated-soluble pectin and methional was driven by hydrogen bonding, which was mainly present between carboxyl groups of pectin and the aldehyde groups of methional using the molecular dynamics simulation. Thermal processing can increase the binding rate of methional to pectin to 16 %, affecting its release. This work provided new insight into controlling the volatile release from thermally processed food during thermal processing.
Collapse
Affiliation(s)
- Xin Pan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; College of Food Science and Nutritional Engineering, China Agricultural University; National Engineering Research Center for Fruit & Vegetable Processing; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Shuang Bi
- College of Food Science and Nutritional Engineering, China Agricultural University; National Engineering Research Center for Fruit & Vegetable Processing; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China; College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yingying Xu
- College of Food Science and Nutritional Engineering, China Agricultural University; National Engineering Research Center for Fruit & Vegetable Processing; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University; National Engineering Research Center for Fruit & Vegetable Processing; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| | - Xingfeng Guo
- Agricultural Science and Engineering School, Liaocheng University, 1st Hunan Road, Dongchangfu District, Liaocheng 252000, China
| | - Zhijian Xiao
- Shandong Wake Fresh Food Technology Co., LTD, 1918th East Wenmiao Road, Ningyang County, Taian 271000, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University; National Engineering Research Center for Fruit & Vegetable Processing; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| |
Collapse
|
2
|
Wang D, Wang J, Lang Y, Huang M, Hu S, Liu H, Sun B, Long Y, Wu J, Dong W. Interactions between food matrices and odorants: A review. Food Chem 2025; 466:142086. [PMID: 39612859 DOI: 10.1016/j.foodchem.2024.142086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/20/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024]
Abstract
Currently, although odorants of various foods have been thoroughly studied, the regulation of food aromas is still difficult due to the interaction between odorants and food matrices. These complex matrices in food may interact with odorants to change the volatility of odorants, which in turn affect food aroma. Clarifying the interaction between them are promising for predicting food aroma formation, which will provide valuable support for a high-efficiency food industry. Herein, the research progresses on interactions between food matrices and odorants are reviewed. First, the analysis methods and their advantages and disadvantages are introduced and discussed emphatically, including sensory-analysis methods, characterization methods of the volatility changes of odorants, and the research methods of interaction mechanism. Further, the research advances of interactions among proteins, carbohydrates, lipids, and polyphenols with odorants are summarized briefly. Finally, the existing problems are discussed and the research prospects are proposed.
Collapse
Affiliation(s)
- Danqing Wang
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Juan Wang
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Ying Lang
- Guizhou Wangmao Jiuqu Research Institute Co., Ltd., Guiyang, Guizhou 550081, PR China
| | - Mingquan Huang
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China.
| | - Shenglan Hu
- Guizhou Wangmao Jiuqu Research Institute Co., Ltd., Guiyang, Guizhou 550081, PR China
| | - Hongqin Liu
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China.
| | - Yao Long
- Guizhou Wangmao Jiuqu Research Institute Co., Ltd., Guiyang, Guizhou 550081, PR China
| | - Jihong Wu
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Wei Dong
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| |
Collapse
|
3
|
Yi Z, Zhao D, Chang T, Chen X, Kai J, Luo Y, Peng B, Yang B, Ge Q. Effects of High-Hydrostatic-Pressure Treatment on Polyphenols and Volatile Aromatic Compounds in Marselan Wine. Foods 2024; 13:2468. [PMID: 39123657 PMCID: PMC11312179 DOI: 10.3390/foods13152468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
This study investigated the effects of high-hydrostatic-pressure (HHP) treatment of varying intensity (100-600 MPa) and duration (10-30 min) on polyphenols and volatile aromatic compounds in Marselan red wine. The types and concentrations of polyphenols and volatile aromatic compounds were compared before and after HHP treatment; the results indicated that HHP treatment at 300 MPa for 20 min significantly increased the total polyphenol content to 369.70 mg/L, a rise of 35.82%. The contents of key polyphenols, such as resveratrol and protocatechuic acid, were significantly enhanced. Furthermore, while the total content of volatile aromatic compounds did not change significantly under this condition compared to the untreated samples, the concentration of ester compounds significantly increased to 1.81 times that of the untreated group, thereby enriching the floral and fruity aromas of the wine and effectively improving its aromatic profile and sensory quality. Principal component analysis (PCA) further validated the positive impact of HHP treatment on the flavor characteristics of Marselan red wine. These findings provide technical support for the use of HHP in improving wine quality.
Collapse
Affiliation(s)
- Zicheng Yi
- Institute of Agricultural Product Quality Standards and Testing Technology, Yinchuan 750002, China; (Z.Y.); (T.C.); (B.P.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (X.C.); (J.K.); (B.Y.)
| | - Danqing Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (X.C.); (J.K.); (B.Y.)
| | - Tengwen Chang
- Institute of Agricultural Product Quality Standards and Testing Technology, Yinchuan 750002, China; (Z.Y.); (T.C.); (B.P.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (X.C.); (J.K.); (B.Y.)
| | - Xiang Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (X.C.); (J.K.); (B.Y.)
| | - Jianrong Kai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (X.C.); (J.K.); (B.Y.)
