1
|
García-Ramón DF, Cornelio-Santiago HP, Norabuena E, Sumarriva L, Alvarez-Chancasanampa H, Vega MN, Sotelo-Méndez A, Espinoza-Espinoza LA, Pantoja-Tirado LR, Gonzales-Agama SH, Chavarría-Marquez EY, Castro-Galarza CR. Effective novel and conventional technologies for decontamination of aflatoxin B 1 in foods: a review. Mycotoxin Res 2025; 41:301-321. [PMID: 40172772 DOI: 10.1007/s12550-025-00589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Aflatoxin B1 (AFB1) is a carcinogenic mycotoxin produced by certain filamentous fungi that contaminate agricultural crops. Conventional decontamination methods are still widely used to ensure food safety; however, novel technologies for AFB1 decontamination, while promising, aim to be efficient, cost-effective, and scalable. This article provides an overview of conventional and novel technologies used over the past decade to achieve AFB1 decontamination rates of 75% or higher, as well as patents related to aflatoxin decontamination. The results highlight various methods and their effectiveness in decontaminating AFB1 in rice, barley, maize, peanuts, millet, nuts, sorghum, wheat bran, pistachios, edible oils, dairy products, and certain culture media. Novel technologies include sorbents, cold atmospheric plasma, essential oils, phenolic compounds, and plant extracts, as well as magnetic materials and nanoparticles for AFB1 decontamination. Limitations associated with conventional methods have driven the search for novel approaches that, while showing great potential, often lack detailed explanations of their mechanisms of action and practical demonstrations on an industrial scale. Cold atmospheric plasma combined with high voltage is believed to hold significant promise for effectively reducing AFB1 in food while minimizing food residues. The new AFB1 decontamination methods described in this review can serve as valuable resources for researchers and industry stakeholders; however, further studies are needed to ensure global food safety.
Collapse
Affiliation(s)
| | | | - Edgar Norabuena
- Facultad de Ingeniería Química y Textil, Universidad Nacional de Ingenieria, Lima, Peru
| | - Liliana Sumarriva
- Facultad de Ciencias, Universidad Nacional de Educación "Enrique Guzmán Valle, Lima, Peru
| | | | - Marlitt Naupay Vega
- Facultad de Ingeniería Geográfica Ambiental y Ecoturismo, Universidad Federico Villareal, Lima, Peru
| | | | | | - Lucia R Pantoja-Tirado
- Facultad de Ingeniería, Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo, Tayacaja, Peru
| | - Sara H Gonzales-Agama
- Facultad de Ingeniería, Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo, Tayacaja, Peru
| | - Esmila Y Chavarría-Marquez
- Facultad de Ingeniería, Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo, Tayacaja, Peru
| | | |
Collapse
|
2
|
Hu C, Yang C, Li B, Peng B. Removal of ochratoxin A from wine by adsorption-photocatalytic synergy of tubular TiO 2/SiO 2/g-C 3N 4: Mechanistic insights and degradation pathways. Food Chem 2025; 471:142758. [PMID: 39798373 DOI: 10.1016/j.foodchem.2025.142758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Consumption of contaminated wines is a significant source of ochratoxin A (OTA) intake in humans, yet existing techniques for OTA removal are inadequate. This study constructs a TiO2/SiO2/g-C3N4 catalyst (TiSiMs-TCN) with a tubular structure, capable of efficiently removing OTA from both simulated and real wines under visible light irradiation. The results of experiments, characterizations, and theoretical calculations demonstrate that the incorporation of silica enhances the adsorption capacity for OTA, and the tubular structure improves the catalyst's photoelectric properties. The internal electric field between TiSiMs and TCN facilitates electron transfer and the generation of active species, rapidly degrading the adsorbed OTA and promoting the regeneration of active sites, thus maintaining continuous adsorption-photocatalysis synergy. The OTA degradation pathway was analyzed using the Fukui index, electrostatic potential distribution, and intermediate product identification. Toxicological experiments confirm that TiSiMs-TCN is a safe and stable material capable of effectively detoxifying OTA contamination.
Collapse
Affiliation(s)
- Chen Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chao Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bo Li
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bangzhu Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
3
|
Ku M, Li J, Zhang W, Sun S, Zhang Y, Xie Y. Degradation of AFB 1 in edible oil by aptamer-modified TiO 2 composite photocatalytic materials: Selective efficiency, degradation mechanism and toxicity. Food Chem 2025; 470:142674. [PMID: 39733612 DOI: 10.1016/j.foodchem.2024.142674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/11/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Most of the excessive aflatoxins in peanut oil are present at lower levels, and few photocatalysts have been reported for degrading low concentrations of aflatoxin B1 (AFB1). This study employed aptamer-modified magnetic graphene oxide/titanium dioxide (MGO/TiO2-aptamer) photocatalysts to degrade low concentrations of AFB1 in peanut oil, thoroughly investigating their selective efficiency, degradation mechanism, and product toxicity. The results indicated that the modification of aptamers on the surface of photocatalytic materials can enhance the selectivity of photocatalysts for AFB1 in peanut oil. Furthermore, UPLC-Q-Orbitrap mass spectrometry identified three degradation products, and structure properties and degradation mechanism of the composites were explored using density function theory (DFT) calculations analysis. The Ames test and zebrafish experiments confirmed that the degradation products had markedly reduced toxicity. This study offers a novel approach to mycotoxin degradation in food, crucial for reducing human exposure and ensuring food safety.
