1
|
Kanwal N, Musharraf SG. Analytical approaches for the determination of adulterated animal fats and vegetable oils in food and non-food samples. Food Chem 2024; 460:140786. [PMID: 39142208 DOI: 10.1016/j.foodchem.2024.140786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Edible oils and fats are crucial components of everyday cooking and the production of food products, but their purity has been a major issue for a long time. High-quality edible oils are contaminated with low- and cheap-quality edible oils to increase profits. The adulteration of edible oils and fats also produces many health risks. Detection of main and minor components can identify adulterations using various techniques, such as GC, HPLC, TLC, FTIR, NIR, NMR, direct mass spectrometry, PCR, E-Nose, and DSC. Each detection technique has its advantages and disadvantages. For example, chromatography offers high precision but requires extensive sample preparation, while spectroscopy is rapid and non-destructive but may lack resolution. Direct mass spectrometry is faster and simpler than chromatography-based MS, eliminating complex preparation steps. DNA-based oil authentication is effective but hindered by laborious extraction processes. E-Nose only distinguishes odours, and DSC directly studies lipid thermal properties without derivatization or solvents. Mass spectrometry-based techniques, particularly GC-MS is found to be highly effective for detecting adulteration of oils and fats in food and non-food samples. This review summarizes the benefits and drawbacks of these analytical approaches and their use in conjunction with chemometric tools to detect the adulteration of animal fats and vegetable oils. This combination provides a powerful technique with enormous chemotaxonomic potential that includes the detection of adulterations, quality assurance, assessment of geographical origin, assessment of the process, and classification of the product in complex matrices from food and non-food samples.
Collapse
Affiliation(s)
- Nayab Kanwal
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Syed Ghulam Musharraf
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan..
| |
Collapse
|
2
|
Ozen B, Cavdaroglu C, Tokatli F. Trends in authentication of edible oils using vibrational spectroscopic techniques. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4216-4233. [PMID: 38899503 DOI: 10.1039/d4ay00562g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The authentication of edible oils has become increasingly important for ensuring product quality, safety, and compliance with regulatory standards. Some prevalent authenticity issues found in edible oils include blending expensive oils with cheaper substitutes or lower-grade oils, incorrect labeling regarding the oil's source or type, and falsely stating the oil's origin. Vibrational spectroscopy techniques, such as infrared (IR) and Raman spectroscopy, have emerged as effective tools for rapidly and non-destructively analyzing edible oils. This review paper offers a comprehensive overview of recent advancements in using vibrational spectroscopy for authenticating edible oils. The fundamental principles underlying vibrational spectroscopy are introduced and chemometric approaches that enhance the accuracy and reliability of edible oil authentication are summarized. Recent research trends highlighted in the review include authenticating newly introduced oils, identifying oils based on their specific origins, adopting handheld/portable spectrometers and hyperspectral imaging, and integrating modern data handling techniques into the use of vibrational spectroscopic techniques for edible oil authentication. Overall, this review provides insights into the current state-of-the-art techniques and prospects for utilizing vibrational spectroscopy in the authentication of edible oils, thereby facilitating quality control and consumer protection in the food industry.
Collapse
Affiliation(s)
- Banu Ozen
- Izmir Institute of Technology, Department of Food Engineering, Urla, Izmir, Turkiye.
| | - Cagri Cavdaroglu
- Izmir Institute of Technology, Department of Food Engineering, Urla, Izmir, Turkiye.
| | - Figen Tokatli
- Izmir Institute of Technology, Department of Food Engineering, Urla, Izmir, Turkiye.