| | - Yang Luo
- Ningxia Institute for Science and Technology Development Strategy and Information Research, Yinchuan 750002, China;
| | - Bangzhu Peng
- Institute of Agricultural Product Quality Standards and Testing Technology, Yinchuan 750002, China; (Z.Y.); (T.C.); (B.P.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (X.C.); (J.K.); (B.Y.)
| | - Binkun Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (X.C.); (J.K.); (B.Y.)
| | - Qian Ge
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (X.C.); (J.K.); (B.Y.)
| |
Collapse
|
4
|
Goraya RK, Singla M, Kaura R, Singh CB, Singh A. Exploring the impact of high pressure processing on the characteristics of processed fruit and vegetable products: a comprehensive review. Crit Rev Food Sci Nutr 2024:1-24. [PMID: 38957008 DOI: 10.1080/10408398.2024.2373390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Consumers are increasingly interested in additive-free products with a fresh taste, leading to a growing trend in high pressure processing (HPP) as an alternative to thermal processing. This review explores the impact of HPP on the properties of juices, smoothies, and purees, as well as its practical applications in the food industry. Research findings have explained that HPP is a most promising technology in comparison to thermal processing, in two ways i.e., for ensuring microbial safety and maximum retention of micro and macro nutrients and functional components. HPP preserves natural color and eliminates the need for artificial coloring. The review also emphasizes its potential for enhancing flavor in the beverage industry. The review also discusses how HPP indirectly affects plant enzymes that cause off-flavors and suggests potential hurdle approaches for enzyme inactivation based on research investigations. Scientific studies regarding the improved quality insights on commercially operated high pressure mechanisms concerning nutrient retention have paved the way for upscaling and boosted the market demand for HPP equipment. In future research, the clear focus should be on scientific parameters and sensory attributes related to consumer acceptability and perception for better clarity of the HPP effect on juice and smoothies/purees.
Collapse
Affiliation(s)
- Rajpreet Kaur Goraya
- Advanced Post-Harvest Technology Centre, Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, Alberta, Canada
| | - Mohit Singla
- Department of Food Technology, Bhai Gurdas Institute of Engineering and Technology, Sangrur, India
| | - Robin Kaura
- Dairy Engineering Division, ICAR-NDRI, Karnal, India
| | - Chandra B Singh
- Advanced Post-Harvest Technology Centre, Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, Alberta, Canada
| | - Ashutosh Singh
- School of Engineering, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
5
|
Wang W, Sun B, Deng J, Ai N. Addressing flavor challenges in reduced-fat dairy products: A review from the perspective of flavor compounds and their improvement strategies. Food Res Int 2024; 188:114478. [PMID: 38823867 DOI: 10.1016/j.foodres.2024.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
In recent years, the demand for reduced-fat dairy products (RFDPs) has increased rapidly as the health risks associated with high-fat diets have become increasingly apparent. Unfortunately, lowering the fat content in dairy products would reduce the flavor perception of fat. Fat-derived flavor compounds are the main contributor to appealing flavor among dairy products. However, the contribution of fat-derived flavor compounds remains underappreciated among the flavor improvement factors of RFDPs. Therefore, this review aims to summarize the flavor perception mechanism of fat and the profile of fat-derived flavor compounds in dairy products. Furthermore, the characteristics and influencing factors of flavor compound release are discussed. Based on the role of these flavor compounds, this review analyzed the current and potential flavor improvement strategies for RFDPs, including physical processing, lipolysis, microbial applications, and fat replacement. Overall, promoting the synthesis of milk fat characteristic flavor compounds in RFDPs and aligning the release properties of flavor compounds from the RFDPs with those of equivalent full-fat dairy products are two core strategies to improve the flavor of reduced-fat dairy products. In the future, better modulation of the behavior of flavor compounds by various methods is promising to replicate the flavor properties of fat in RFDPs and meet consumer sensory demands.
Collapse
Affiliation(s)
- Weizhe Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology & Business University) Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology & Business University) Beijing 100048, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Nasi Ai
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology & Business University) Beijing 100048, China.
| |
Collapse
|
6
|
Zhang Z, Chen Y, Cheng Y, Gao Z, Qu K, Chen Z, Yue L, Guan W. Effects of Pulsed Electric Field and High-Pressure Processing Treatments on the Juice Yield and Quality of Sea Buckthorn. Foods 2024; 13:1829. [PMID: 38928771 PMCID: PMC11202788 DOI: 10.3390/foods13121829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Sea buckthorn juice has high nutritional value and a rich flavor that consumers enjoy. Traditional sea buckthorn thermal processing (TP) technology has problems such as low juice yield, poor quality, and poor flavor. Sea buckthorn berries are processed using a technique combining pulsed electric field (PEF) and high-pressure processing (HPP) to increase juice yield and study its impact on the quality and volatile aroma of sea buckthorn juice. Results have show that, compared with TP, under the condition of PEF-HPP, the juice yield of sea buckthorn significantly increased by 11.37% (p > 0.05); TP and PEF-HPP treatments could effectively kill microorganisms in sea buckthorn juice, but the quality of sea buckthorn juice decreased significantly after TP treatment (p > 0.05), whereas PEF-HPP coupling technology could maximally retain the nutrients of sea buckthorn juice while inhibiting enzymatic browning to improve color, viscosity, and particle size. The flavor of sea buckthorn juice is analyzed using electronic nose (E-nose) and gas chromatography-ion mobility spectrometer (GC-IMS) techniques, and it has been shown that PEF-HPP retains more characteristic volatile organic compounds (VOCs) of sea buckthorn while avoiding the acrid and pungent flavors produced by TP, such as benzaldehyde, (E)-2-heptenal, and pentanoic acid, among others, which improves the sensory quality of sea buckthorn juice. PEF-HPP technology is environmentally friendly and efficient, with significant economic benefits. Research data provide information and a theoretical basis for the sea buckthorn juice processing industry.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (Z.Z.); (Y.C.); (Y.C.)
