1
|
Xu H, Xiao C, Zhao F, Suo Z, Liu Y, Wei M, Jin B. A novel amplification strategy based on target-induced multicomponent nuclease-mediated catalytic hairpin assembly for fluorescent DNA sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 335:125979. [PMID: 40054144 DOI: 10.1016/j.saa.2025.125979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/30/2025] [Accepted: 02/28/2025] [Indexed: 03/24/2025]
Abstract
Ochratoxin A (OTA) is a highly hazardous mycotoxin widely found in food ingredients and processed products. In response to the demand for food safety, there is an urgent need to establish a highly sensitive, reliable, and cost-effective method for the detection of OTA. In this study, a simple, enzyme-free, sensitive cascade amplification fluorescent strategy was developed to detect OTA based on a magnetic separation system-assisted, multicomponent nuclease (MNAzyme) and its induced catalytic hairpin assembly (CHA). The formation of a stable active MNAzyme was induced by the presence of the target, and the MNAzyme specifically cleaved multiple hairpin H1 to produce sDNA fragments. The sDNA could initiate the mismatched CHA cycle, leading to the production of a large number of H2-H3 complexes, with carboxyfluorescein (FAM) moving away from the quench group (BHQ1), and the fluorescent signal being significantly amplified. The constructed fluorescent aptasensor has a good linear range (0.5-100 ng/mL) and detection limit (0.45 ng/mL). The developed sensor was successfully applied to detect OTA in corn flour and black tea samples.
Collapse
Affiliation(s)
- Hongyan Xu
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou 450001, China
| | - Chengui Xiao
- Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen Academy of Inspection and Quarantine, Shenzhen 518045, China
| | - Fengjuan Zhao
- Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen Academy of Inspection and Quarantine, Shenzhen 518045, China
| | - Zhiguang Suo
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou 450001, China
| | - Yong Liu
- School of Energy Science and Technology, Henan University, Kaifeng 475004, China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou 450001, China.
| | - Baohui Jin
- Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen Academy of Inspection and Quarantine, Shenzhen 518045, China.
| |
Collapse
|
2
|
Belleperche M, Liu J, Chen Y, Zhang C, Karimi K, Leslie S, McKeague M. A Generalizable Screening Platform for Developing Functional Aptasensors. Anal Chem 2025; 97:7643-7650. [PMID: 40163419 PMCID: PMC12005184 DOI: 10.1021/acs.analchem.4c04120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 04/02/2025]
Abstract
Aptamers are versatile sensing elements for the construction of biosensors. A common approach for signal generation in "aptasensors" involves the displacement of short complementary "probes" resulting from conformational changes upon aptamer-target binding. However, designing strands that rapidly and completely displace when the target binds is nontrivial. Typically, probes are discovered through a lengthy process of screening several potential sequences. Here, we explored properties governing probe displacement efficiency using a well-characterized aptamer for the agricultural contaminant ochratoxin A (OTA). Surprisingly, the length, probe affinity, and melting temperature did not correlate with probe displacement efficiency. We therefore developed a novel surface plasmon resonance (SPR) assay to rapidly measure target-induced displacement of probes from aptamers. Fitted displacement results from the SPR assay were correlated with fast proportional fluorescence recovery from quencher-labeled probe displacement. This new method allows for the rapid distinction of efficient probes, resulting in sensitive biosensing of OTA. Finally, we demonstrated our new method is adaptable to diverse aptamers, offering a generally applicable method to improve probe design and accelerate aptasensor development.