| |
Collapse
|
3
|
Yan ZP, Zhou FY, Liang J, Kuang HX, Xia YG. Distinction and quantification of Panax polysaccharide extracts via attenuated total reflectance-Fourier transform infrared spectroscopy with first-order derivative processing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124124. [PMID: 38460230 DOI: 10.1016/j.saa.2024.124124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/16/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Derivative spectroscopy is used to separate the small absorption peaks superimposed on the main absorption band, which is widely adopted in modern spectral analysis to increase both the valid spectral information and the identification accuracy. In this study, a method based on attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) with first-order derivative (FD) processing combined with chemometrics is proposed for rapid qualitative and quantitative analysis of Panax ginseng polysaccharides (PGP), Panax notoginseng polysaccharides (PNP), and Panax quinquefolius polysaccharides (PQP). First, ATR-FTIR with FD processing was used to establish the discriminant model combined with principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and linear discriminant analysis (LDA). After that, two-dimensional ATR-FTIR based on single-characteristic temperature as external interference (2D-sATR-FTIR) was established using ATR-FTIR with FD processing. Then, ATR-FTIR with FD processing was combined with PLS to establish and optimize the quantitative regression model. Finally, the established discriminant model and 2D-sATR-FTIR successfully distinguished PGP, PNP and PQP, and the optimal PLS regression model had a good prediction ability for the Panax polysaccharide extracts content. This strategy provides an efficient, economical and nondestructive method for the distinction and quantification of PGP, PNP and PQP in a short detection time.
Collapse
Affiliation(s)
- Zhi-Ping Yan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Fang-Yu Zhou
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Jun Liang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China.
| |
Collapse
|
4
|
Wu X, Zhang X, Du Z, Yang D, Xu B, Ma R, Luo H, Liu H, Zhang Y. Raman spectroscopy combined with multiple one-dimensional deep learning models for simultaneous quantification of multiple components in blended olive oil. Food Chem 2024; 431:137109. [PMID: 37582325 DOI: 10.1016/j.foodchem.2023.137109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023]
Abstract
Blended vegetable oils are highly prized by consumers for their comprehensive nutritional profile. Therefore, there is an urgent need for a rapid and accurate method to identify the true content of blended oils. This study combined Raman spectroscopy with three deep learning models (CNN-LSTM, improved AlexNet, and ResNet) to simultaneously quantify extra virgin olive oil (EVOO), soybean oil, and sunflower oil in olive blended oil. The results demonstrate that all three deep learning models exhibited superior predictive ability compared to traditional chemometric methods. Specifically, the CNN-LSTM model achieved a coefficient of determination (R2p) of over 0.995 for each oil in the quantitative analysis of three-component blended oils, with a mean square error of prediction (RMSEP) of less than 2%. This study presents a novel approach for the simultaneous quantitative analysis of multi-component blended oils, providing a rapid and accurate method for the identification of falsely labeled blended oils.
Collapse
Affiliation(s)
- Xijun Wu
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xin Zhang
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Zherui Du
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Daolin Yang
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Baoran Xu
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Renqi Ma
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Hao Luo
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Hailong Liu
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yungang Zhang
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
5
|
Suratno, Windarsih A, Warmiko HD, Khasanah Y, Indrianingsih AW, Rohman A. Metabolomics and Proteomics Approach Using LC-Orbitrap HRMS for the Detection of Pork in Tuna Meat for Halal Authentication. FOOD ANAL METHOD 2023. [DOI: 10.1007/s12161-023-02472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
6
|
Li X, Wang D, Ma F, Yu L, Mao J, Zhang W, Jiang J, Zhang L, Li P. Rapid detection of sesame oil multiple adulteration using a portable Raman spectrometer. Food Chem 2022; 405:134884. [DOI: 10.1016/j.foodchem.2022.134884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/14/2022]
|
7
|
Zhou FY, Liang J, Lü YL, Kuang HX, Xia YG. A nondestructive solution to quantify monosaccharides by ATR-FTIR and multivariate regressions: A case study of Atractylodes polysaccharides. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121411. [PMID: 35653809 DOI: 10.1016/j.saa.2022.121411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The quality evaluation of nature polysaccharides is a tough nut to crack because of its high Mw distributions and larger polarity property. It is well-known that infrared spectroscopy and multiple regression modeling have been used for quantitative examinations in multiple fields, but it has not been applied to the compositional analysis of polysaccharides. In this study, attenuated total reflectance-fourier transform infrared spectroscopy is used to simultaneously quantify aldoses, ketose and uronic acids in Atractylodes polysaccharides by a combination of multivariate regressions. After experience of different data processing pretreatments, the resulting spectrum contains maximum amount of information of monosaccharide contents in Atractylodes polysaccharides. In this case, different smoothing points, derivatives, SNV and MSC are used in the pre-modeling spectrum processing and VIP screening is used to reduce the number of variables to simplify the calculation of the model. All the most optimal prediction models have both good prediction ability (R2 ≥ 0.9 and RPD > 3) and no over fitting (RMSEP/RMSEC < 3). This strategy has opened a new possibility for the nondestructive determination of complex monosaccharide compositions of natural polysaccharides in a short detection time, low equipment requirement and high experimental safety.
