1
|
Lv X, Xia Z, Yao X, Shan Y, Wang N, Zeng Q, Liu X, Huang X, Fu X, Jin Y, Ma M. Modification Effects of Microorganisms and Enzymes on Egg Components: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25462-25480. [PMID: 39526490 DOI: 10.1021/acs.jafc.4c08536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In eggs, there are several components: eggshell (ES), eggshell membrane (ESM), egg white (EW), and egg yolk (EY). Many modification methods exist, such as thermal treatment, high pressure, freeze-thaw cycles, ultrasonic treatment, ozonation, phosphorylation, and acylation, all aimed at improving the functional properties of EW and EY. Additionally, microorganism and enzyme modifications have proven effective in enhancing the functional properties of EW and EY. ES and ESM are unique components of eggs. The eggshell is rich in calcium carbonate, while the eggshell membrane is rich in protein. The effective utilization of ES and ESM can help promote economic income in the poultry industry and benefit the environment. Research on the modification of ES and ESM has shown that microorganisms and enzymes have the potential to improve their functional properties. After modification, egg components can be utilized in the production of egg-based and other food products for improved performance. Furthermore, enzyme modification of egg components can produce bioactive peptides, which have the potential to treat specific diseases and may even be used in the biomedical field. This review primarily focuses on the effects of microorganisms and enzymes on the modification of egg components and summarizes the roles of microbial and enzymatic modifications in this context.
Collapse
Affiliation(s)
- Xiaohui Lv
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zhijun Xia
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xuan Yao
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yumeng Shan
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Nannan Wang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Qi Zeng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaoli Liu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xi Huang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xing Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Meihu Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
2
|
Chang C, Shen X, Wang Y, Wei Z, Su Y, Gu L, Yang Y, Li J. Lactic acid bacteria fermentation-induced egg white protein structure deformation influencing gelling properties, with membrane concentration as a strategy to improve texture. J Food Sci 2024; 89:7083-7094. [PMID: 39349978 DOI: 10.1111/1750-3841.17327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/06/2024] [Accepted: 08/05/2024] [Indexed: 11/13/2024]
Abstract
Egg white (EW), a rich protein source, holds promise for creating a high-protein, low-fat gel product. However, browning issues during heating and sterilization have hindered its wider application. In this study, lactic acid bacteria fermentation was employed to eliminate reducing sugar in EW, and its impact on the molecular structure and gelling properties was explored. The results revealed that fermentation would trigger protein structural unfolding and aggregation, evident from higher fluorescence intensity and enlarged protein particle diameters, resulting in the decrease in gelling hardness. In comparison, Streptococcus thermophilus-fermented EW (under 6 × 108 CFU/mL incubation rate, fermented for 6 h) exhibited the highest gel hardness, ascribed to the relatively weaker structure transformation, with high water holding capacity and stronger intermolecular hydrophobic interaction. To further enhance the gelling properties of fermented EW, membrane concentration treatment was applied, exhibiting superior characteristics in appearance, aroma, and taste. In summary, lactic acid bacteria fermentation and concentration are feasible solutions to improve appearance and texture of EW gels simultaneously. The research findings offer eco-friendly and practical strategies for enhancing the quality of EW gels, providing valuable theoretical insights for the development of innovative, texture-rich, and healthy nutritional foods.
