1
|
Hu Z, Zou Y, Ma Z, Liu W, Jin X, Yang J. Rapid screening and identification of targeted and non-targeted illegal added drugs in functional foods by MRSIT-HRMS based on NIST screening database. Food Chem 2024; 446:138913. [PMID: 38452505 DOI: 10.1016/j.foodchem.2024.138913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
The last few decades have witnessed the increasing consumption of functional foods, leading to the expansion of the worldwide market. However, the illegal addition drugs in functional foods remains incessant despite repeated prohibition, making it a key focus of strict crackdowns by regulatory authorities. Effective analytical tools and procedures are desperately needed to rapidly screen and identify illegally added drugs in a large number of samples, given the growing amount and diversity of these substances in functional foods. The MRSIT-HRMS (Multiple Sample Rapid Introduction combined with High Resolution Mass Spectrometry) without chromatographic separation, after direct sampling, utilizes NIST software (National Institute of Standards and Technology) matching with a home-built library to target identification and non-targeted screen of illegal additives. When applied to 50 batches of suspicious samples, the targeted method detected illegal added drugs in 41 batches of samples, while the non-targeted method screened a new phosphodiesterase-5 (PDE-5) inhibitor type structural derivative. The positive results obtained by the targeted method were consistent with LC-MS/MS (QQQ). The novel MRSIT-HRMS with a limit of quantification (LOD) of 1 μg/mL achieved 100 % correct identification for all 50 batches of actual samples, demonstrating its potential as a highly promising and powerful tool for fast screening of illegally added drugs in functional food, especially when compared to traditional LC-MS/MS methods. This is essential for ensuring drug safety and public health.
Collapse
Affiliation(s)
- Ziyan Hu
- Nanjing Institute for Food and Drug Control, Nanjing 211198, China; Key Laboratory of Food Authenticity Identification Technology for Jiangsu Province Market Regulation, Nanjing 211198, China.
| | - Yixuan Zou
- National Institute of Metrology, Beijing 100029, China
| | - Zhi Ma
- Nanjing Institute for Food and Drug Control, Nanjing 211198, China; Key Laboratory of Food Authenticity Identification Technology for Jiangsu Province Market Regulation, Nanjing 211198, China
| | - Wenting Liu
- Nanjing Institute for Food and Drug Control, Nanjing 211198, China; Key Laboratory of Food Authenticity Identification Technology for Jiangsu Province Market Regulation, Nanjing 211198, China
| | - Xin Jin
- Nanjing Institute for Food and Drug Control, Nanjing 211198, China; Key Laboratory of Food Authenticity Identification Technology for Jiangsu Province Market Regulation, Nanjing 211198, China
| | - Jun Yang
- Nanjing Institute for Food and Drug Control, Nanjing 211198, China; Key Laboratory of Food Authenticity Identification Technology for Jiangsu Province Market Regulation, Nanjing 211198, China.
| |
Collapse
|
2
|
Boti V, Martinaiou P, Gkountouras D, Albanis T. Target and suspect screening approaches for the identification of emerging and other contaminants in fish feeds using high resolution mass spectrometry. ENVIRONMENTAL RESEARCH 2024; 251:118739. [PMID: 38503377 DOI: 10.1016/j.envres.2024.118739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Fish feed is essential in aquaculture fish production because, along with beneficial nutrients and components, many suspected compounds can be transferred to fish and ultimately to humans. In this context, a comprehensive analysis was conducted to monitor various pesticides and pharmaceutical compounds in aquaculture fish feed through target analysis and many other groups of chemicals via suspect screening approaches. In this study, the QuEChERS extraction method was optimized, validated, and applied to fifty-four fish feed samples collected from different production batches. This was followed by liquid chromatography-high-resolution linear ion trap/Orbitrap mass spectrometry (LC-HR-IT/Orbitrap-MS) for targeted and suspect screening purposes. In general, pesticides provided satisfactory recoveries (70-105.5 %), with quantification limits lower than 5 ng g-1, whereas pharmaceuticals displayed recoveries ranging from 70.5 to 120.2 %, with quantification limits below 25 ng g-1. In addition, the matrix effects and measurement uncertainty were assessed to provide more accurate and high-confidence results. Pirimiphos-methyl was detected and quantified in 20 of 54 fish feed samples (37 %) at concentrations <77 ng g-1. Finally, suspect screening revealed the occurrence of 10 mycotoxins (e.g., citrinin, aflatoxin G2, zearalenone, and alternariol), two pesticides excluding the target pesticides (tebuconazole and fenazaquin), perfluorooctane sulfonic acid (PFOS) in almost 2 % of the samples, and ethoxyquin (antioxidant), with 12 of its Transformation Products (TPs). Finally, suspect analysis incorporated in routine analyses have proven to have great potential for complete monitoring.