Collapse
Affiliation(s)
- Mengdan Ku
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - Jiajun Li
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - Wenhao Zhang
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - Shumin Sun
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China; Centre laboratory of Academy of National Food and Strategic Reserves Administration, Xicheng District, Beijing 100000, China.
| | - Yaqi Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanli Xie
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Gordi Z, Teilaghi S. Novel Ni/Fe-MIL-53@ZnO nanocomposite for efficient photodegradation of aflatoxins G1 and G2. Sci Rep 2025; 15:11163. [PMID: 40169676 PMCID: PMC11962079 DOI: 10.1038/s41598-025-94863-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/17/2025] [Indexed: 04/03/2025] Open
Abstract
The photodegradation of aflatoxins G1 and G2 (AFG1 and AFG2) is crucial for mitigating the health risks associated with these potent mycotoxins, as it enhances food safety and protects human health by reducing their persistence and bioavailability in contaminated environments. This study investigates the efficient photodegradation of AFG1 and AFG2 using a novel Bimetallic MIL-53 (Al, Ni)/ZnO nanoparticle composite as a photocatalyst. The catalyst was synthesized in two stages: Chemical synthesis of zinc oxide nanoparticles (ZnO NPs) and hydrothermal synthesis to form the composite. Optimization of a ZnO-based photocatalyst, synthesized by varying proportions of NiCl₂·6H₂O and Al(NO₃)₃·9H₂O, revealed that a 0.547 g:0.864 g ratio maximized photocatalytic degradation of AFG1 and AFG2. Through experimental design, the degradation process was optimized, identifying pH 4.1, 109 mg of photocatalyst, 35 mg L-1 of AF concentration, and 3 mM of H2O2 concentration as optimal conditions. The predicted removal efficiencies for AFG1 and AFG2 were 97.43% and 98.69%, respectively. Kinetic studies utilizing the pseudo-first-order rate equation revealed rate constants of 0.058 ± 0.002 and 0.060 ± 0.003 min-1 for AFG1 and AFG2, respectively. Additionally, the half-life times for AFG1 and AFG2 photodegradation were found to be 11.95 and 11.55 min, respectively. Catalyst reuse investigations demonstrated that the composite could be reused at least 5 times without significant loss of efficacy. These findings highlight the effectiveness of the Bimetallic MIL-53 (Al, Ni)/ZnO NPs composite as a stable and efficient photocatalyst for the removal of AFG1 and AFG2 under mild conditions, showcasing its potential for practical applications in environmental remediation processes.
Collapse
Affiliation(s)
- Zinat Gordi
- Department of Chemistry, Payame Noor University, Tehran, Iran.
| | - Shiva Teilaghi
- Department of Chemistry, Payame Noor University, Tehran, Iran
| |
Collapse
|
5
|
Yang X, Cheng L, Yu L, Qi X, Zhang L, Zhang Q, Mao J, Li P. Moderate elimination of mycotoxins in vegetable oil triggered by superoxide anion and singlet oxygen. Food Chem 2024; 456:140082. [PMID: 38878532 DOI: 10.1016/j.foodchem.2024.140082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024]
Abstract
Establishing a moderate elimination strategy for mycotoxins with the maintained food nutrition is significant to food safety. Herein, the Au-NPs decorated defective Bi2WO6 (Au-BWO-OV) with modulated ROS generation was successfully synthesized, integrating the merits of defect-engineering and Au-NPs induced LSPR-effect. The Au-BWO-OV exhibited modified photoelectrochemical property and O2-adsorption capacity, supporting the selective generation of •O2- and 1O2 with moderate oxidizing ability. As a result, >90% of AFB1 and ZEN were eliminated within 100 and 50 min, along with the maintained nutrition in vegetable oil. Moreover, the reasonable degradation mechanism triggered by •O2- and 1O2 was proposed based on the trapping experiments, DFT calculations and LC-MS analysis for intermediate products, including the steps of hydrolysis, oxidative dissociation, cis-trans isomerization, and dehydroxylation. This work not only paved the way for balancing the contradiction between detoxification and nutrient retention, but also casted new insights into the ROS-mediated degradation mechanism.
Collapse
Affiliation(s)
- Xianglong Yang
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Ling Cheng
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Li Yu
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xin Qi
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Liangxiao Zhang
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qi Zhang
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jin Mao
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Peiwu Li
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
6
|
Zhang J, Ying Z, Li H, Liu X, Ma D, Yu H. Preparation of Soybean Dreg-Based Biochar@TiO 2 Composites and the Photocatalytic Degradation of Aflatoxin B 1 Exposed to Simulated Sunlight Irradiation. Toxins (Basel) 2024; 16:429. [PMID: 39453205 PMCID: PMC11511473 DOI: 10.3390/toxins16100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Aflatoxin B1 (AFB1) is a highly toxic carcinogen severely harmful to humans and animals. This study fabricated SDB-6-K-9@TiO2 composites via the hydrothermal synthesis method to reduce AFB1. The structural characterization results of the photocatalytic composites showed that TiO2 was successfully loaded onto SDB-6-K-9. The different photocatalytic degradation conditions, photocatalyst kinetics, recycling performance, and photocatalytic degradation mechanism were investigated. Photocatalysis with 6 mg of 4%SDB-6-K-9@TiO2 in a 100 μg/mL AFB1 solution presented a reduction of over 95%, exhibiting excellent performance, high stability, and reusability even after five cycles of photocatalytic experiments. Active species trapping experiments confirmed that holes (h+) played the most critical role. After structural analysis and identification of the photocatalytic degradation products, the photodegradation path and photocatalytic oxidation mechanism of 4%SDB-6-K-9@TiO2 were postulated. The results show a new way to improve TiO2's photocatalytic performance, providing a certain theoretical basis for the effective AFB1 reduction.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China;
| | - Zhiwei Ying
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Z.Y.); (H.L.)
| | - He Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Z.Y.); (H.L.)
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Xinqi Liu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Z.Y.); (H.L.)