Collapse
Affiliation(s)
- Cuihua Chang
- State Key Laboratory of Food Science and Technology and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xinyang Shen
- State Key Laboratory of Food Science and Technology and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Yi Wang
- Xinjiang Xipa Health Food Co., Ltd., Border Economic Cooperation Zone, Bozhou, Xinjiang, P. R. China
| | - Zhen Wei
- Xinjiang Xipa Health Food Co., Ltd., Border Economic Cooperation Zone, Bozhou, Xinjiang, P. R. China
| | - Yujie Su
- State Key Laboratory of Food Science and Technology and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Luping Gu
- State Key Laboratory of Food Science and Technology and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Junhua Li
- State Key Laboratory of Food Science and Technology and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| |
Collapse
|
3
|
Tian Y, Lv X, Oh DH, Kassem JM, Salama M, Fu X. Emulsifying properties of egg proteins: Influencing factors, modification techniques, and applications. Compr Rev Food Sci Food Saf 2024; 23:e70004. [PMID: 39267186 DOI: 10.1111/1541-4337.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 09/14/2024]
Abstract
As an essential food ingredient with good nutritional and functional properties and health benefits, eggs are widely utilized in food formulations. In particular, egg proteins have good emulsification properties and can be commonly used in various food products, such as mayonnaise and baked goods. Egg protein particles can act as stabilizers for Pickering emulsions because they can effectively adsorb at the oil-water interface, reduce interfacial tension, and form a stable physical barrier. Due to their emulsifying properties, biocompatibility, controlled release capabilities, and ability to protect bioactive substances, egg proteins have become ideal carriers for encapsulating and delivering functional substances. The focus of this review is to summarize current advances in using egg proteins as emulsifiers. The effects of influencing factors (temperature, pH, and ionic strength) and various modification methods (physical, chemical, and biological modification) on the emulsifying properties of egg proteins are discussed. In addition, the application of egg proteins as emulsifiers in food products is presented. Through in-depth research on the emulsifying properties of egg proteins, the optimization of their applications in food, biomedical, and other fields can be achieved.
Collapse
Affiliation(s)
- Yujuan Tian
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Xiaohui Lv
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | | | - Mohamed Salama
- Dairy Department, National Research Centre, Dokki, Giza, Egypt
| | - Xing Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
4
|
Li L, Zhang Q, Yuan X, Yang H, Qin S, Hong L, Pu L, Li L, Zhang P, Zhang J. Study of the molecular structure of proteins in fermented Maize-Soybean meal-based rations based on FTIR spectroscopy. Food Chem 2024; 441:138310. [PMID: 38218143 DOI: 10.1016/j.foodchem.2023.138310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/03/2023] [Accepted: 12/26/2023] [Indexed: 01/15/2024]
Abstract
This research investigates the dynamic alterations that occur in protein molecular structure during the fermentation process of feed. Fourier transform infrared spectroscopy (FTIR), coupled with deconvolution, second derivative and curve-fitting methodologies, was employed to comparatively analyse the protein molecular structures in fermented feed. At the 48-h fermentation mark, the α-helix and β-sheet contents reached their peaks, while the random coil and β-turn contents were at their lowest. Simultaneously, the β-sheet/α-helix ratio was minimized. FTIR spectroscopy emerged as a comprehensive tool, revealing the nuanced changes in molecular structure throughout the fermentation process of corn-soybean meal feed. When integrated with spectral quantitative analysis, it provides a novel perspective for evaluating the nutritional value of fermented feed.
Collapse
Affiliation(s)
- Long Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China; Hotan Vocational and Technical College,Xinjiang, Hotan 848000, China
| | - Qingnan Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xuefeng Yuan
- Tianjin Key Laboratory of Green Ecological Feed, Tianjin, Bao Di 301800, China
| | - Hua Yang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Shunyi Qin
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Liang Hong
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Lei Pu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Liuan Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Pengyue Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Jianbin Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China.
| |
Collapse
|
5
|
Jia J, Deng X, Jia X, Guo C, Liu X, Liu Y, Duan X. Comparison and evaluation of L. reuteri and L. rhamnosus-fermented egg yolk on the physicochemical and flavor properties of cookies. Food Chem X 2024; 21:101096. [PMID: 38229672 PMCID: PMC10790001 DOI: 10.1016/j.fochx.2023.101096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
The study aims to explore an effective approach to improve the sensory quality and consumer satisfaction of cookies in the food industry. L. reuteri and L. rhamnosus were chosen to ferment egg yolk and their effects on dough properties and physicochemical properties, flavor, texture, color, and sensory acceptability of cookies were studied. Results show that the utilization of fermented egg yolk significantly decreased baking loss and increased spread factor of cookies. GC-MS analysis indicates different Lactobacillus species enhanced cookie flavor through unique mechanisms. Texture analysis shows cookies prepared with L. rhamnosus-fermented egg yolk had significantly lower hardness (1807.12 g) than control cookies (2028.34 g). Sensory evaluation reveals the L. reuteri-fermented egg yolk significantly improved the overall acceptability of cookies by enhancing appearance, flavor, and mouthfeel scores. These findings have practical implications for food manufacturers seeking to enhance their product's quality and appeal, thereby gaining a competitive edge in the market.