Collapse
Affiliation(s)
- Micaela Belleperche
- Department
of Chemistry, Faculty of Science, McGill
University, Montreal, QC H3A 0B8, Canada
| | - Jiawen Liu
- Department
of Chemistry, Faculty of Science, McGill
University, Montreal, QC H3A 0B8, Canada
| | - Yuhao Chen
- Pharmacology
and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G
1Y6, Canada
| | - Chuyang Zhang
- Department
of Chemistry, Faculty of Science, McGill
University, Montreal, QC H3A 0B8, Canada
| | - Kimiya Karimi
- Pharmacology
and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G
1Y6, Canada
| | - Sabrina Leslie
- Department
of Physics, Faculty of Science, McGill University, Montreal, QC H3A 0B8, Canada
- Michael
Smith Laboratory and Department of Physics and Astronomy, Faculty
of Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Maureen McKeague
- Department
of Chemistry, Faculty of Science, McGill
University, Montreal, QC H3A 0B8, Canada
- Pharmacology
and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G
1Y6, Canada
| |
Collapse
|
3
|
Yang Y, Chen R, Guo Y, Zhang J, Ren S, Zhou H, Gao Z. A two-color fluorescence sensing strategy based on functionalized tetrahedral DNAzyme nanotweezers for ochratoxin A detection. Talanta 2025; 285:127348. [PMID: 39675070 DOI: 10.1016/j.talanta.2024.127348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
A two-color fluorescent sensing strategy based on a functionalized tetrahedral DNAzyme nanotweezer (FTDN) was developed to detect ochratoxin A (OTA) utilizing the multifunctional properties of DNA nanotechnology. The FTDN enables rapid OTA detection directly through a Cy5 fluorescent group, modified to respond to the target signal. Additionally, FTDN exhibits DNAzyme cutting activity in the presence of Mg2⁺ ions, enabling it to traverse DNA nanoflower-functionalized magnetic beads. This process results in the continuous cleavage of DNA nanoflowers labeled with numerous FAM fluorescent groups, thereby amplifying the detection signal and enhancing OTA sensitivity. The linear ranges for the Cy5 and FAM signals in response to OTA were 5-1000 ng/mL and 0.05-100 ng/mL, respectively, with corresponding limits of detection (LOD) of 1.59 ng/mL and 0.03 ng/mL. This study demonstrates that dual-color fluorescence via Cy5 and FAM can effectively verify OTA detection in food, significantly reducing false-positive and false-negative rates. The proposed platform offers sensitive and accurate detection of mycotoxins in food and can be adapted for monitoring other trace contaminants by simply altering the aptamer.
Collapse
Affiliation(s)
- Yingao Yang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China
| | - Ruipeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China
| | - Yifen Guo
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China
| | - Jiaxin Zhang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China.
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China.
| |
Collapse
|
4
|
Sun J, Zhang M, Gao Q, Shao B. Screening biotoxin aptamer and their application of optical aptasensor in food stuff: a review. Front Chem 2024; 12:1425774. [PMID: 39114265 PMCID: PMC11303198 DOI: 10.3389/fchem.2024.1425774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
Biotoxins are ranges of toxic substances produced by animals, plants, and microorganisms, which could contaminate foods during their production, processing, transportation, or storage, thus leading to foodborne illness, even food terrorism. Therefore, proposing simple, rapid, and effective detection methods for ensuring food free from biotoxin contamination shows a highly realistic demand. Aptamers are single-stranded oligonucleotides obtained from the systematic evolution of ligands by performing exponential enrichment (SELEX). They can specifically bind to wide ranges of targets with high affinity; thus, they have become important recognizing units in safety monitoring in food control and anti-terrorism. In this paper, we reviewed the technical points and difficulties of typical aptamer screening processes for biotoxins. For promoting the understanding of food control in the food supply chain, the latest progresses in rapid optical detection of biotoxins based on aptamers were summarized. In the end, we outlined some challenges and prospects in this field. We hope this paper could stimulate widespread interest in developing advanced sensing systems for ensuring food safety.