Collapse
Affiliation(s)
- Vasiliki Boti
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece; Institute of Environment and Sustainable Development, University Research Center of Ioannina (URCI), Ioannina, 45110, Greece.
| | | | | | - Triantafyllos Albanis
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece; Institute of Environment and Sustainable Development, University Research Center of Ioannina (URCI), Ioannina, 45110, Greece
| |
Collapse
|
3
|
Turnipseed SB. Analysis of chemical contaminants in fish using high resolution mass spectrometry - A review. TRENDS IN ENVIRONMENTAL ANALYTICAL CHEMISTRY 2024; 42:e00227. [PMID: 38957876 PMCID: PMC11215702 DOI: 10.1016/j.teac.2024.e00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
High resolution mass spectrometry (HRMS) has become an important tool in environmental and food safety analysis. This review highlights how HRMS has been used to analyze chemical contaminants in fish. Measuring and documenting chemical contaminants in fish serves not only as an indicator of environmental conditions but can also monitor the health of these animals and help protect an important source of human food. The incidence and significance of contaminants including veterinary drugs, human drugs and personal care products, pesticides, persistent organic pollutants, per- and poly fluorinated substances, and marine toxins will be reviewed. The advantage of HRMS over traditional MS is its ability to expand the number of compounds that can be detected and identified. This is true whether HRMS is used for targeted analytes, or more broadly for suspect screening and nontargeted analyses. The classes of compounds, types of fish or seafood, options for data acquisition and analysis, and reports of unexpected findings from recent HMRS methods for chemical contaminants in fish are summarized.
Collapse
Affiliation(s)
- Sherri B Turnipseed
- US Food and Drug Administration, Animal Drugs Research Center, Denver, CO, USA
| |
Collapse
|
4
|
Szabo D, Falconer TM, Fisher CM, Heise T, Phillips AL, Vas G, Williams AJ, Kruve A. Online and Offline Prioritization of Chemicals of Interest in Suspect Screening and Non-targeted Screening with High-Resolution Mass Spectrometry. Anal Chem 2024; 96:3707-3716. [PMID: 38380899 PMCID: PMC10918621 DOI: 10.1021/acs.analchem.3c05705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Recent advances in high-resolution mass spectrometry (HRMS) have enabled the detection of thousands of chemicals from a single sample, while computational methods have improved the identification and quantification of these chemicals in the absence of reference standards typically required in targeted analysis. However, to determine the presence of chemicals of interest that may pose an overall impact on ecological and human health, prioritization strategies must be used to effectively and efficiently highlight chemicals for further investigation. Prioritization can be based on a chemical's physicochemical properties, structure, exposure, and toxicity, in addition to its regulatory status. This Perspective aims to provide a framework for the strategies used for chemical prioritization that can be implemented to facilitate high-quality research and communication of results. These strategies are categorized as either "online" or "offline" prioritization techniques. Online prioritization techniques trigger the isolation and fragmentation of ions from the low-energy mass spectra in real time, with user-defined parameters. Offline prioritization techniques, in contrast, highlight chemicals of interest after the data has been acquired; detected features can be filtered and ranked based on the relative abundance or the predicted structure, toxicity, and concentration imputed from the tandem mass spectrum (MS2). Here we provide an overview of these prioritization techniques and how they have been successfully implemented and reported in the literature to find chemicals of elevated risk to human and ecological environments. A complete list of software and tools is available from https://nontargetedanalysis.org/.