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (Z.G.); (K.Q.)
| | - Yixuan Chen
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (Z.Z.); (Y.C.); (Y.C.)
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (Z.G.); (K.Q.)
| | - Yuying Cheng
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (Z.Z.); (Y.C.); (Y.C.)
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (Z.G.); (K.Q.)
| | - Zhenhong Gao
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (Z.G.); (K.Q.)
| | - Kunsheng Qu
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (Z.G.); (K.Q.)
| | - Zhixi Chen
- Huachi Gannong Biotechnology Company Limited, Qingyang 745600, China;
| | - Lihua Yue
- Chengde Astronaut Mountainous Plant Technology Company Limited, Chengde 068450, China;
| | - Wenqiang Guan
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (Z.Z.); (Y.C.); (Y.C.)
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (Z.G.); (K.Q.)
| |
Collapse
|
7
|
Liu X, Liang F, Wang BS, Ren FY, Wang W, Zhang C. Ultra-high pressure treatment improve the content of characteristic aromatic components of melon juice from the view of physical changes. Front Nutr 2024; 11:1375130. [PMID: 38826584 PMCID: PMC11141398 DOI: 10.3389/fnut.2024.1375130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction The effectiveness of ultra-high pressure (UHP) technology in retaining the flavor of fresh fruit and vegetable juices has been acknowledged in recent years. Along with previously hypothesized conclusions, the improvement in melon juice flavor may be linked to the reduction of its surface tension through UHP. Methods In this paper, the particle size, free-water percentage, and related thermodynamic parameters of melon juice were evaluated in a physical point for a deeper insight. Results The results showed that the UHP treatment of P2-2 (200 MPa for 20 min) raised the free water percentage by 7,000 times than the other treatments and both the melting enthalpy, binding constant and Gibbs free energy of P2-2 were minimized. This significantly increased the volatility of characteristic aromatic compounds in melon juice, resulting in a 1.2-5 times increase in the content of aromatic compounds in the gas phase of the P2-2 group compared to fresh melon juice.
Collapse
Affiliation(s)
- Xiao Liu
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-products), Beijing Technology and Business University (BTBU), Beijing, China
| | - Feng Liang
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-products), Beijing Technology and Business University (BTBU), Beijing, China
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China
| | - Bing Su Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-products), Beijing Technology and Business University (BTBU), Beijing, China
| | - Fei Yue Ren
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-products), Beijing Technology and Business University (BTBU), Beijing, China
| | - Wei Wang
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China
| | - Chao Zhang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
8
|
Mahmoud MAA, Zhang Y. Enhancing Odor Analysis with Gas Chromatography-Olfactometry (GC-O): Recent Breakthroughs and Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9523-9554. [PMID: 38640191 DOI: 10.1021/acs.jafc.3c08129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Gas chromatography-olfactometry (GC-O) has made significant advancements in recent years, with breakthroughs in its applications and the identification of its limitations. This technology is widely used for analyzing complex odor patterns. The review begins by explaining the principles of GC-O, including sample preparation, separation methods, and olfactory evaluation techniques. It then explores the diverse range of applications where GC-O has found success, such as food and beverage industries, environmental monitoring, perfume and aroma development, and forensic analysis. One of the major breakthroughs in GC-O analysis is the improvement in separation power and resolution of odorants. Techniques like rapid GC, comprehensive two-dimensional GC, and multidimensional GC have enhanced the identification and quantification of odor-active chemicals. However, GC-O also has limitations. These include the challenges in detecting and quantifying trace odorants, dealing with matrix effects, and ensuring the repeatability and consistency of results across laboratories. The review examines these limitations closely and discusses potential solutions and future directions for improvement in GC-O analysis. Overall, this review presents a comprehensive overview of the recent advances in GC-O, covering breakthroughs, applications, and limitations. It aims to promote the wider usage of GC-O analysis in odor analysis and related industries. Researchers, practitioners, and anyone interested in leveraging the capabilities of GC-O in analyzing complex odor patterns will find this review a valuable resource. The article highlights the potential of GC-O and encourages further research and development in the field.