Collapse
Affiliation(s)
- Jiefang Sun
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Meng Zhang
- School of Public Health, Capital Medical University, Beijing, China
| | - Qianlong Gao
- School of Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Bing Shao
- Beijing Center for Disease Prevention and Control, Beijing, China
- School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Meira DI, Barbosa AI, Borges J, Reis RL, Correlo VM, Vaz F. Recent advances in nanomaterial-based optical biosensors for food safety applications: Ochratoxin-A detection, as case study. Crit Rev Food Sci Nutr 2024; 64:6318-6360. [PMID: 36688280 DOI: 10.1080/10408398.2023.2168248] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Global population growth tremendously impacts the global food industry, endangering food safety and quality. Mycotoxins, particularly Ochratoxin-A (OTA), emerge as a food chain production threat, since it is produced by fungus that contaminates different food species and products. Beyond this, OTA exhibits a possible human toxicological risk that can lead to carcinogenic and neurological diseases. A selective, sensitive, and reliable OTA biodetection approach is essential to ensure food safety. Current detection approaches rely on accurate and time-consuming laboratory techniques performed at the end of the food production process, or lateral-flow technologies that are rapid and on-site, but do not provide quantitative and precise OTA concentration measurements. Nanoengineered optical biosensors arise as an avant-garde solution, providing high sensing performance, and a fast and accurate OTA biodetection screening, which is attractive for the industrial market. This review core presents and discusses the recent advancements in optical OTA biosensing, considering engineered nanomaterials, optical transduction principle and biorecognition methodologies. Finally, the major challenges and future trends are discussed, and current patented OTA optical biosensors are emphasized for a particular promising detection method.
Collapse
Affiliation(s)
- Diana I Meira
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Guimarães, Portugal
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e wwTecnologia, Zona Industrial da Gandra, Guimarães, Portugal
| | - Ana I Barbosa
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e wwTecnologia, Zona Industrial da Gandra, Guimarães, Portugal
- ICVS/3B's-PT Government Associated Laboratory, Braga, Portugal
| | - Joel Borges
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Guimarães, Portugal
- LaPMET-Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e wwTecnologia, Zona Industrial da Gandra, Guimarães, Portugal
- ICVS/3B's-PT Government Associated Laboratory, Braga, Portugal
| | - Vitor M Correlo
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e wwTecnologia, Zona Industrial da Gandra, Guimarães, Portugal
- ICVS/3B's-PT Government Associated Laboratory, Braga, Portugal
| | - Filipe Vaz
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Guimarães, Portugal
- LaPMET-Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, Portugal
| |
Collapse
|
6
|
Wang S, Zong Z, Xu J, Yao B, Xu Z, Yao L, Chen W. Recognition-Activated Primer-Mediated Exponential Rolling Circle Amplification for Signal Probe Production and Ultrasensitive Visual Detection of Ochratoxin A with Nucleic Acid Lateral Flow Strips. Anal Chem 2023; 95:16398-16406. [PMID: 37878604 DOI: 10.1021/acs.analchem.3c03995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
We proposed a visual strategy for rapid and ultrasensitive detection of ochratoxin A (OTA) by integration of primer-mediated exponential rolling circle amplification (P-ERCA) with a designed nucleic acid lateral flow strip (LFS). The recognition component was preimmobilized in the tube by hybridization between the immobilized functionalized aptamer and complementary ssDNA. Recognition of OTA induces the release of complementary ssDNA from the tube, which will also act as the primer of the designed P-ERCA. Three nicking sites on the template P-ERCA could contribute to the production of enormous signal probes based on the simultaneous amplification-nicking model, which can be visually measured directly with the constructed nucleic acid LFS. Importantly, the nicked signal probe can also act as the trigger of the new-round RCA, achieving exponential growth of signal probes for measurement and signal enhancement. Taking advantage of the extraordinary amplification efficiency of P-ERCA and the simplicity of LFS, this P-ERCA-LFS method demonstrates ultrasensitive detection of OTA with a visual limit of detection as low as 100 fg/mL for qualitative screening and a limit of detection of 35 fg/mL for semiquantitative analysis. This designed strategy could also be utilized as a universal method for detection of other chemical analytes with the replacement of the aptamer for recognition, and the nucleic acid LFS unit could also be a useful protocol for direct ssDNA analysis.