Collapse
Affiliation(s)
- Drew Szabo
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden
| | - Travis M. Falconer
- Forensic
Chemistry Center, Office of Regulatory Science, Office of Regulatory
Affairs, US Food and Drug Administration, Cincinnati, Ohio 45237, United States
| | - Christine M. Fisher
- Center
for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland 20740, United States
| | - Ted Heise
- MED
Institute Inc, West Lafayette, Indiana 47906, United States
| | - Allison L. Phillips
- Center
for Public Health and Environmental Assessment, US Environmental Protection Agency, Corvallis, Oregon 97333, United States
| | - Gyorgy Vas
- VasAnalytical, Flemington, New Jersey 08822, United States
- Intertek
Pharmaceutical Services, Whitehouse, New Jersey 08888, United States
| | - Antony J. Williams
- Center
for Computational Toxicology and Exposure, Office of Research and
Development, US Environmental Protection
Agency, Durham, North Carolina 27711, United States
| | - Anneli Kruve
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden
- Department
of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
| |
Collapse
|
5
|
B Turnipseed S, R Casey C. Suspect screening for chemical residues in aquacultured shrimp and fish using liquid chromatography-high resolution mass spectrometry: comparison of data evaluation approaches. Anal Bioanal Chem 2024; 416:733-744. [PMID: 37725115 PMCID: PMC10984254 DOI: 10.1007/s00216-023-04927-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
High-resolution mass spectrometry (HRMS) has become an important tool for monitoring chemical residues in food, but the time and effort required to evaluate the large amount of data generated by HRMS can be a limiting factor in the widespread application of this tool. Suspect screening, i.e., searching HRMS data against large compound databases or mass lists, represents a practical compromise between using HRMS data to only look for target compounds and performing full non-target analysis. Several different approaches for suspect screening using HRMS data were tested using data from shrimp and eel spiked with veterinary drugs and pesticides as well as from imported aquaculture samples. Most of the analytes (>70%) in the spiked samples were detected and identified by searching against compound databases. To query larger databases and on-line resources such as mzCloud, it was necessary to use software capable of differential analysis and selective filtering, such as Compound Discoverer. Using selective filtering, the number of compounds detected in fish sample extracts could be reduced from tens of thousands to a few hundred by subtracting method blanks and comparing to matrix blank extracts. This smaller list of potential compounds could be further evaluated and compared to available databases and libraries. Analysis of imported aquaculture samples resulted in detection of unexpected contaminants including the dewormer levamisole, the insecticide buprofezin, and potentially the plant alkaloid ricinine.
Collapse
Affiliation(s)
- Sherri B Turnipseed
- Animal Drugs Research Center, Office of Regulatory Affairs, U.S. Food and Drug Administration, P.O. Box 25087, Denver, CO, 80225-0087, USA.
| | - Christine R Casey
- Denver Laboratory, Office of Regulatory Affairs, U.S. Food and Drug Administration, P.O. Box 25087, Denver, CO, 80225-0087, USA
| |
Collapse
|
6
|
Tan H, Sun F, Abdallah MF, Li J, Zhou J, Li Y, Yang S. Background ions into exclusion list: A new strategy to enhance the efficiency of DDA data collection for high-throughput screening of chemical contaminations in food. Food Chem 2022; 385:132669. [PMID: 35299021 DOI: 10.1016/j.foodchem.2022.132669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 01/25/2023]
Abstract
Foods contaminated with hazardous compounds, could pose potential risks for human health. To date, there is still a big challenge in accurate identification. In this study, a novel data-dependent acquisition (DDA) approach, based on a combination of inclusion list and exclusion list, was proposed to acquire more effective MS/MS spectra. This strategy was successfully applied in a large-scale screening survey to detect 50 mycotoxins in oats, 155 veterinary drugs in dairy milk, and 200 pesticides in tomatoes. Compared with traditional acquisition modes, this new strategy has higher detection rate, particularly at ultra-low concentration by eliminating background influence, thereby generating the MS/MS spectra for more potential hazardous materials instead of matrix interference. Additionally, the obtained MS/MS spectra are simpler and more likely to be traced back than DIA. Moreover, this new strategy would be more comprehensively applied in food safety monitoring with the improvement of HRMS and post-acquisition techniques.