Collapse
Affiliation(s)
- Mohamed A A Mahmoud
- Department of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University, Hadayek Shobra, Cairo 11241, Egypt
| | - Yanyan Zhang
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, Stuttgart 70599, Germany
| |
Collapse
|
9
|
Wang X, Sun K, Liao X, Zhang Y, Ban Y, Zhang X, Song Z. Physicochemical, antibacterial and aromatic qualities of herbaceous peony ( Paeonia lactiflora pall) tea with different varieties. RSC Adv 2024; 14:14303-14310. [PMID: 38690105 PMCID: PMC11060045 DOI: 10.1039/d3ra08144c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
The aim of this study was to evaluate the effect of five varieties on the quality of herbaceous peony tea by physicochemical analysis, sensory evaluation, antimicrobial capacity analysis and a combination of gas chromatography with quadruple time of flight mass spectrometry (GC-QTOF). Antibacterial and antioxidant analyses revealed that the ABTS free radical scavenging rate of HPT was high, ranging from 82.20% to 87.40% overall. 'Madame Claude Tain' had the strongest inhibitory ability against Staphylococcus aureus with an inhibitory effect of 12.65 mm. The sensory evaluation showed that 'Angel cheeks' had the highest overall sensory score. GC-QTOF combined with orthogonal projections to latent structures discriminant analysis showed that 22 volatile components were the key aroma components of herbaceous peony tea. Different varieties of herbaceous peony tea had a unique characteristic aroma. 'Angel cheeks' imparted lily-like and chestnut fragrances, which were attributed to linalool and 3,5-octadien-2-one. 'Sea Shell', 'Mother's Choice' and 'Angel Cheek' had a medicinal aroma, which may be due to the presence of o-cymene. Overall, 'Angel cheeks' was the most suitable for developing high-quality herbaceous peony tea in five varieties. This study provided a theoretical basis and technical guidance for the development of herbaceous peony.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University Qingdao Shandong 266109 China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences Beijing 100081 China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs Beijing 100081 China
- College of Engineering, China Agricultural University Beijing 100083 China
| | - Kairong Sun
- College of Horticulture, China Agricultural University Beijing 100193 China
| | - Xueping Liao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs Beijing 100081 China
| | - Yanli Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences Beijing 100081 China
| | - Yuqian Ban
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences Beijing 100081 China
| | - Xiuxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs Beijing 100081 China
| | - Zihan Song
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences Beijing 100081 China
| |
Collapse
|
10
|
Xi Y, Yu M, Cao R, Li X, Zeng X, Li J. Decoding the interaction mechanism between bis(2-methyl-3-furyl) disulfide and oral mucin. Food Chem 2024; 436:137762. [PMID: 37866101 DOI: 10.1016/j.foodchem.2023.137762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
The interactions between mucin and aroma compounds have been shown to affect aroma perception. This study aimed to investigate the binding behavior between mucin and bis(2-methyl-3-furyl) disulfide and reveal the interaction mechanism at different pH levels. Based on our results, the binding percentages between mucin and bis(2-methyl-3-furyl) disulfide ranged from 37.03 % to 71.87 % at different contents. The complexes formation between mucin and bis(2-methyl-3-furyl) disulfide was confirmed by turbidity, particle size, zeta-potential, and surface hydrophobicity analyses. According to the results of multispectral techniques and molecular dynamic simulation, mucin could interact with bis(2-methyl-3-furyl) disulfide by hydrogen bonding, hydrophobic interactions, and van der Waals force. Furthermore, the binding constants of mucin to bis(2-methyl-3-furyl) disulfide were 1.26 × 103, 1.14 × 103, and 9.13 × 103 L mol-1 at pH 5.0, 7.0, and 8.5, respectively. These findings contribute to the comprehensive knowledge on the interaction mechanism between bis(2-methyl-3-furyl) disulfide and mucin, providing insights for flavor modulation in meat products.
Collapse
Affiliation(s)
- Yu Xi
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing 100048, China
| | - Meihong Yu
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing 100048, China
| | - Rui Cao
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing 100048, China
| | - Xuejie Li
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing 100048, China
| | - Xiangquan Zeng
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing 100048, China
| | - Jian Li
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing 100048, China.
| |
Collapse
|
11
|
Ma L, Sun Y, Wang X, Zhang H, Zhang L, Yin Y, Wu Y, Du L, Du Z. The characteristic of the key aroma-active components in white tea using GC-TOF-MS and GC-olfactometry combined with sensory-directed flavor analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7136-7152. [PMID: 37337850 DOI: 10.1002/jsfa.12798] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND White tea has become more and more popular with consumers due to its health benefits and unique flavor. However, the key aroma-active compounds of white tea during the aging process are still unclear. Thus, the key aroma-active compounds of white tea during the aging process were investigated using gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS) and gas chromatography-olfactometry (GC-O) combined with sensory-directed flavor analysis. RESULTS A total of 127 volatile compounds were identified from white tea samples with different aging years by GC-TOF-MS. Fifty-eight aroma-active compounds were then determined by GC-O, and 19 of them were further selected as the key aroma-active compounds based on modified frequency (MF) and odor activity value (OAV). CONCLUSION Aroma recombination and omission testing confirmed that 1-octen-3-ol, linalool, phenethyl alcohol, geraniol, (E)-β-ionone, α-ionone, hexanal, phenylacetaldehyde, nonanal, (E, Z)-(2,6)-nonadienal, safranal, γ-nonalactone and 2-amylfuran were the common key aroma-active compounds to all samples. Cedrol, linalool oxide II and methyl salicylate were confirmed peculiar in new white tea, while β-damascenone and jasmone were peculiar in aged white tea. This work will offer support for further studies on the material basis of flavor formation of white tea. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lijuan Ma
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yangyang Sun
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Xuejiao Wang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Heyun Zhang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Linqi Zhang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yage Yin
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yumeng Wu
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Liping Du
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Ziping Du
- College of Economics and Management, Tianjin University of Science and Technology, Tianjin, P. R. China
| |
Collapse
|
12
|
Feng S, Yi J, Wu X, Ma Y, Bi J. Effects of cell morphology on the textural attributes of fruit cubes in freeze-drying: Apples, strawberries, and mangoes as examples. J Texture Stud 2023; 54:775-786. [PMID: 37248614 DOI: 10.1111/jtxs.12779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/27/2023] [Accepted: 05/11/2023] [Indexed: 05/31/2023]
Abstract
The influence of cell morphology on the textural characteristic of freeze-dried apple, strawberry, and mango cubes was evaluated. Corresponding restructured cube samples without intact cell morphology were prepared as controls. Results indicated that the presence of cell morphology strengthened the shrinkage and collapse of samples during freeze-drying, especially in mangoes due to the high content of sugar. Intact cell morphology was found in natural fruit cubes after freeze-drying by scanning electron microscopy (SEM) observation, making them exhibit a more regular microporous structure, further resulting in higher hardness than the restructured cubes. However, the intact cell morphology negatively affected the crispness of freeze-dried cubes since it enhanced structural collapse. The freeze-dried samples without cell morphology would destroy the cellulose structure and form a continuous open-pore structure under the concentration effect of ice crystals during freezing, which accelerates the escape of water molecules, increases the drying rate, and avoid collapse. Sensory experiments found that restructured cubes without intact cell morphology exhibited greater comprehensive acceptance, suggesting the potential application of cell morphology disruption in the future freeze-drying industry.