Collapse
Affiliation(s)
- Shiyi Wang
- Engineering Research Center of Bio-process, MOE, School of Food Science & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ziwen Zong
- Engineering Research Center of Bio-process, MOE, School of Food Science & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, MOE, School of Food Science & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Bangben Yao
- Anhui Province Institute of Product Quality Supervision & Inspection, Hefei 230051, P. R. China
| | - Zhou Xu
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Li Yao
- Engineering Research Center of Bio-process, MOE, School of Food Science & Biological Engineering, Hefei University of Technology, Hefei 230009, China
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Wei Chen
- Engineering Research Center of Bio-process, MOE, School of Food Science & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
7
|
Majer-Baranyi K, Adányi N, Székács A. Current Trends in Mycotoxin Detection with Various Types of Biosensors. Toxins (Basel) 2023; 15:645. [PMID: 37999508 PMCID: PMC10675009 DOI: 10.3390/toxins15110645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
One of the most important tasks in food safety is to properly manage the investigation of mycotoxin contamination in agricultural products and foods made from them, as well as to prevent its occurrence. Monitoring requires a wide range of analytical methods, from expensive analytical procedures with high-tech instrumentation to significantly cheaper biosensor developments or even single-use assays suitable for on-site monitoring. This review provides a summary of the development directions over approximately a decade and a half, grouped according to the biologically sensitive components used. We provide an overview of the use of antibodies, molecularly imprinted polymers, and aptamers, as well as the diversity of biosensors and their applications within the food industry. We also mention the possibility of determining multiple toxins side by side, which would significantly reduce the time required for the analyses.
Collapse
Affiliation(s)
- Krisztina Majer-Baranyi
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, H-1118 Budapest, Hungary;
| | - Nóra Adányi
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, H-1118 Budapest, Hungary;
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman Ottó út 15, H-1022 Budapest, Hungary;
| |
Collapse
|
8
|
Fan Y, Li J, Amin K, Yu H, Yang H, Guo Z, Liu J. Advances in aptamers, and application of mycotoxins detection: A review. Food Res Int 2023; 170:113022. [PMID: 37316026 DOI: 10.1016/j.foodres.2023.113022] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Mycotoxin contamination in food products can easily cause serious health hazards and economic losses to human beings. How to accurately detect and effectively control mycotoxin contamination has become a global concern. Mycotoxins conventional detection techniques e.g; ELISA, HPLC, have limitations like, low sensitivity, high cost and time-consuming. Aptamer-based biosensing technology has the advantages of high sensitivity, high specificity, wide linear range, high feasibility, and non-destructiveness, which overcomes the shortcomings of conventional analysis techniques. This review summarizes the sequences of mycotoxin aptamers that have been reported so far. Based on the application of four classic POST-SELEX strategies, it also discusses the bioinformatics-assisted POST-SELEX technology in obtaining optimal aptamers. Furthermore, trends in the study of aptamer sequences and their binding mechanisms to targets is also discussed. The latest examples of aptasensor detection of mycotoxins are classified and summarized in detail. Newly developed dual-signal detection, dual-channel detection, multi-target detection and some types of single-signal detection combined with unique strategies or novel materials in recent years are focused. Finally, the challenges and prospects of aptamer sensors in the detection of mycotoxins are discussed. The development of aptamer biosensing technology provides a new approach with multiple advantages for on-site detection of mycotoxins. Although aptamer biosensing shows great development potential, still some challenges and difficulties are there in practical applications. Future research need high focus on the practical applications of aptasensors and the development of convenient and highly automated aptamers. This may lead to the transition of aptamer biosensing technology from laboratory to commercialization.