Collapse
Affiliation(s)
- Jie Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Xiaofan Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Xin Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Chunfeng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yuanjing Liu
- Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, PR China
| | - Xiang Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| |
Collapse
|
6
|
Cheng Y, Su C, Wei S, Zhao J, Wei F, Liu X, Wang H, Wu X, Feng C, Meng J, Cao J, Yun S, Xu L, Geng X, Chang M. The Effects of Naematelia aurantialba on the Pasting and Rheological Properties of Starch and the Research and Development of Soft Candy. Foods 2024; 13:247. [PMID: 38254548 PMCID: PMC10814479 DOI: 10.3390/foods13020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
To study the effects of Naematelia aurantialba (NA) on the rheological and gelatinization properties of starch, the processing methods of NA were diversified. In this study, the gelatinization and rheological properties of corn starch (CS) and edible cassava starch (ECS) were investigated by adding NA with different mass fractions. Starch soft candy was prepared using NA, CS, and ECS as the main raw materials. Rheological studies showed that both CS-NA and ECS-NA exhibited elastic modulus (G') > viscosity modulus (G″), implying elastic behavior. G' was such that CS+1%NA > CS+5%NA > CS+3%NA > CS > CS+2%NA > CS+4%NA > ECS+4%NA > ECS+3%NA > ECS+5%NA > ECS+2%NA > ECS+1%NA > ECS. The gelatinization implied showed that after adding NA, the pasting temperature of CS-NA and ECS-NA increased by 1.33 °C and decreased by 2.46 °C, while their breakdown values decreased by 442.35 cP and 866.98 cP, respectively. Through a single-factor test and orthogonal test, the best formula of starch soft candy was as follows: 0.4 f of NA, 10 g of white granulated sugar, a mass ratio of ECS to CS of 20:1 (g:g), 0.12 g of citric acid, 1 g of red date power, and 16 mL of water. The soft candy was stable when stored for two days. This study offers a new direction for the research and development of NA starch foods.
Collapse
Affiliation(s)
- Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
- Shanxi Edible Fungi Engineering Technology Research Center, Jinzhong 030801, China
| | - Cuixin Su
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
| | - Shijie Wei
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
| | - Jing Zhao
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
| | - Fen Wei
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
| | - Xiaolong Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
| | - Hanbing Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
| | - Xiaoyue Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
- Shanxi Edible Fungi Engineering Technology Research Center, Jinzhong 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
- Shanxi Edible Fungi Engineering Technology Research Center, Jinzhong 030801, China
| | - Jinling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Shaojun Yun
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Mingchang Chang
- Shanxi Edible Fungi Engineering Technology Research Center, Jinzhong 030801, China
| |
Collapse
|
7
|
Li C, Li W, Zhang X, Wang G, Liu X, Wang Y, Sun L. The changed structures of Cyperus esculentus protein decide its modified physicochemical characters: Effects of ball-milling, high pressure homogenization and cold plasma treatments on structural and functional properties of the protein. Food Chem 2024; 430:137042. [PMID: 37527578 DOI: 10.1016/j.foodchem.2023.137042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Three physical treatments, including ball-milling (BM), high pressure homogenization (HPH) and cold plasma (CP) were applied to modify structural and functional properties of Cyperus esculentus protein (CEP). The results showed that three treatments significantly altered morphology and reduced particle size of CEP. Both primary and secondary structures of CEP were hardly changed, while disulfide bonds and hydrophobic forces between amino acid residues of CEP were interrupted by three treatments, releasing free sulfhydryls and hydrophobic groups. With the free moiety accumulation, the reformed interactions between them enhanced the crystallinity and thermostability of CEP. Besides, solubility and emulsifying properties of CEP were significantly improved within a certain range of treatment duration and intensity, and three treatments decreased water but increased oil holding capacity of CEP. Conclusively, the modified physicochemical properties of CEP were decided by the changed molecular structures of CEP, and different treatments may satisfy different processing requirements for the protein.