Collapse
Affiliation(s)
- Haiguang Tan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Feifei Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China; College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Mohamed F Abdallah
- Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Jinhui Zhou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yi Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Shupeng Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| |
Collapse
|
7
|
Jansen LJM, Nijssen R, Bolck YJC, Wegh RS, van de Schans MGM, Berendsen BJA. Systematic assessment of acquisition and data-processing parameters in the suspect screening of veterinary drugs in archive matrices using LC-HRMS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 39:272-284. [PMID: 34854800 DOI: 10.1080/19440049.2021.1999507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Monitoring strategies for veterinary drugs in products of animal origin are shifting towards a more risk-based approach. Such strategies not only target a limited number of predefined .substances but also facilitate detection of unexpected substances. By combining the use of archive matrices such as feather meal with suspect-screening methods, early detection of new hazards in the food and feed industry can be achieved. Effective application of such strategies is hampered by complex data interpretation and therefore, targeted data analysis is commonly applied. In this study, the performance of a suspect-screening data processing workflow using a suspect list or the online spectral database mzCloudTM was explored to facilitate detection of veterinary drugs in archive matrices. Data evaluation parameters specifically investigated for application of a suspect list were mass tolerance and the addition or omission of retention times. Application of a mass tolerance of 1.5 ppm leads to an increase in the number of false positives, as does omission of retention times in the suspect list. Different acquisition modes yielding different qualities of MS2 data were studied and proved to be a critical factor, where data-dependent acquisition is preferred when matching to the mzCloudTM database. Using this approach, it is possible to search for compounds on a dedicated suspect list based on the exact mass and retention times and, at the same time, detect unexpected compounds without a priori information. A pilot study was conducted and fourteen different antibiotics were detected (and confirmed by MS/MS). Three of these antibiotics were not included in the suspect list. The optimised suspect-screening method proved to be fit for the purpose of finding veterinary drugs in feather meal, which are not in the scope of the current monitoring methods and therefore, it gives added value in the perspective of a risk-based monitoring.
Collapse
Affiliation(s)
- Larissa J M Jansen
- Authenticity & Veterinary Drugs, Wageningen Food Safety Research, Wageningen, The Netherlands
| | - Rosalie Nijssen
- Contaminants & Toxicology, Wageningen Food Safety Research, Wageningen, The Netherlands
| | - Yvette J C Bolck
- Authenticity & Veterinary Drugs, Wageningen Food Safety Research, Wageningen, The Netherlands
| | - Robin S Wegh
- Authenticity & Veterinary Drugs, Wageningen Food Safety Research, Wageningen, The Netherlands
| | - Milou G M van de Schans
- Authenticity & Veterinary Drugs, Wageningen Food Safety Research, Wageningen, The Netherlands
| | - Bjorn J A Berendsen
- Authenticity & Veterinary Drugs, Wageningen Food Safety Research, Wageningen, The Netherlands
| |
Collapse
|
8
|
Peter KT, Phillips AL, Knolhoff AM, Gardinali PR, Manzano CA, Miller KE, Pristner M, Sabourin L, Sumarah MW, Warth B, Sobus JR. Nontargeted Analysis Study Reporting Tool: A Framework to Improve Research Transparency and Reproducibility. Anal Chem 2021; 93:13870-13879. [PMID: 34618419 PMCID: PMC9408805 DOI: 10.1021/acs.analchem.1c02621] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-targeted analysis (NTA) workflows using mass spectrometry are gaining popularity in many disciplines, but universally accepted reporting standards are nonexistent. Current guidance addresses limited elements of NTA reporting-most notably, identification confidence-and is insufficient to ensure scientific transparency and reproducibility given the complexity of these methods. This lack of reporting standards hinders researchers' development of thorough study protocols and reviewers' ability to efficiently assess grant and manuscript submissions. To overcome these