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Dongge Ma
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Hailong Yu
- College of Bioengineering, Beijing Polytechnic, Beijing 100176, China
| |
Collapse
|
7
|
Ji J, Wang D, Wang Y, Hou J. Relevant mycotoxins in oil crops, vegetable oils, de-oiled cake and meals: Occurrence, control, and recent advances in elimination. Mycotoxin Res 2024; 40:45-70. [PMID: 38133731 DOI: 10.1007/s12550-023-00512-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Mycotoxins in agricultural commodities have always been a concern due to their negative impacts on human and livestock health. Issues associated with quality control, hot and humid climate, improper storage, and inappropriate production can support the development of fungus, causing oil crops to suffer from mycotoxin contamination, which in turn migrates to the resulting oil, de-oiled cake and meals during the oil processing. Related research which supports the development of multi-mycotoxin prevention programs has resulted in satisfactory mitigation effects, mainly in the pre-harvest stage. Nevertheless, preventive actions are unlikely to avoid the occurrence of mycotoxins completely, so removal strategies may still be necessary to protect consumers. Elimination of mycotoxin has been achieved broadly through the physical, biological, or chemical course. In view of the steadily increasing volume of scientific literature regarding mycotoxins, there is a need for ongoing integrated knowledge systems. This work revisited the knowledge of mycotoxins affecting oilseeds, food oils, cake, and meals, focusing more on their varieties, toxicity, and preventive strategies, including the methods adopted in the decontamination, which supplement the available information.
Collapse
Affiliation(s)
- Junmin Ji
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
| | - Dan Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Yan Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Jie Hou
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
8
|
Zabeti N, Keyhanizadeh AK, Faraji AR, Soltani M, Saeedi S, Tehrani E, Hekmatian Z. Activate hydrogen peroxide for facile and efficient removal of aflatoxin B 1 by magnetic Pd-chitosan/rice husk-hercynite biocomposite and its impact on the quality of edible oil. Int J Biol Macromol 2024; 254:127897. [PMID: 37956815 DOI: 10.1016/j.ijbiomac.2023.127897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
Due to the high heat and chemical stability of aflatoxin B1 (AFB1) with significant impacts on humans/animals and thus it needs to develop a practical and efficient approach for its removal. Herein, we fabricated a magnetic Pd-chitosan/glutaraldehyde/rice husk/hercynite (Pd@CRH-x) composite for efficient detoxification of AFB1. The Pd@CRH-x was obtained by a simple wet-impregnation procedure of CRH complexes followed by pyrolysis. The results confirmed that the unique structure of Pd@CRH-400 effectively improves dispersity, and mass transfer subsequently enhancing removal efficiency in batch conditions. Results indicate 94.30 % of AFB1 was efficiently degraded by 0.1 mg mL-1 Pd@CRH-400 with 4.0 mM H2O2 at wide pH ranges (3.0-10) at 60 min with a decomposition rate constant of 0.0467 min-1. Besides, by comparing the quality factors of edible oil (i.e., acid value, peroxide value, iodine value, moisture, volatile matters, anisidine value, and fatty acid composition), it was confirmed that there was no obvious influence on the physicochemical indicators of edible oil after removal/storage process. Subsequently, the systematic kinetic study and AFB1 degradation mechanism were presented. This study provides a new strategy for the efficient construction of controllable and dispersed Pd-based catalysts using CRH-x as a spatial support for alleviating the risk of toxic pollutants.
Collapse
Affiliation(s)
- N Zabeti
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - A K Keyhanizadeh
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - A R Faraji
- Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - M Soltani
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - S Saeedi
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - E Tehrani
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Z Hekmatian
- Department of Chemistry, Payam Noor University, Hamedan, Iran
| |
Collapse
|
9
|
Abasi N, Faraji AR, Davood A. Adsorptive removal of aflatoxin B 1 from water and edible oil by dopamine-grafted biomass chitosan-iron-cobalt spinel oxide nanocomposite: mechanism, kinetics, equilibrium, thermodynamics, and oil quality. RSC Adv 2023; 13:34739-34754. [PMID: 38035230 PMCID: PMC10682912 DOI: 10.1039/d3ra06495f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Currently, the use of magnetic physical adsorbents for detoxification is widely applied in the food industry; however, the fabrication of high-efficiency low-cost absorbents without damaging the nutritional quality of food is a major challenge. Herein, a simple, green, efficient, and cost-effective method for the magnetic solid-phase extraction of aflatoxin B1 (AFB1) from edible oils and aqueous matrices was developed using a dopamine-loaded biomass chitosan-iron-cobalt spinel oxide nanocomposite (DC/CFOS NC). The characterization, physicochemical processes, mechanism, and reusability of DC/CFOS were systematically evaluated in detail. It was found that the adsorption characteristic of DC/CFOS NC was accurately represented by the pseudo-second-order kinetics (k2 = 0.199 g mg-1 min-1) and Freundlich isotherm models (Kf = 1.139 (mg g-1) (L mg-1), R2 = 0.991)), and its adsorptive process is feasible, spontaneous, and exothermic. Benefiting from its high specific surface area, microporous structure, and polar/non-polar active sites, the as-prepared DC/CFOS exhibited an excellent adsorption performance for AFB1 (50.0 μg mL-1), as measured using the Freundlich isotherm model. The mechanistic studies demonstrated that the synergistic effects of the surface complexation and electrostatic interactions between the functional groups of DC/CFOS NC and AFB1 were the dominant adsorption pathways. Besides, DC/CFOS exhibited negligible impacts on the nutritional quality of the oil after the removal process and storage. Thus, DC/CFOS NC showed sufficient efficacy and safety in the removal of AFB1 from contaminated edible oil.
Collapse
Affiliation(s)
- N Abasi
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - A R Faraji
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University Tehran Iran +98 21 22600099 +98 21 22640051
- Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - A Davood
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| |
Collapse
|
10
|
Nasiri Poroj S, Larypoor M, Fazeli MR, Shariatmadari F. The synergistic effect of titanium dioxide nanoparticles and yeast isolated from fermented foods in reduction of aflatoxin B1. Food Sci Nutr 2023; 11:7109-7119. [PMID: 37970382 PMCID: PMC10630822 DOI: 10.1002/fsn3.3635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 11/17/2023] Open
Abstract
The presence of aflatoxins in food products can lead to health risks in human societies. Therefore, in the present study, the effect of yeast strains isolated from fermented products and titanium dioxide nanoparticles (TiO2-NPs) was studied on aflatoxin reduction. Yeast strains were isolated from fermented products such as sweet fruits and dairy products and identified using biochemical, ascospore (testing by culture medium optimization V8 which is called V8NLF), and molecular methods. The probiotic activity of four selected yeasts was evaluated. Then, the effect of selected yeast isolates and TiO2-NPs on reducing aflatoxin B1 (AFB1) in the medium was studied by measuring AFB1 using ELISA and HPLC. The results of biochemical and molecular identification experiments indicate that the selected strain (Y1) is Saccharomyces cerevisiae. The selected strains showed good tolerance to different concentrations of bile salt, pH, and NaCl, indicating appropriate probiotic activity. It also showed antimicrobial activity against Escherichia coli, Shigella dysenteriae, and Salmonella typhimurium. Selected strain and TiO2-NPs showed AFB1 reducing activity in the medium and when combined, showed synergistic effects in reducing AFB1. TiO2-NPs in combination with selected yeast strains have a high ability to remove AFB1 from the medium and, therefore, can be used for future studies.