Collapse
Affiliation(s)
- Caixia Li
- College of Food Science and Engineering, Northwest A & F University, China
| | - Wenyue Li
- College of Food Science and Engineering, Northwest A & F University, China
| | - Xia Zhang
- College of Forestry, Northwest A & F University, China; Shaanxi Jiangwo Runfeng Agricultural Development Co., Ltd., China
| | - Guidan Wang
- College of Food Science and Engineering, Northwest A & F University, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A & F University, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A & F University, China.
| | - Lijun Sun
- College of Food Science and Engineering, Northwest A & F University, China.
| |
Collapse
|
8
|
Gundogan BN, Saricoban C, Unal K. The effect of different drying methods on some physico-chemical, functional and protein structure properties of liquid egg white fermented by Lactobacillus rhamnosus GG. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2433-2443. [PMID: 37424576 PMCID: PMC10326199 DOI: 10.1007/s13197-023-05766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/03/2023] [Accepted: 05/09/2023] [Indexed: 07/11/2023]
Abstract
This research aims to understand the effect of Lactobacillus rhamnosus GG fermentation on egg white powder. In this study, some physico-chemical, functional, textural, and protein structure properties of microwave (MD) and oven dried (OD) egg white powders were determined. The fermentation process decreased the pH value (5.92, 5.82) and foaming capacity (20.83%, 27.20%) of MD and OD groups. The highest yield (11.61%) and emulsion capacity values (78.17%) were observed in fermented oven dried group. While MD group (703.22 g) had the lowest hardness value, OD group (3301.35 g) exhibited highest hardness value. The denaturation peaks of the samples were ranged between 61.00 °C and 80.43 °C. Scanning electron microscopy images of all sample groups showed broken glass structure. This study suggests that fermentation (L. rhamnosus GG) can effectively improve the quality properties of egg white powder and thus fermented egg white powders could be used in the food industry. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05766-4.
Collapse
Affiliation(s)
- Busra Nur Gundogan
- Department of Food Engineering, Agriculture Faculty, Selçuk University, Konya, 42075 Turkey
| | - Cemalettin Saricoban
- Department of Food Engineering, Agriculture Faculty, Selçuk University, Konya, 42075 Turkey
| | - Kubra Unal
- Department of Food Engineering, Agriculture Faculty, Selçuk University, Konya, 42075 Turkey
| |
Collapse
|
9
|
Sokołowicz Z, Kačániová M, Dykiel M, Augustyńska-Prejsnar A, Topczewska J. Influence of Storage Packaging Type on the Microbiological and Sensory Quality of Free-Range Table Eggs. Animals (Basel) 2023; 13:1899. [PMID: 37370410 DOI: 10.3390/ani13121899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The studies aimed to assess the impact of packaging, storage time, and temperature on the microbiological quality as well as on the sensory quality and functional properties of chicken eggs. The study material consisted of eggs from laying hens kept under free-range conditions. The eggs packed in cardboard and plastic cartons were stored at 5 °C and 22 °C, respectively. The eggs were examined on the day of laying and on days 14 and 28 of storage. The microbiological quality of the shell and contents of the eggs and the foaming properties of the egg white stored in cardboard and plastic packaging as well as the sensory characteristics of the eggs stored in both types of packaging after hard-boiling were examined on all evaluation dates. The type of packaging in which the eggs were stored was shown to influence the microbiological quality of the egg contents. Eggs stored in plastic packaging, on days 14 and 28 of storage, contained more bacteria in egg contents than eggs stored in cardboard packaging (p < 0.05). The type of packaging in which the eggs were stored did not have an effect on the foaming properties of the egg white (p > 0.05) or on the sensory characteristics of the eggs after hard-boiling. Irrespective of the type of packaging, the foaming properties of the egg white and the sensory characteristics of the eggs after hard-boiling deteriorated with storage time. The effect of temperature on egg quality was found. Regardless of the type of packaging, eggs stored at 5 °C after hard-boiling had better yolk colour, smell, and texture than eggs stored at 22 °C (p < 0.05).