Collapse
Affiliation(s)
- Yiting Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Jiaxin Li
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004 Ourense, Spain.
| | - Khalid Amin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Huanhuan Yang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China; College of Life Science Chang Chun Normal University, Changchun 130032, China.
| | - Zhijun Guo
- College of Agriculture, Yanbian University, Yanji 133002, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| |
Collapse
|
9
|
Fan Y, Yang H, Li J, Amin K, Lyu B, Jing W, Wang S, Fu H, Yu H, Guo Z. Single-Walled Carbon Nanohorn-Based Fluorescence Energy Resonance Transfer Aptasensor Platform for the Detection of Aflatoxin B1. Foods 2023; 12:2880. [PMID: 37569149 PMCID: PMC10417297 DOI: 10.3390/foods12152880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Aflatoxin B1 (AFB1) is one of the most contaminated fungal toxins worldwide and is prone to cause serious economic losses, food insecurity, and health hazards to humans. The rapid, on-site, and economical method for AFB1 detection is need of the day. In this study, an AFB1 aptamer (AFB1-Apt) sensing platform was established for the detection of AFB1. Fluorescent moiety (FAM)-modified aptamers were used for fluorescence response and quenching, based on the adsorption quenching function of single-walled carbon nanohorns (SWCNHs). Basically, in our constructed sensing platform, the AFB1 specifically binds to AFB1-Apt, making a stable complex. This complex with fluorophore resists to be adsorbed by SWCNHs, thus prevent SWCNHs from quenching of fluorscence, resulting in a fluorescence response. This designed sensing strategy was highly selective with a good linear response in the range of 10-100 ng/mL and a low detection limit of 4.1 ng/mL. The practicality of this sensing strategy was verified by using successful spiking experiments on real samples of soybean oil and comparison with the enzyme-linked immunosorbent assay (ELISA) method.
Collapse
Affiliation(s)
- Yiting Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Huanhuan Yang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China
- College of Life Science, Chang Chun Normal University, Changchun 130032, China
| | - Jiaxin Li
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense, Spain
| | - Khalid Amin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Bo Lyu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Wendan Jing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Hongling Fu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Zhijun Guo
- College of Agriculture, Yanbian University, Yanji 133002, China
| |
Collapse
|
10
|
Li Y, Gao X, Fang Y, Cui B, Shen Y. Nanomaterials-driven innovative electrochemiluminescence aptasensors in reporting food pollutants. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
11
|
Li J, Liu B, Liu L, Zhang N, Liao Y, Zhao C, Cao M, Zhong Y, Chai D, Chen X, Zhang D, Wang H, He Y, Li Z. Fluorescence-based aptasensors for small molecular food contaminants: From energy transfer to optical polarization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121872. [PMID: 36152504 DOI: 10.1016/j.saa.2022.121872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Small molecular food contaminants, such as mycotoxins, pesticide residues and antibiotics, are highly probable to be passively introduced in food at all stages of its processing, including planting, harvest, production, transportation and storage. Owing to the high risks caused by the unknowing intake and accumulation in human, there is an urgent need to develop rapid, sensitive and efficient methods to monitor them. Fluorescence-based aptasensors provide a promising platform for this area owing to its simple operation, high sensitivity, wide application range and economical practicability. In this paper, the common sorts of small molecular contaminants in foods, namely mycotoxins, pesticides, antibiotics, etc, are briefly introduced. Then, we make a comprehensive review, from fluorescence resonance energy transfer (in turn-on, turn-off, and ratiometric mode, as well as energy upconversion) to fluorescence polarization, of the fluorescence-based aptasensors for the determination of these food contaminants reported in the last five years. The principle of signal generation, the advances of each sort of fluorescent aptasensors, as well as their applications are introduced in detail. Additionally, we also discussed the challenges and perspectives of the fluorescent aptasensors for small molecular food contaminants. This work will offer systematic overview and inspiration for amateurs, researchers and developers of fluorescence-based aptasensors for the detection of small molecules.