Collapse
Affiliation(s)
- Shuhan Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jianyong Yi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xinye Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Youchuan Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
13
|
Miao Y, Zhong Q. Isolation and Identification of β-Glucosidases-Producing Non- Saccharomyces Yeast Strains and Its Influence on the Aroma of Fermented Mango Juice. Molecules 2023; 28:5890. [PMID: 37570860 PMCID: PMC10420690 DOI: 10.3390/molecules28155890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The cultivation and enrichment of different soils in a vineyard yielded 95 yeast species. Among them, seven strains capable of producing β-glucosidases were identified using the aescin colorimetric method. One non-Saccharomyces yeast strain was isolated from a plate containing lysine and identified using internal transcription (ITS) as Candida cf. sorbosivorans (C. cf. sorbosivorans), which was named Candida cf. sorbosivorans X1. Additionally, the enzymatic characteristics of the β-glucosidases produced by this strain were investigated. The β-glucosidases generated by C. cf. sorbosivorans X1 displayed high enzymatic activity and enzyme-activity retention in a pH range of 3.0 to 5.4 and at temperatures of 30 °C to 35 °C. Using non-targeted metabolomics methods, we investigated the alterations in metabolites during the fermentation of mango juice. The strain C. cf. sorbosivorans X1 demonstrated activity against phenols and terpenes. In the fermented mango juice (X1FMJ), we identified 41 differential metabolites. These included 14 esters, 4 hydrocarbons, 3 aldehydes, 5 ketones, 4 terpenoids, 4 alcohols, 1 aromatic hydrocarbon, 2 amines, 1 acid, and 3 heterocyclic compounds. The metabolic pathways of these differential metabolites were analyzed, revealing four key pathways: tyrosine metabolism, phenylpropanoid biosynthesis, monoterpene biosynthesis, and α-linolenic acid metabolism, which promoted the formation of aroma compounds in the fermented mango juice.
Collapse
Affiliation(s)
- Yuemei Miao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China;
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Qiuping Zhong
- School of Food Science and Engineering, Hainan University, Haikou 570228, China;
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| |
Collapse
|
14
|
Evaluation of Spinning Cone Column Distillation as a Strategy for Remediation of Smoke Taint in Juice and Wine. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228096. [PMID: 36432197 PMCID: PMC9697475 DOI: 10.3390/molecules27228096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Where vineyard exposure to bushfire smoke cannot be avoided or prevented, grape and wine producers need strategies to transform smoke-affected juice and wine into saleable product. This study evaluated the potential for spinning cone column (SCC) distillation to be used for the remediation of 'smoke taint'. Compositional analysis of 'stripped wine' and condensate collected during SCC treatment of two smoke-tainted red wines indicated limited, if any, removal of volatile phenols, while their non-volatile glycoconjugates were concentrated due to water and ethanol removal. Together with the removal of desirable volatile aroma compounds, this enhanced the perception of smoke-related sensory attributes; i.e., smoke taint intensified. Stripped wines also became increasingly sour and salty as ethanol (and water) were progressively removed. A preliminary juice remediation trial yielded more promising results. While clarification, heating, evaporation, deionization and fermentation processes applied to smoke-tainted white juice gave ≤3 µg/L changes in volatile phenol concentrations, SCC distillation of smoke-tainted red juice increased the volatile phenol content of condensate (in some cases by 3- to 4-fold). Deionization of the resulting condensate removed 75 µg/L of volatile phenols, but fermentation of reconstituted juice increased volatile phenol concentrations again, presumably due to yeast metabolism of glycoconjugate precursors. Research findings suggest SCC distillation alone cannot remediate smoke taint, but used in combination with adsorbents, SCC may offer a novel remediation strategy, especially for tainted juice.