Collapse
Affiliation(s)
- Zofia Sokołowicz
- Department of Animal Production and Poultry Products Evaluation, University of Rzeszów, Zelwerowicza Street 4, 35-601 Rzeszów, Poland
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, 949 76 Nitra, Slovakia
| | - Magdalena Dykiel
- Department of Food Production and Safety, State University of Applied Sciences in Krosno, Rynek 1, 38-400 Krosno, Poland
| | - Anna Augustyńska-Prejsnar
- Department of Animal Production and Poultry Products Evaluation, University of Rzeszów, Zelwerowicza Street 4, 35-601 Rzeszów, Poland
| | - Jadwiga Topczewska
- Department of Animal Production and Poultry Products Evaluation, University of Rzeszów, Zelwerowicza Street 4, 35-601 Rzeszów, Poland
| |
Collapse
|
10
|
Application of Solid-State Fermentation for the Improving of Extruded Corn Dry-Milling By-Products and Their Protein Functional Properties. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111909. [PMID: 36431044 PMCID: PMC9692932 DOI: 10.3390/life12111909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
In this study, the effect of solid-state fermentation (SSF) with Lactobacillus sakei MI401 and Pediococcus acidilactici PA-2 strains on functional properties of extruded (130 °C; 25 rpm) corn-milling by-products (CMB) and their albumin, globulin, and prolamin fractions was evaluated in order to produce stabilized and functionalized food/feed stock. Extrusion resulted in a considerable reduction of microbial contamination of CMB by five log cycles, increased damaged starch, water-absorption capacity, and lowered protein and fat contents by 12.4% and 37%, respectively. The application of SSF for the extruded CMB have been shown to improve the water absorption, foaming, and emulsifying capacity of albumins and globulins and also increased the digestibility and free radical scavenging activity of prolamins. The essential amino acid content (EAA) in CMB and antioxidant activity of prolamins was lowered after extrusion but significantly increased after SSF. The combination of the abovementioned treatments can be confirmed as a prospective functionalization of CMB, capable of potentially enhancing its safety and improving nutritional, biochemical, and technological properties of proteins.
Collapse
|
11
|
Bai J, Dong M, Li J, Tian L, Xiong D, Jia J, Yang L, Liu X, Duan X. Effects of egg white on physicochemical and functional characteristics of steamed cold noodles (a wheat starch gel food). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Jie Y, Chen F. Progress in the Application of Food-Grade Emulsions. Foods 2022; 11:2883. [PMID: 36141011 PMCID: PMC9498284 DOI: 10.3390/foods11182883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The detailed investigation of food-grade emulsions, which possess considerable structural and functional advantages, remains ongoing to enhance our understanding of these dispersion systems and to expand their application scope. This work reviews the applications of food-grade emulsions on the dispersed phase, interface structure, and macroscopic scales; further, it discusses the corresponding factors of influence, the selection and design of food dispersion systems, and the expansion of their application scope. Specifically, applications on the dispersed-phase scale mainly include delivery by soft matter carriers and auxiliary extraction/separation, while applications on the scale of the interface structure involve biphasic systems for enzymatic catalysis and systems that can influence substance digestion/absorption, washing, and disinfection. Future research on these scales should therefore focus on surface-active substances, real interface structure compositions, and the design of interface layers with antioxidant properties. By contrast, applications on the macroscopic scale mainly include the design of soft materials for structured food, in addition to various material applications and other emerging uses. In this case, future research should focus on the interactions between emulsion systems and food ingredients, the effects of food process engineering, safety, nutrition, and metabolism. Considering the ongoing research in this field, we believe that this review will be useful for researchers aiming to explore the applications of food-grade emulsions.