Collapse
Affiliation(s)
- Shohreh Nasiri Poroj
- Department of Microbiology, Faculty of Biological SciencesIslamic Azad University Tehran North BranchTehranIran
| | - Mohaddeseh Larypoor
- Department of Microbiology, Faculty of Biological SciencesIslamic Azad University Tehran North BranchTehranIran
| | - Mohammad Reza Fazeli
- Department of Drug and Food Control, School of PharmacyTehran University of Medical SciencesTehranIran
| | - Farid Shariatmadari
- Department of Poultry Science, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| |
Collapse
|
11
|
Fan Y, Yang H, Li J, Amin K, Lyu B, Jing W, Wang S, Fu H, Yu H, Guo Z. Single-Walled Carbon Nanohorn-Based Fluorescence Energy Resonance Transfer Aptasensor Platform for the Detection of Aflatoxin B1. Foods 2023; 12:2880. [PMID: 37569149 PMCID: PMC10417297 DOI: 10.3390/foods12152880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Aflatoxin B1 (AFB1) is one of the most contaminated fungal toxins worldwide and is prone to cause serious economic losses, food insecurity, and health hazards to humans. The rapid, on-site, and economical method for AFB1 detection is need of the day. In this study, an AFB1 aptamer (AFB1-Apt) sensing platform was established for the detection of AFB1. Fluorescent moiety (FAM)-modified aptamers were used for fluorescence response and quenching, based on the adsorption quenching function of single-walled carbon nanohorns (SWCNHs). Basically, in our constructed sensing platform, the AFB1 specifically binds to AFB1-Apt, making a stable complex. This complex with fluorophore resists to be adsorbed by SWCNHs, thus prevent SWCNHs from quenching of fluorscence, resulting in a fluorescence response. This designed sensing strategy was highly selective with a good linear response in the range of 10-100 ng/mL and a low detection limit of 4.1 ng/mL. The practicality of this sensing strategy was verified by using successful spiking experiments on real samples of soybean oil and comparison with the enzyme-linked immunosorbent assay (ELISA) method.
Collapse
Affiliation(s)
- Yiting Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Huanhuan Yang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China
- College of Life Science, Chang Chun Normal University, Changchun 130032, China
| | - Jiaxin Li
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense, Spain
| | - Khalid Amin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Bo Lyu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Wendan Jing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Hongling Fu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Zhijun Guo
- College of Agriculture, Yanbian University, Yanji 133002, China
| |
Collapse
|
12
|
Qiao M, Liu M, Wan Z, Suo Z, Liu Y, Wei M. A novel fluorescent aptasensor based on 3D porous nitrogen-sulfur co-doped carbon mesh and hybridization chain reaction for sensitive detection of ochratoxin A. Mikrochim Acta 2023; 190:313. [PMID: 37470836 DOI: 10.1007/s00604-023-05897-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
A novel three-dimensional (3D) porous nitrogen-sulfur co-doped carbon (N-S-C) mesh was synthesized and used for the first time as the quenching material to construct a fluorescent aptasensor for ochratoxin A (OTA) detection. The fluorescent aptasensor with enzyme-free signal amplification strategy was developed by using cDNA as a promoter to trigger hybridization chain reaction (HCR), which effectively improved the sensitivity of this aptasensor. In the absence of OTA, 3D porous N-S-C mesh can adsorb carboxyfluorescein FAM-labeled hairpin DNA1 (H1-FAM) and hairpin DNA2 (H2) and quench the fluorescence of FAM. In the presence of the OTA, the OTA specifically binds to the aptamer strand and the DNA duplex undergoes dissociation. The released cDNA in turn serves as a promoter for HCR, and the strand assembly of H1-FAM and H2 is triggered by the promoter to generate long-strand DNA polymers via HCR, resulting in an increasing fluorescent signal. Under optimal conditions, there was a good linear relationship between lgCOTA and fluorescence intensity difference in the range 0.01-500 ng/mL (R2 = 0.993), and the detection limit was 2.7 pg/mL. The designed sensor platform was applied to determine spiked OTA in peanut, wheat flour, corn flour, black tea, and wine with recoveries in the range of 94.4-119.6%.
Collapse
Affiliation(s)
- Mengxiang Qiao
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Mingwei Liu
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Zhigang Wan
- Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen, 518045, People's Republic of China
| | - Zhiguang Suo
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Yong Liu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, People's Republic of China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
13
|
Liu S, Jiang S, Yao Z, Liu M. Aflatoxin detection technologies: recent advances and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79627-79653. [PMID: 37322403 DOI: 10.1007/s11356-023-28110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Aflatoxins have posed serious threat to food safety and human health. Therefore, it is important to detect aflatoxins in samples rapidly and accurately. In this review, various technologies to detect aflatoxins in food are discussed, including conventional ones such as thin-layer chromatography (TLC), high performance liquid chromatography (HPLC), enzyme linked immunosorbent assay (ELISA), colloidal gold immunochromatographic assay (GICA), radioimmunoassay (RIA), fluorescence spectroscopy (FS), as well as emerging ones (e.g., biosensors, molecular imprinting technology, surface plasmon resonance). Critical challenges of these technologies include high cost, complex processing procedures and long processing time, low stability, low repeatability, low accuracy, poor portability, and so on. Critical discussion is provided on the trade-off relationship between detection speed and detection accuracy, as well as the application scenario and sustainability of different technologies. Especially, the prospect of combining different technologies is discussed. Future research is necessary to develop more convenient, more accurate, faster, and cost-effective technologies to detect aflatoxins.