Collapse
|
15
|
Ravichandran C, Jayachandran LE, Kothakota A, Pandiselvam R, Balasubramaniam V. Influence of high pressure pasteurization on nutritional, functional and rheological characteristics of fruit and vegetable juices and purees-an updated review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Effect of Metschnikowia pulcherrima on Saccharomyces cerevisiae PDH By-Pass in MixedFermentation with Varied Sugar Concentrations of Synthetic Grape Juice and Inoculation Ratios. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of Metschnikowia pulcherrima and high glucose osmolality on S. cerevisiae pyruvate dehydrogenase pathway (PDH) by-pass were examined by varying the starting sugar concentration of synthetic grape juice and the inoculation ratio of S. cerevisiae to M. pulcherrima. The findings revealed that M. pulcherrima and osmolarity impacted S. cerevisiae’s PDH by-pass. The inoculation concentration of M. pulcherrima significantly affected pyruvate decarboxylase (PDC) activity and acs2 expression when the initial sugar concentration was 200 g L−1 and 290 g L−1. The osmolarity caused by the initial sugar (380 g L−1) significantly influenced the enzymatic activity of S. cerevisiae, which decreased PDC and acetaldehyde dehydrogenase (ALD) activities while increasing Acetyl-CoA synthetase (ACS) activity. The reduction in acetic acid in the wine was caused by M. pulcherrima altering the initial sugar concentration faced by S. cerevisiae, which in turn affected enzymatic activity. The alteration of enzyme activity and accumulation of primary metabolites revealed why mixed fermentation could reduce the acetic acid content in wine by altering the enzymatic activity and affecting the expression of several key genes. The M. pulcherrima inoculation levels had no significant effect on the acetic acid and glycerol concentration in the same fermentation medium.
Collapse
|
17
|
Comparative Profiling of Hot and Cold Brew Coffee Flavor Using Chromatographic and Sensory Approaches. Foods 2022; 11:foods11192968. [PMID: 36230042 PMCID: PMC9562860 DOI: 10.3390/foods11192968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Coffee brewing is a complex process from roasted coffee bean to beverage, playing an important role in coffee flavor quality. In this study, the effects of hot and cold brewing on the flavor profile of coffee were comprehensively investigated on the basis of chromatographic and sensory approaches. By applying gas chromatography–mass spectrometry and odor activity value calculation, most pyrazines showed higher contribution to the aroma profile of cold brew coffee over hot brew coffee. Using liquid chromatography, 18 differential non-volatiles were identified, most of which possessed lower levels in cold brew coffee than hot brew coffee. The sensory evaluation found higher fruitiness and lower bitterness and astringent notes in cold brew coffee than hot brew coffee, which was attributed by linalool, furfural acetate, and quercetin-3-O-(6″-O-p-coumaroyl) galactoside. This work suggested coffee brewing significantly affected its flavor profile and sensory properties.
Collapse
|
18
|
Yang F, Chen E, Dai Y, Xu Y, Liu Y, Bi S. Elucidation of the interaction between fructose and key aroma compounds in watermelon juice via Raman spectroscopy and nuclear magnetic resonance. Food Res Int 2022; 159:111613. [DOI: 10.1016/j.foodres.2022.111613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 11/04/2022]
|
19
|
Liu L, Deng X, Huang L, Li Y, Zhang Y, Chen X, Guo S, Yao Y, Yang S, Tu M, Li H, Rao Y. Comparative effects of high hydrostatic pressure, pasteurization and nisin processing treatments on the quality of pickled radish. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
20
|
Effect of High-Pressure Treatment on the Quality of a Hericium erinaceus: Millet Composite Beverage. J FOOD QUALITY 2022. [DOI: 10.1155/2022/2456921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hericiumerinaceus-millet (HM) composite beverage was prepared by mixing Hericium erinaceus juice and millet juice and then subjected to high-pressure processing (HPP) of 300 MPa and 600 MPa at room temperature and thermal processing (TP) of 100°C for 3 min. The differences in pH, total soluble solids, amino acid nitrogen content, total colony numbers, sensory scores, and shelf life of HPP-treated and TP-treated samples stored at 4°C, 27°C, and 37°C for 80 days and the differences in volatile substances stored at 4°C and 27°C for 30 days were studied. The results showed that there was no significant difference in total soluble solids, amino acid nitrogen, and pH when comparing HPP- and TP-treated HM beverages. The order of HM beverages’ shelf life following different treatments was as follows: TP-treated >600 MPa HPP-treated >300 MPa HPP-treated. When stored at 4°C, the shelf life of the three treatments was 63, 52, and 39 days, respectively. Compared with TP-treated beverages, HPP-treated beverages better retained their ester flavor compounds, especially ethyl acetate. Moreover, the main volatile compounds in TP-treated beverages changed more during storage than those in HPP-treated beverages. Overall, HPP-treated beverages had advantages in terms of flavor over TP-treated beverages.