Collapse
Affiliation(s)
- Fang-Yu Zhou
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Jun Liang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Yan-Li Lü
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China.
| |
Collapse
|
8
|
Ahmmed F, Killeen DP, Gordon KC, Fraser-Miller SJ. Rapid Quantitation of Adulterants in Premium Marine Oils by Raman and IR Spectroscopy: A Data Fusion Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144534. [PMID: 35889406 PMCID: PMC9319805 DOI: 10.3390/molecules27144534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
This study uses Raman and IR spectroscopic methods for the detection of adulterants in marine oils. These techniques are used individually and as low-level fused spectroscopic data sets. We used cod liver oil (CLO) and salmon oil (SO) as the valuable marine oils mixed with common adulterants, such as palm oil (PO), omega-3 concentrates in ethyl ester form (O3C), and generic fish oil (FO). We showed that support vector machines (SVM) can classify the adulterant present in both CLO and SO samples. Furthermore, partial least squares regression (PLSR) may be used to quantify the adulterants present. For example, PO and O3C adulterated samples could be detected with a RMSEP value less than 4%. However, the FO adulterant was more difficult to quantify because of its compositional similarity to CLO and SO. In general, data fusion improved the RMSEP for PO and O3C detection. This shows that Raman and IR spectroscopy can be used in concert to provide a useful analytical test for common adulterants in CLO and SO.
Collapse
Affiliation(s)
- Fatema Ahmmed
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand; (F.A.); (K.C.G.)
| | - Daniel P. Killeen
- Seafood Technologies, The New Zealand Institute for Plant and Food Research Limited, Nelson 7010, New Zealand;
| | - Keith C. Gordon
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand; (F.A.); (K.C.G.)
| | - Sara J. Fraser-Miller
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand; (F.A.); (K.C.G.)
- Correspondence:
| |
Collapse
|
9
|
Rifna EJ, Pandiselvam R, Kothakota A, Subba Rao KV, Dwivedi M, Kumar M, Thirumdas R, Ramesh SV. Advanced process analytical tools for identification of adulterants in edible oils - A review. Food Chem 2022; 369:130898. [PMID: 34455326 DOI: 10.1016/j.foodchem.2021.130898] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/16/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022]
Abstract
This review summarizes the use of spectroscopic processes-based analytical tools coupled with chemometric techniques for the identification of adulterants in edible oil. Investigational approaches of process analytical tools such asspectroscopy techniques, nuclear magnetic resonance (NMR), hyperspectral imaging (HSI), e-tongue and e-nose combined with chemometrics were used to monitor quality of edible oils. Owing to the variety and intricacy of edible oil properties along with the alterations in attributes of the PAT tools, the reliability of the tool used and the operating factors are the crucial components which require attention to enhance the efficiency in identification of adulterants. The combination of process analytical tools with chemometrics offers a robust technique with immense chemotaxonomic potential. These involves identification of adulterants, quality control, geographical origin evaluation, process evaluation, and product categorization.
Collapse
Affiliation(s)
- E J Rifna
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR - Central Plantation Crops Research Institute, Kasaragod 671 124, Kerala, India.
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695 019, Kerala, India.
| | - K V Subba Rao
- Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Madhuresh Dwivedi
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Matunga, Mumbai 400019, India
| | - Rohit Thirumdas
- Department of Food Process Technology, College of Food Science and Technology, PJTSAU, Telangana, India
| | - S V Ramesh
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR - Central Plantation Crops Research Institute, Kasaragod 671 124, Kerala, India
| |
Collapse
|
10
|
|