Collapse
Affiliation(s)
- Shenqi Liu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| | - Minhua Liu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
14
|
Li S, Liu P, Wang Y, Yang Q, Ma Y. Constructing defective-functionalized g-C 3N 4 homojunction for efficient photocatalytic detoxification of lemon yellow in an aqueous solution and beverage. Food Chem 2023; 422:136263. [PMID: 37141755 DOI: 10.1016/j.foodchem.2023.136263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
The content of food colorant in food and environment should be limited to a safe range. Thus, cost-effective, and environmental-friendly detoxification technology is urgent for food safety and environmental protection. In this work, defective-functionalized g-C3N4 was successfully fabricated via intermediate engineering strategy. The prepared g-C3N4 possesses large specific surface area with abundant in-plane pores. Carbon vacancy and N-CO unit are introduced into g-C3N4 molecular framework, endowing the different degrees of n-type conductivity in varied domains. And then the n-n homojunction is generated. This homojunction structure is demonstrated to be efficient in separation and transfer of photoinduced charge carriers, and causes enhanced photocatalytic detoxification of lemon yellow under visible light. Furthermore, as-prepared g-C3N4 in lemon tea enable completely removed lemon yellow without obvious effect on its overall acceptability. The findings deepen the understanding on the defect-induced self-functionality of g-C3N4, and prove the application potential of photocatalytic technology in contaminated beverages.
Collapse
Affiliation(s)
- Shisen Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Ping Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China.
| | - Yinghui Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yongchao Ma
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
15
|
Faraji AR, Khoramdareh NB, Falahati F, Jafari S, Monfared SA, Faghih A. Superparamagnetic MnFe alloy composite derived from cross-bindered of chitosan/rice husk waste/iron aluminate spinel hercynite for rapid catalytic detoxification of aflatoxin B1: Structure, performance and synergistic mechanism. Int J Biol Macromol 2023; 234:123709. [PMID: 36801216 DOI: 10.1016/j.ijbiomac.2023.123709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
The contamination of foodstuffs with aflatoxins B1 (AFB1) as carcinogen/mutagens toxin produced by Aspergillus fungi that are a major threat to the economy, safe food supply, and human health. To, we present a facile wet-impregnation and co-participation strategies for the construction of a novel superparamagnetic MnFe biocomposite (MF@CRHHT), in which dual metal oxides MnFe were anchored in/on agricultural/forestry residues (chitosan/rice husk waste/hercynite hybrid nanoparticles) and applied for rapid AFB1 detoxification by destroying in a non-thermal/microbial way. Structure, and morphology were comprehensively characterized by various spectroscopic analyses. The AFB1 removal in PMS/MF@CRHHT system followed pseudo-first-order kinetics, and exhibited excellent efficiency (99.3 % in 20 min and 83.1 % in 5.0 min) over a broad pH range (5.0-10.0). Importantly, relationship between high efficiency and physical-chemical properties, and mechanistic insight reveals that the synergistic effect could be related to the formation MnFe bond in MF@CRHHT and then mutual electron transfer between them to enhanced electron density and generate reactive oxygen species. An AFB1 decontamination pathway proposed was based on the free radical quenching experiments and analysis of the degradation intermediates. Thus, the MF@CRHHT can be applied as an efficient, cost-effective, recoverable, environment-friendly and highly efficient biomass-based activator for remediate pollution.
Collapse
Affiliation(s)
- A R Faraji
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - N Bakhshi Khoramdareh
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - F Falahati
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - S Jafari
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - S Arbabi Monfared
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - A Faghih
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
16
|
Chang J, Luo H, Li L, Zhang J, Harvey J, Zhao Y, Zhang G, Liu Y. Mycotoxin risk management in maize gluten meal. Crit Rev Food Sci Nutr 2023; 64:7687-7706. [PMID: 36995226 DOI: 10.1080/10408398.2023.2190412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Maize gluten meal (MGM) is a by-product of maize starch and ethanol, produced by the wet milling process. Its high protein content makes it a preferred ingredient in feed. Given the high prevalence of mycotoxins in maize globally, they pose a significant challenge to use of MGM for feed: wet milling could concentrate certain mycotoxins in gluten components, and mycotoxin consumption affects animal health and can contaminate animal-source foods. To help confront this issue, this paper summarizes mycotoxin occurrence in maize, distribution during MGM production and mycotoxin risk management strategies for MGM through a comprehensive literature review. Available data emphasize the importance of mycotoxin control in MGM and the necessity of a systematic control approach, which includes: good agriculture practices (GAP) in the context of climate change, degradation of mycotoxin during MGM processing with SO2 and lactic acid bacteria (LAB) and the prospect of removing or detoxifying mycotoxins using emerging technologies. In the absence of mycotoxin contamination, MGM represents a safe and economically critical component of global animal feed. With a holistic risk assessment-based, seed-to-MGM-feed systematic approach to reducing and decontaminating mycotoxins in maize, costs and negative health impacts associated with MGM use in feed can be effectively reduced.