Collapse
|
21
|
Lou X, Jin Y, Tian H, Yu H, Chen C, Hanna M, Lin Y, Yuan L, Wang J, Xu H. High-pressure and thermal processing of cloudy hawthorn berry (Crataegus pinnatifida) juice: Impact on microbial shelf-life, enzyme activity and quality-related attributes. Food Chem 2022; 372:131313. [PMID: 34655827 DOI: 10.1016/j.foodchem.2021.131313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/04/2022]
Abstract
The study aimed to evaluate the effect of high-pressure (HPP, 300/600 MPa for 2 and 6 min) and thermal processing (TP, 65 °C/30 min) on microbial shelf-life, enzyme-activity and quality-attributes of cloudy hawthorn berry juice (CHBJ) after processing and during storage (4 °C). The CHBJ shelf-life was at least 150 days when processed by HPP. No significant difference was observed in pH and titratable acidity (p > 0.05), while HPP significantly increased soluble sugar (p < 0.05) and simulated some fruity aroma compounds which improved the taste and flavor of CHBJ. However, HPP inhabited ineffectively enzyme-activity in comparison to TP, causing significant color changes (ΔE = 4.98 ± 0.03-5.10 ± 0.07) during 30-day storage (p < 0.05). Although particle size increased after HPP treatment, significant increases (68.76%-926.95%) were observed in viscosity (p < 0.05), due to enhanced extractability or modification of pectin induced by HPP, resulting in higher consistency of CHBJ. HPP is promising to extend shelf-life and improve quality-attributes of CHBJ.
Collapse
Affiliation(s)
- Xinman Lou
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yu Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huaixiang Tian
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Haiyan Yu
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chen Chen
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Milford Hanna
- Department of Food Science and Technology, University of Nebraska-Lincoln, 1901 North 21st Street, Lincoln, NE 68588-6205, USA
| | - Yawen Lin
- College of Food Science and Engineering, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Long Yuan
- Big Green (USA) Inc. and Bgreen Food Company, P.O. Box 8112, Rowland Heights, CA 91748, USA
| | - Jun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Huaide Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
22
|
Niu H, Yuan L, Zhou H, Yun Y, Li J, Tian J, Zhong K, Zhou L. Comparison of the Effects of High Pressure Processing, Pasteurization and High Temperature Short Time on the Physicochemical Attributes, Nutritional Quality, Aroma Profile and Sensory Characteristics of Passion Fruit Purée. Foods 2022; 11:foods11050632. [PMID: 35267265 PMCID: PMC8909329 DOI: 10.3390/foods11050632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 12/01/2022] Open
Abstract
The study investigated the effects of high-pressure processing (HPP) (600 MPa/5 min), pasteurization (PT) (85 °C/30 s), and high-temperature short time (HTST) (110 °C/8.6 s) on physicochemical parameters (sugar, acid, pH, TSS), sensory-related attributes (color, aroma compounds), antioxidants (phenolics, vitamin C, carotenoids, antioxidant capacity), and sensory attributes of yellow passion fruit purée (PFP). Compared to the PT and HTST, HPP obtained the PFP with better color, sugar, and organic acid profiles. Although PT was equally effective preservation of antioxidants and antioxidant capacity of PFP compared to HPP, high temperature inevitable resulted in the greater degradation of the aroma profile. The amounts of esters, alcohols, and hydrocarbon in PFP were significantly increased by 11.3%, 21.3%, and 30.0% after HPP, respectively. All samples were evaluated by a panel comprising 30 panelists according to standard QDA (quantitative descriptive analysis) procedure, and the result showed that HPP-treated PFP was rated the highest overall intensity score with 7.06 for its sensory attributes, followed by control (6.96), HTST (6.17), and PT (6.16). Thus, HPP is a suitable alternative technology for achieving the good sensory quality of PFP without compromising their nutritional properties.
Collapse
Affiliation(s)
- Huihui Niu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.N.); (L.Y.); (H.Z.); (Y.Y.); (J.L.); (J.T.)
| | - Lei Yuan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.N.); (L.Y.); (H.Z.); (Y.Y.); (J.L.); (J.T.)
| | - Hengle Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.N.); (L.Y.); (H.Z.); (Y.Y.); (J.L.); (J.T.)
| | - Yurou Yun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.N.); (L.Y.); (H.Z.); (Y.Y.); (J.L.); (J.T.)
| | - Jian Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.N.); (L.Y.); (H.Z.); (Y.Y.); (J.L.); (J.T.)
| | - Jun Tian
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.N.); (L.Y.); (H.Z.); (Y.Y.); (J.L.); (J.T.)
| | - Kui Zhong
- China National Institute of Standardization, Beijing 100191, China;
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.N.); (L.Y.); (H.Z.); (Y.Y.); (J.L.); (J.T.)
- Correspondence: ; Tel.: +86-150-1140-6984
| |
Collapse
|
23
|
Effects of High Hydrostatic Pressure Combined with Vacuum-Freeze Drying on the Aroma-Active Compounds in Blended Pumpkin, Mango, and Jujube Juice. Foods 2021; 10:foods10123151. [PMID: 34945702 PMCID: PMC8702150 DOI: 10.3390/foods10123151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
A combination process of completely non-thermal processing methods involving high hydrostatic pressure (HHP) and vacuum-freeze drying (VFD) for producing a new snack from fruit and vegetable blends was developed, and the effect of the process on flavor quality was investigated. The HHP-VFD treatment did not significantly reduce volatile compound contents compared to single HHP or VFD. Gas chromatography-olfactometry showed that HHP-VFD raised the contents of floral-like volatile compounds (e.g., β-ionone) compared to the untreated sample. Sensory evaluation analysis confirmed that the overall liking was unchanged after the HHP-VFD treatment. The HHP-VFD combined treatment is effective in maintaining the flavor and extending shelf life, and is convenient for the portability and transportation of ready-to-drink juice.