Collapse
Affiliation(s)
- Jingrong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Boshi Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Li Liu
- Library of Tianjin Medical University, Tianjin 300070, China
| | - Nan Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yumeng Liao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunyu Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Manzhu Cao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuxuan Zhong
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Danni Chai
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoyu Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yongzhi He
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
12
|
Guo L, Li Y, Gao S, Ren L. Detection of ochratoxin A using a "turn-on" fluorescence assay based on guanine quenching of the aptamer. ANAL SCI 2023; 39:51-57. [PMID: 36242755 PMCID: PMC9569010 DOI: 10.1007/s44211-022-00199-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/27/2022] [Indexed: 01/06/2023]
Abstract
Ochratoxin A (OTA) is a common mycotoxin with high carcinogenicity; therefore, it is crucial to establish a simple, rapid, and sensitive method for its detection. In this study, we developed a "turn-on" fluorescence assay for detecting OTA based on guanine quenching of the aptamer. The method uses fluorescein (FAM) fluorophore to label the complementary strand of the OTA aptamer, Fc-DNA. In the absence of OTA, the Fc-DNA hybridizes with the aptamer to form a double strand. Due to the occurrence of photo-induced electron transfer (PET), the FAM fluorescence signal is quenched as the FAM on the Fc-DNA approaches the guanine of the aptamer at the 5' end. When OTA is present, the aptamer binds to it and thus, is unable to hybridize with Fc-DNA to form a double strand; the FAM fluorescence signal is restored as FAM moves away from the guanine of the aptamer. The assay achieved OTA detection at a detection limit of 28.4 nM. The application of the original guanine of the aptamer as the quenching agent helps avoid the complex designing and labeling of the aptamer, which ensures the high affinity of the aptamer for OTA. Meanwhile, this "turn-on" detection mode helps avoid potential false-positive results as in the "turn-off" mode and improves the assay's sensitivity. Additionally, the method has good selectivity and can be used to detect OTA in traditional Chinese medicine. This method provides a simple, low-cost, and rapid method for OTA detection.
Collapse
Affiliation(s)
- Limin Guo
- College of traditional Chinese medicine and food engineering, Shanxi University of Chinese Medicine, 121 University Street, Yuci, Jinzhong, 030619, People's Republic of China.
| | - Yun Li
- College of traditional Chinese medicine and food engineering, Shanxi University of Chinese Medicine, 121 University Street, Yuci, Jinzhong, 030619, People's Republic of China
| | - Shichao Gao
- College of traditional Chinese medicine and food engineering, Shanxi University of Chinese Medicine, 121 University Street, Yuci, Jinzhong, 030619, People's Republic of China
| | - Lei Ren
- College of traditional Chinese medicine and food engineering, Shanxi University of Chinese Medicine, 121 University Street, Yuci, Jinzhong, 030619, People's Republic of China
| |
Collapse
|
13
|
Li D, Xia H, Sun Y, Liu W, Liu W, Yu J, Jing G, Zhang J, Li W. Colorimetric aptasensor for the sensitive detection of ochratoxin A based on a triple cascade amplification strategy. Anal Chim Acta 2022; 1237:340616. [DOI: 10.1016/j.aca.2022.340616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
|
14
|
Ultrasensitive aptasensor using electrospun MXene/polyvinylidene fluoride nanofiber composite for Ochratoxin A detection. Food Chem 2022; 390:133105. [DOI: 10.1016/j.foodchem.2022.133105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/05/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
|
15
|
|
16
|
Yan X, Chen H, Du G, Guo Q, Yuan Y, Yue T. Recent trends in fluorescent aptasensors for mycotoxin detection in food: Principles, constituted elements, types, and applications. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Xiaohai Yan
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Hong Chen
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Gengan Du
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Qi Guo
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Yahong Yuan
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Tianli Yue
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
- College of Food Science and Technology Northwest University Xi’ an 710000 China
| |
Collapse
|