Collapse
Affiliation(s)
- Jinghua Chang
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Hao Luo
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Lin Li
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Junnan Zhang
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Jagger Harvey
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, USA
| | - Yueju Zhao
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Guangtao Zhang
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Yang Liu
- School of Food Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
17
|
Malinowska I, Kubica P, Madajski P, Ostrowski A, Gómez Polo C, Carvera L, Bednarski W, Zielińska-Jurek A. Synthesis, characterization, and application of 2D/2D TiO 2-GO-ZnFe 2O 4 obtained by the fluorine-free lyophilization method for solar light-driven photocatalytic degradation of ibuprofen. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35929-35944. [PMID: 36538221 PMCID: PMC10039847 DOI: 10.1007/s11356-022-24587-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
In this study, we report the potential of 2D/2D TiO2-GO-ZnFe2O4 photocatalyst obtained using the fluorine-free lyophilization technique for the degradation of ibuprofen belonging to the group of active pharmaceutical ingredients (API). The improved ibuprofen degradation under simulated solar light was achieved in the presence of a composite of 2D TiO2 combined with GO and embedded ZnFe2O4, which additionally provides superparamagnetic properties and enables photocatalyst separation after the photodegradation process. After only 20 min of the photodegradation process in the presence of 2D/2D TiO2-GO-ZnFe2O4 composite, more than 90% of ibuprofen was degraded under simulated solar light, leading to non-toxic and more susceptible to biodegradation intermediates. At the same time, photolysis of ibuprofen led to the formation of more toxic intermediates. Furthermore, based on the photocatalytic degradation analysis, the degradation by-products and possible photodegradation pathways of ibuprofen were investigated. The photodegradation tests and electronic spin resonance analyses indicated the significant involvement of superoxide radicals and singlet oxygen in the ibuprofen photodegradation process.
Collapse
Affiliation(s)
- Izabela Malinowska
- Department of Process Engineering and Chemical Technology, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Paweł Kubica
- Department of Analytical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Piotr Madajski
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland
| | - Adam Ostrowski
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179, Poznań, Poland
| | - Cristina Gómez Polo
- Departamento de Ciencias-INAMAT2, Universidad Pública de Navarra, Campus de Arrosadia, 31006, Pamplona, Spain
| | - Laura Carvera
- Departamento de Ciencias-INAMAT2, Universidad Pública de Navarra, Campus de Arrosadia, 31006, Pamplona, Spain
| | - Waldemar Bednarski
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179, Poznań, Poland
| | - Anna Zielińska-Jurek
- Department of Process Engineering and Chemical Technology, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland.
| |
Collapse
|
18
|
Lu T, Fu C, Xiong Y, Zeng Z, Fan Y, Dai X, Huang X, Ge J, Li X. Biodegradation of Aflatoxin B 1 in Peanut Oil by an Amphipathic Laccase-Inorganic Hybrid Nanoflower. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3876-3884. [PMID: 36791339 DOI: 10.1021/acs.jafc.2c08148] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Aflatoxin B1 (AFB1) contamination is an important issue for the safety of edible oils. Enzymatic degradation is a promising approach for removing mycotoxins in a specific, efficient, and green manner. However, enzymatic degradation of mycotoxins in edible oil is challenging as a result of the low activity and stability of the enzyme. Herein, a novel strategy was proposed to degrade AFB1 in peanut oil using an amphipathic laccase-inorganic hybrid nanoflower (Lac NF-P) as a biocatalyst. Owing to the improved microenvironment of the enzymatic reaction and the enhanced stability of the enzyme structure, the proposed amphipathic Lac NF-P showed 134- and 3.2-fold increases in the degradation efficiency of AFB1 in comparison to laccase and Lac NF, respectively. AFB1 was removed to less than 0.96 μg/kg within 3 h when using Lac NF-P as a catalyst in the peanut oil, with the AFB1 concentration ranging from 50 to 150 μg/kg. Moreover, the quality of the peanut oil had no obvious change, and no leakage of catalyst was observed after the treatment of Lac NF-P. In other words, our study may open an avenue for the development of a novel biocatalyst for the detoxification of mycotoxins in edible oils.
Collapse
Affiliation(s)
- Tianying Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Caicai Fu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Zheling Zeng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Yunkai Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Xiao Dai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Jun Ge
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaoyang Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| |
Collapse
|
19
|
Zhao L, Liang X, Liu Y, Wei M, Jin H. A Novel Fluorescent Aptasensor Based on Dual-labeled DNA Nanostructure for Simultaneous Detection of Ochratoxin A and Aflatoxin B1. J Fluoresc 2023:10.1007/s10895-022-03071-5. [PMID: 36806047 DOI: 10.1007/s10895-022-03071-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/02/2022] [Indexed: 02/23/2023]
Abstract
Based on DNA strand replacement reaction and aptamer-specific recognition, a simple dual-labeled DNA nanostructure is designed for the simultaneous detection of Ochratoxin A (OTA) and aflatoxin B1 (AFB1). C1 is labeled with Cy3 and Cy5, while C2 and C3 are labeled with BHQ2. The fluorescence intensity of DNA nanostructure composed of C1, C2 and C3 is weak because of fluorescence resonance energy transfer. When OTA Aptamer (OTA-Apt) and AFB1 Aptamer (AFB1-Apt) are added to the homogeneous system at the same time, C1 can be replaced with the help of toehold strand displacement, resulting in fluorescence enhancement. In the presence of both OTA and AFB1, the toehold strand displacement reaction is inhibited due to preferential binding between the target and their corresponding aptamers. The limit of detection of OTA was 0.007 ng/mL and that of AFB1 was 0.03 ng/mL. The recoveries of OTA and AFB1 were 96%-101% and 97%-101% in the corn sample, and 99%-101% and 92%-106% in the wine sample. Compared with other sensors, the preparation of this aptasensor needs simpler experimental steps and a shorter total-preparing time, confirming the convenient, rapid, and time-saving operation process.
Collapse
Affiliation(s)
- Luyang Zhao
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Xiujun Liang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Yong Liu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China.