Collapse
Affiliation(s)
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
13
|
Zhao L, Shi F, Xie Q, Zhang Y, Evivie SE, Li X, Liang S, Chen Q, Xin B, Li B, Huo G. Co-fermented cow milk protein by Lactobacillus helveticus KLDS 1.8701 and Lactobacillus plantarum KLDS 1.0386 attenuates its allergic immune response in Balb/c mice. J Dairy Sci 2022; 105:7190-7202. [PMID: 35879161 DOI: 10.3168/jds.2022-21844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/02/2022] [Indexed: 11/19/2022]
Abstract
Milk protein is one of the major food allergens. As an effective processing method, fermentation may reduce the potential allergenicity of allergens. This study aimed to evaluate the therapeutic potential of co-fermented milk protein using Lactobacillus helveticus KLDS 1.8701 and Lactobacillus plantarum KLDS 1.0386 in cow milk protein allergy (CMPA) management. This study determined the secondary and tertiary structures of the fermented versus unfermented proteins by Fourier-transform infrared spectroscopy and surface hydrophobicity to evaluate its conformational changes. Our results showed that different fermentation methods have significantly altered the conformational structures of the cow milk protein, especially the tertiary structure. Further, the potential allergenicity of the fermented cow milk protein was assessed in Balb/c mice, and mice treated with the unfermented milk and phosphate-buffered saline were used as a control. We observed a significant reduction in allergenicity via the results of the spleen index, serum total IgE, specific IgE, histamine, and mouse mast cell protease 1 in the mice treated with the co-fermented milk protein. In addition, we analyzed the cytokines and transcription factors expression levels of spleen and jejunum and confirmed that co-fermentation could effectively reduce the sensitization of cow milk protein by regulating the imbalance of T helper (Th1/Th2 and Treg/Th17). This study suggested that changes of conformational structure could reduce the potential sensitization of cow milk protein; thus, fermentation may be a promising strategy for developing a method of hypoallergenic dairy products.
Collapse
Affiliation(s)
- Lina Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Fengyi Shi
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Qinggang Xie
- Heilongjiang Feihe Dairy Co. Ltd., Qiqihaer 164800, China
| | - Yifan Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Smith Etareri Evivie
- Department of Food Science and Human Nutrition, University of Benin, Benin City 300001, Nigeria; Department of Animal Science, University of Benin, Benin City 300001, Nigeria
| | - Xuetong Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Shengnan Liang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Qingxue Chen
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Bowen Xin
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China.
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| |
Collapse
|
14
|
Jia J, Xiong D, Bai J, Yuan Y, Song Q, Lan T, Tian L, Guo C, Liu X, Wang C, Duan X. Investigation on flavor and physicochemical properties of angel food cakes prepared by lactic acid fermented egg white. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Kataria A, Sharma S, Khatkar SK. Antioxidative, structural and thermal characterisation of simulated fermented matrix of quinoa, chia and teff with caseinate. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ankita Kataria
- Department of Food Science and Technology Punjab Agricultural University (PAU) Ludhiana 141004 Punjab India
| | - Savita Sharma
- Department of Food Science and Technology Punjab Agricultural University (PAU) Ludhiana 141004 Punjab India
| | - Sunil Kumar Khatkar
- Byproducts Utilization Lab, Department of Dairy Technology College of Dairy Science and Technology, Guru Angad Dev Veterinary & Animal Sciences University (GADVASU) Ludhiana 141004 Punjab India
| |
Collapse
|
16
|
Caner C, Coşkun BM, Yüceer M. Chitosan coatings and chitosan nanocomposite to enhancing storage stability of fresh egg during storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cengiz Caner
- Department of Food Engineering Canakkale Onsekiz Mart University 017020‐Canakkale Turkey
| | - Bensu Medine Coşkun
- Department of Food Engineering Canakkale Onsekiz Mart University 017020‐Canakkale Turkey
| | - Muhammed Yüceer
- Department of Food Processing Canakkale Onsekiz Mart University 017020‐Canakkale Turkey
| |
Collapse
|
17
|
Mechanism study on enhanced emulsifying properties of phosvitin and calcium-binding capacity of its phosphopeptides by lactic acid bacteria fermentation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Li J, Zhai J, Gu L, Su Y, Gong L, Yang Y, Chang C. Hen egg yolk in food industry - A review of emerging functional modifications and applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|