challenges, we developed the NTA Study Reporting Tool (SRT), an easy-to-use, interdisciplinary framework for comprehensive NTA methods and results reporting. Eleven NTA practitioners reviewed eight published articles covering environmental, food, and health-based exposomic applications with the SRT. Overall, our analysis demonstrated that the SRT provides a valid structure to guide study design and manuscript writing, as well as to evaluate NTA reporting quality. Scores self-assigned by authors fell within the range of peer-reviewer scores, indicating that SRT use for self-evaluation will strengthen reporting practices. The results also highlighted NTA reporting areas that need immediate improvement, such as analytical sequence and quality assurance/quality control information. Although scores intentionally do not correspond to data/results quality, widespread implementation of the SRT could improve study design and standardize reporting practices, ultimately leading to broader use and acceptance of NTA data.
Collapse
Affiliation(s)
- Katherine T Peter
- U.S. National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, South Carolina 29412, United States
| | - Allison L Phillips
- U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, Durham, North Carolina 27709, United States
| | - Ann M Knolhoff
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 5001 Campus Drive, HFS-707, College Park, Maryland 20740, United States
| | - Piero R Gardinali
- Institute of Environment and Department of Chemistry & Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, Florida 33181, United States
| | - Carlos A Manzano
- Faculty of Science, University of Chile, 3425 Las Palmeras, 7750000 Nunoa RM, Chile
- School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, United States
| | - Kelsey E Miller
- U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, Durham, North Carolina 27709, United States
| | - Manuel Pristner
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Street 38, 1090 Vienna, Austria
| | - Lyne Sabourin
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| | - Mark W Sumarah
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Street 38, 1090 Vienna, Austria
| | - Jon R Sobus
- U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, Durham, North Carolina 27709, United States
| |
Collapse
|
9
|
Knolhoff AM, Premo JH, Fisher CM. A Proposed Quality Control Standard Mixture and Its Uses for Evaluating Nontargeted and Suspect Screening LC/HR-MS Method Performance. Anal Chem 2020; 93:1596-1603. [PMID: 33274925 DOI: 10.1021/acs.analchem.0c04036] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nontargeted (NTA) and suspect screening analyses (SSA) aim to detect and identify unknown compounds of interest from a given sample. The complexity and diversity of NTA and SSA methodologies necessitate the use of a comprehensive quality control standard mixture to determine if methods are fit for purpose, but to our knowledge, such a standard has not been developed that can be used by multiple disciplines, nor is one readily available. This work describes the development and analysis of a proposed nontargeted standard/quality control mixture for NTA and SSA applications using liquid chromatography/electrospray ionization-high resolution-mass spectrometry. Considerations in its development included achieving diversity of compounds with respect to elemental composition, molecular weight, retention time, and ionization in positive and/or negative ion modes, which resulted in the inclusion of 89 compounds. The utility of the standard mixture was applied on our own NTA and SSA workflows where sample preparation efficiency and potential sources of error due to instrumental and data processing methods were evaluated. Some areas in need of improvement were identified, such as hydrophilic compound detection and molecular formula generation for compounds containing fluorine. However, our overall methodology was found to be fit for purpose and we were able to establish thresholds to increase reliability and throughput of reported results.
Collapse
Affiliation(s)
- Ann M Knolhoff
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 5001 Campus Drive, College Park, Maryland 20740, United States
| | - Jacob H Premo
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 5001 Campus Drive, College Park, Maryland 20740, United States
| | - Christine M Fisher
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 5001 Campus Drive, College Park, Maryland 20740, United States
| |
Collapse
|