| | - Huali Jin
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
20
|
Jing G, Wang Y, Wu M, Liu W, Xiong S, Yu J, Li W, Liu W, Jiang Y. Photocatalytic Degradation and Pathway from Mycotoxins in Food: A Review. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2166062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Guoxing Jing
- School of Chemical Engineering, Xiangtan University, Xiangtan, PR China
| | - Yuanyuan Wang
- School of Chemical Engineering, Xiangtan University, Xiangtan, PR China
| | - Mengping Wu
- School of Chemical Engineering, Xiangtan University, Xiangtan, PR China
| | - Wenjie Liu
- School of Chemical Engineering, Xiangtan University, Xiangtan, PR China
| | - Shaofeng Xiong
- School of Chemical Engineering, Xiangtan University, Xiangtan, PR China
| | - Jianna Yu
- School of Chemical Engineering, Xiangtan University, Xiangtan, PR China
| | - Wenshan Li
- School of Chemical Engineering, Xiangtan University, Xiangtan, PR China
| | - Wen Liu
- School of Chemical Engineering, Xiangtan University, Xiangtan, PR China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
21
|
Qiao M, Liu Y, Wei M. Dual-signal output fluorescent aptasensor based on DNA programmability and gold nanoflowers for multiple mycotoxins detection. Anal Bioanal Chem 2023; 415:277-288. [PMID: 36376716 DOI: 10.1007/s00216-022-04403-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/04/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
Herein, a dual-signal output fluorescent aptamer sensor was constructed for the simultaneous detection of aflatoxin B1 (AFB1) and ochratoxin A (OTA) using the specific recognition ability of aptamers and the programmability of DNA. A functional capture probe (cDNA) was designed with the black hole quenching motif BHQ1 labeled at the 5' end and biotin (bio) labeled at the 3' end. The fluorescent dye Cy3-labeled aflatoxin B1 aptamer (AFB1-Apt) and the carboxyfluorescein FAM-labeled ochratoxin A aptamer (OTA-Apt) were used as two fluorescent probes. The cDNA is anchored to the quenching material gold nanoflowers (AuNFs) by the action of streptavidin (SA) and biotin. Its ends can be complementarily paired with two fluorescent probe bases to form a double-stranded structure. The fluorescence of Cy3 was quenched by AuNFs, and the fluorescence of FAM was quenched by BHQ1 through the fluorescence energy resonance transfer (FRET) effect, forming a fluorescence quenching system. Due to the high affinity of the target and the aptamer, the structure of the aptamer probe changes and detaches from the sensor when AFB1 and OTA are present, resulting in enhanced fluorescence. Under optimal conditions, the linear range of AFB1 was 0.1-100 ng/mL (R2 = 0.996), the limit of detection (LOD) was as low as 0.014 ng/mL, and the limit of quantification (LOQ) was 0.046 ng/mL. The linear range of OTA was 0.1-100 ng/mL (R2 = 0.995), the limit of detection (LOD) was as low as 0.027 ng/mL, and the limit of quantification (LOQ) was 0.089 ng/mL. The sensor had high accuracy in detecting both AFB1 and OTA in real sample analysis. The results of the t test show that there is no significant difference between the results of this study and the high-performance liquid phase (HPLC) method, indicating that the prepared sensor can be used as a potential platform for multiple mycotoxins detection.
Collapse
Affiliation(s)
- Mengxiang Qiao
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Yong Liu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, People's Republic of China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
22
|
An NN, Shang N, Zhao X, Tie XY, Guo WB, Li D, Wang LJ, Wang Y. Occurrence, Regulation, and Emerging Detoxification Techniques of Aflatoxins in Maize: A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2158339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nan-nan An
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Nan Shang
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Xia Zhao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| | - Xiao-yu Tie
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Wen-bo Guo
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Li-jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| | - Yong Wang
- School of Chemical Engineering, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
23
|
Wang Y, Zhang J, Li W, Xie X, Yu W, Xie L, Wei Z, Guo R, Yan H, Zheng Q. Antibacterial poly(butylene succinate-co-terephthalate)/titanium dioxide/copper oxide nanocomposites films for food packaging applications. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.101004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Insight into the boosted ZEN degradation over defective Bi2WO6 ultrathin layers: ROS-mediated mechanism and application in corn oil. Food Chem 2022; 405:134895. [DOI: 10.1016/j.foodchem.2022.134895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 10/01/2022] [Accepted: 11/06/2022] [Indexed: 11/14/2022]
|
25
|
Song C, Yang J, Wang Y, Ding G, Guo L, Qin J. Mechanisms and transformed products of aflatoxin B1 degradation under multiple treatments: a review. Crit Rev Food Sci Nutr 2022; 64:2263-2275. [PMID: 36102160 DOI: 10.1080/10408398.2022.2121910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Aflatoxins, including aflatoxin B1, B2, G1, G2, M1, and M2, are one of the major types of mycotoxins that endangers food safety, human health, and contribute to the immeasurable loss of food and agricultural production in the world yearly. In addition, aflatoxin B1 (AFB1) mainly produced by Aspergilus sp. is the most potent of these compounds and has been well documented to cause the development of hepatocellular carcinoma in humans and animals. This paper reviewed the detoxification and degradation of AFB1, including analysis and summary of the major technologies in physics, chemistry, and biology in recent years. The chemical structure and toxicity of the transformed products, and the degradation mechanisms of AFB1 are overviewed and discussed in this presented review. In addition to the traditional techniques, we also provide a prospective study on the use of emerging detoxification methods such as natural products and photocatalysis. The purpose of this work is to provide reference for AFB1 control and detoxification, and to promote the development of follow-up research.
Collapse
Affiliation(s)
- Chenggang Song
- College of Plant Science, Jilin University, Changchun, P. R. China
| | - Jian Yang
- State Key Laboratory of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Yanduo Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Lanping Guo
- State Key Laboratory of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Jianchun Qin
- College of Plant Science, Jilin University, Changchun, P. R. China
| |
Collapse
|
26
|
Zhao L, Suo Z, He B, Huang Y, Liu Y, Wei M, Jin H. A fluorescent aptasensor based on nitrogen-doped carbon supported palladium and exonuclease III-assisted signal amplification for sensitive detection of AFB1. Anal Chim Acta 2022; 1226:340272. [DOI: 10.1016/j.aca.2022.340272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 11/01/2022]
|
27
|
Feng B, You J, Zhao F, Wei M, Liu Y, Yuan K, Suo Z. A ratiometric fluorescent aptamer homogeneous biosensor based on hairpin structure aptamer for AFB1 detection. J Fluoresc 2022; 32:1695-1701. [PMID: 35665468 DOI: 10.1007/s10895-022-02972-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
On the basis of aptamer (Apt) with hairpin structure and fluorescence resonance energy transfer (FRET), a ratio fluorescent aptamer homogeneous sensor was prepared for the determination of Aflatoxin B1 (AFB1). Initially, the Apt labeled simultaneously with Cy5, BHQ2, and cDNA labeled with Cy3 were formed a double-stranded DNA through complementary base pairing. The fluorescence signal of Cy3 and Cy5 were restored and quenched respectively. Thus, the ratio change of FCy3 to FCy5 was used to realized the detection of AFB1 with wider detection range and lower limit of detection (LOD). The response of the optimized protocol for AFB1 detection was wider linear range from 0.05 ng/mL to 100 ng/mL and the LOD was 12.6 pg/mL. The sensor designed in this strategy has the advantages of simple preparation and fast signal response. It has been used for the detection of AFB1 in labeled corn and wine, and has good potential for application in real samples.