Collapse
|
24
|
Liu H, Xu Y, Wu J, Wen J, Yu Y, An K, Zou B. GC-IMS and olfactometry analysis on the tea aroma of Yingde black teas harvested in different seasons. Food Res Int 2021; 150:110784. [PMID: 34865799 DOI: 10.1016/j.foodres.2021.110784] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 01/24/2023]
Abstract
This study aims to investigate the influence of different harvesting seasons on the aroma of black tea and the trend in the tea aroma variation. A total of 68 volatile substances was identified by gas chromatography coupled with ion-mobility spectrometry (GC-IMS), and 20 characteristic aroma-active compounds were quantitatively analyzed by gas chromatography-olfactometry coupled with aroma extract dilution analysis (GC-O AEDA) and odor activity value (OAV) analysis. These aroma-active compounds are mainly linalool, β-damascenone, and benzeneacetaldehyde. Both methods confirmed that the aroma of tea changes with the harvesting seasons, showing a downward trend followed by an upward trend. Besides, black teas harvested in different seasons have their characteristic volatile compounds and metabolism precursors. The degradation of glycosides, carotenes, and amino acids are the most important degradation pathways for the formation of tea aroma. The PLSR results of GC-O-AEDA, OAV, and DSA data agree with each other, showing that five aroma attributes of the autumn tea have strong correlations. The autumn tea has the richest aroma, followed by the spring tea and the summer tea.
Collapse
Affiliation(s)
- Haocheng Liu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Yujuan Xu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Jijun Wu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Jing Wen
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China.
| | - Yuanshan Yu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Kejing An
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Bo Zou
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| |
Collapse
|
25
|
Zhao R, Fu W, Chen Y, Li B, Liu S, Li Y. Structural modification of whey protein isolate by cinnamaldehyde and stabilization effect on β-carotene-loaded emulsions and emulsion gels. Food Chem 2021; 366:130602. [PMID: 34314934 DOI: 10.1016/j.foodchem.2021.130602] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 11/27/2022]
Abstract
The effect of cinnamaldehyde (CA) on the structure and properties of whey protein isolate (WPI) was investigated. The resultant WPI/CA complex was used as stabilizer to form emulsions and emulsion gels, which were used for the delivery and protection of β-carotene. The particle size and hydrophobicity of WPI solution increased and then decreased with the addition of CA. Circular dichroism showed that CA mainly changed the secondary structure of WPI, with increasing β-fold content from 47.2% to 72.9%. The fluorescence spectra showed that both tryptophan and tyrosine in WPI were involved in the interaction with CA. WPI/CA complex as the stabilizer could form the stable emulsions and emulsion gels, which showed better protection effect on β-carotene, and helped enhance its bioaccessibility. The knowledge provides insights into the development of new multifunctional food ingredients and the enhancement of protein modification in food system.
Collapse
Affiliation(s)
- Runan Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weiting Fu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yijie Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, China; Functional Food Engineering & Technology Research Center of Hubei Province, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, China; Functional Food Engineering & Technology Research Center of Hubei Province, China
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, China; Functional Food Engineering & Technology Research Center of Hubei Province, China; School of Materials and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, China; Functional Food Engineering & Technology Research Center of Hubei Province, China.
| |
Collapse
|
26
|
Aly AA, Ali IM, Khalil M, Hameed AM, Alrefaei AF, Alessa H, Alfi AA, Hassan M, Abo El-Naga M, Hegazy AA, Rabie M, Ammar M. Chemical, microbial and biological studies on fresh mango juice in presence of nanoparticles of zirconium molybdate embedded chitosan and alginate. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
27
|
Concentrate Apple Juice Industry: Aroma and Pomace Valuation as Food Ingredients. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Apple concentrate juice industry generates a flavored coproduct (apple aroma) recovered in the evaporation process, which is poorly valuated due to the lack of chemical characterization and standardization. In this study, industry apple aroma was characterized, allowing for the identification of 37 compounds, the majority esters (20), alcohols (7), and aldehydes (4). The storage temperature did not affect its volatile composition. Five key compounds were selected and monitored for 10 months of storage, and also compared with other three productions of another season allowing for observation of the same Aroma Index. Apple pomace was also used to produce a hydrodistillate. Contrary to the apple aroma, apple pomace hydrodistillate was unpleasant, reflected in a different volatile composition. Although no additional aroma fraction could be obtained from this wet byproduct, when dried, apple pomace presented 15 volatile compounds with toasted, caramel, sweet, and green notes. The infusions prepared with the dried apple pomace exhibited 25 volatile compounds with a very pleasant (fruity, apple-like, citrus, and spicy notes) and intense aroma. The addition of sugar changed the volatile profile, providing a less intense flavor, with almond, caramel, and sweet notes. These results show that apple aroma and pomace are high-quality flavoring agents with high potential of valuation as food ingredients.
Collapse
|
28
|
Xia Q, Zheng Y, Liu Z, Cao J, Chen X, Liu L, Yu H, Barba FJ, Pan D. Nonthermally driven volatilome evolution of food matrices: The case of high pressure processing. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|