Collapse
Affiliation(s)
- Beibei Feng
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, 450001, Zhengzhou, PR China
| | - Jing You
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, 450001, Zhengzhou, PR China
| | - Fei Zhao
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, 450001, Zhengzhou, PR China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, 450001, Zhengzhou, PR China.
| | - Yong Liu
- College of Chemistry and Chemical Engineering, Henan University, 475004, Kaifeng, China
| | - Kun Yuan
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, 450001, Zhengzhou, PR China
| | - Zhiguang Suo
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, 450001, Zhengzhou, PR China.
| |
Collapse
|
28
|
Ren W, Pang J, Ma R, Liang X, Wei M, Suo Z, He B, Liu Y. A signal on-off fluorescence sensor based on the self-assembly DNA tetrahedron for simultaneous detection of ochratoxin A and aflatoxin B1. Anal Chim Acta 2022; 1198:339566. [DOI: 10.1016/j.aca.2022.339566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 12/27/2022]
|
29
|
Gacem MA, Abd-Elsalam KA. Nanomaterials for the Reduction of Mycotoxins in Cereals. CEREAL DISEASES: NANOBIOTECHNOLOGICAL APPROACHES FOR DIAGNOSIS AND MANAGEMENT 2022:371-406. [DOI: 10.1007/978-981-19-3120-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
30
|
Karapınar HS, Bilgiç A. A new magnetic Fe3O4@SiO2@TiO2-APTMS-CPA adsorbent for simple, fast and effective extraction of aflatoxins from some nuts. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Vázquez-Durán A, Nava-Ramírez MDJ, Hernández-Patlán D, Solís-Cruz B, Hernández-Gómez V, Téllez-Isaías G, Méndez-Albores A. Potential of Kale and Lettuce Residues as Natural Adsorbents of the Carcinogen Aflatoxin B 1 in a Dynamic Gastrointestinal Tract-Simulated Model. Toxins (Basel) 2021; 13:771. [PMID: 34822555 PMCID: PMC8617829 DOI: 10.3390/toxins13110771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Adsorption of the carcinogen aflatoxin B1 (AFB1) onto agro-waste-based materials is a promising alternative over conventional inorganic binders. In the current study, two unmodified adsorbents were eco-friendly prepared from kale and lettuce agro-wastes. A dynamic gastrointestinal tract-simulated model was utilized to evaluate the removal efficiency of the sorptive materials (0.5%, w/w) when added to an AFB1-contaminated diet (100 µg AFB1/kg). Different characterization methodologies were employed to understand the interaction mechanisms between the AFB1 molecule and the biosorbents. Based on adsorption results, the biosorbent prepared from kale was the best; its maximum adsorption capacity was 93.6%, which was significantly higher than that of the lettuce biosorbent (83.7%). Characterization results indicate that different mechanisms may act simultaneously during adsorption. Non-electrostatic (hydrophobic interactions, dipole-dipole interactions, and hydrogen bonding) and electrostatic interactions (ionic attractions) together with the formation of AFB1-chlorophyll complexes appear to be the major influencing factors driving AFB1 biosorption.
Collapse
Affiliation(s)
- Alma Vázquez-Durán
- Unidad de Investigación Multidisciplinaria (UIM) L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán (FES-C), Universidad Nacional Autónoma de México (UNAM), Mexico City 54714, Mexico; (A.V.-D.); (M.d.J.N.-R.)
| | - María de Jesús Nava-Ramírez
- Unidad de Investigación Multidisciplinaria (UIM) L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán (FES-C), Universidad Nacional Autónoma de México (UNAM), Mexico City 54714, Mexico; (A.V.-D.); (M.d.J.N.-R.)
| | | | - Bruno Solís-Cruz
- UIM L5 (LEDEFAR), FES-C, UNAM, Mexico City 54714, Mexico; (D.H.-P.); (B.S.-C.)
| | | | | | | |
Collapse
|
32
|
Physical and Chemical Methods for Reduction in Aflatoxin Content of Feed and Food. Toxins (Basel) 2021; 13:toxins13030204. [PMID: 33808964 PMCID: PMC7999035 DOI: 10.3390/toxins13030204] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/25/2022] Open
Abstract
Aflatoxins (AFs) are among the most harmful fungal secondary metabolites imposing serious health risks on both household animals and humans. The more frequent occurrence of aflatoxins in the feed and food chain is clearly foreseeable as a consequence of the extreme weather conditions recorded most recently worldwide. Furthermore, production parameters, such as unadjusted variety use and improper cultural practices, can also increase the incidence of contamination. In current aflatoxin control measures, emphasis is put on prevention including a plethora of pre-harvest methods, introduced to control Aspergillus infestations and to avoid the deleterious effects of aflatoxins on public health. Nevertheless, the continuous evaluation and improvement of post-harvest methods to combat these hazardous secondary metabolites are also required. Already in-use and emerging physical methods, such as pulsed electric fields and other nonthermal treatments as well as interventions with chemical agents such as acids, enzymes, gases, and absorbents in animal husbandry have been demonstrated as effective in reducing mycotoxins in feed and food. Although most of them have no disadvantageous effect either on nutritional properties or food safety, further research is needed to ensure the expected efficacy. Nevertheless, we can envisage the rapid spread of these easy-to-use, cost-effective, and safe post-harvest tools during storage and food processing.
Collapse
|