1
|
Liu X, Yu L, Fang Y, Zhang W, Li G, Zeng X, Zhang Y. Construction and controlled flavor release of high internal phase emulsion stabilized by pH-driven-assembled soy peptide nanoparticles. Food Chem 2025; 471:142806. [PMID: 39798366 DOI: 10.1016/j.foodchem.2025.142806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/02/2025] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
This study aimed to evaluate the potential of pH-driven assembled soy peptide nanoparticle (SPN) to prepare high internal phase emulsions (HIPEs) containing sweet orange essential oil (SOEO), and the effects of SPN concentration and oil phase fraction on the formation, stability and flavor release characteristics were investigated. Results showed that stable HIPEs with excellent self-supporting state were successfully fabricated at relative high SPN concentrations (0.5-3.0 wt%). And the increase in SPN concentration could cause smaller droplet size, better viscoelastic properties and stability. The flavor release of SOEO in SPN-stabilized HIPEs could be slowed down and modulated by regulating SPN concentration, and the retention of key flavor compound (d-limonene) in SOEO encapsulated in HIPEs could be reached to higher than 70 % after 120 days of storage. All these indicated the effective encapsulation and delivery of SOEO in SPN-stabilized HIPEs and their prospective application as fat substitutes in plant-based food systems.
Collapse
Affiliation(s)
- Xiaoting Liu
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Limei Yu
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yu Fang
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Weijia Zhang
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Guanghui Li
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaofang Zeng
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yuanhong Zhang
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
2
|
Li X, Huang J, Tan R. Gliadin hydrolysates nanoparticles improve the bioavailability and antioxidant activity of berberine. Food Chem 2025; 482:143934. [PMID: 40199152 DOI: 10.1016/j.foodchem.2025.143934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/28/2025] [Accepted: 03/16/2025] [Indexed: 04/10/2025]
Abstract
Berberine (BBR) is an alkaloid with multiple physiological activities, but its low bioavailability limits its effectiveness in vivo. This study developed soluble nano delivery carriers using gliadin hydrolysates (GLH) to enhance BBR's bioavailability. The research evaluated the encapsulation efficiency, stability, release characteristics, and antioxidant capacities of GLH-BBR nanoparticles (GLH-BBR NPs) both in vitro and in vivo. Results showed that at a 5:1 GLH-to-BBR mass ratio, the encapsulation efficiency reached 74.95 %. GLH-BBR NPs increased DPPH radical scavenging from 19.19 % to 40.28 % and ABTS radical scavenging from 4.26 % to 60.96 %, compared to BBR alone. In vitro tests showed that GLH-BBR NPs inhibited BBR release during gastric digestion and promoted sustained release in the intestine. In addition, GLH-BBR NPs enhanced BBR's bioavailability and in vivo antioxidant activity. These findings support the development of sustainable peptide byproducts for high-quality delivery platforms.
Collapse
Affiliation(s)
- Xiaoxiao Li
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Key Laboratory of Advanced Technologies of Material, Minister of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Jihong Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food laboratory of Zhongyuan, Luohe 462300, China; The Functional Food Green Manufacturing Collaborative Innovation Center, Henan Province, Xuchang University, Xuchang 461000, China.
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Key Laboratory of Advanced Technologies of Material, Minister of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
3
|
Chen T, Hong L, Wang P, Teng Q, Fang F, Liu Q. Protective Effect and Gut Microbiota Modulation of Grifola frondosa Antioxidant Peptides in Sodium Dextran Sulfate-Induced Ulcerative Colitis Mice. Biotechnol Appl Biochem 2025. [PMID: 39957377 DOI: 10.1002/bab.2734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/25/2025] [Indexed: 02/18/2025]
Abstract
Grifola frondosa antioxidant peptides (GFAP) were prepared through trypsin enzymolysis and characterized. This study conducted a comprehensive assessment of clinical symptoms, colon pathological injuries, levels of inflammatory factors, expression of inflammation-related proteins, and alterations in gut microbiota composition in mice with ulcerative colitis (UC). The findings demonstrated that GFAP effectively mitigated UC, alleviated mucosal damage, and reduced inflammatory infiltration. Specifically, GFAP administration resulted in significant reductions in pro-inflammatory cytokines IL-6, IL-1β, and TNF-α, while enhancing the expression levels of tight junction proteins such as Occludin and ZO-1. Additionally, GFAP treatment led to decreased levels of Toll-like receptor 4 (TLR-4), inducible nitric oxide synthase (iNOS), and TNF-α. Noteworthy, GFAP also influenced the gut microbiota by decreasing the abundance of Proteobacteria and increasing Bacteroidetes and Firmicutes. Moreover, specific bacteria like Bacteroides uniformis and Alistipes exhibited elevated abundances following GFAP treatment. In summary, GFAP exhibited preventive and protective effects against UC in mice by effectively alleviating clinical symptoms and modulating gut microbiota composition.
Collapse
Affiliation(s)
- Tong Chen
- Laboratory of Medicinal and Edible Fungi, Department of Vegetables, College of Horticulture, China Agricultural University, Beijing, China
| | - Linhai Hong
- Laboratory of Medicinal and Edible Fungi, Department of Vegetables, College of Horticulture, China Agricultural University, Beijing, China
| | - Peng Wang
- Laboratory of Medicinal and Edible Fungi, Department of Vegetables, College of Horticulture, China Agricultural University, Beijing, China
| | - Qian Teng
- Laboratory of Medicinal and Edible Fungi, Department of Vegetables, College of Horticulture, China Agricultural University, Beijing, China
| | - Fei Fang
- Laboratory of Medicinal and Edible Fungi, Department of Vegetables, College of Horticulture, China Agricultural University, Beijing, China
| | - Qinghong Liu
- Laboratory of Medicinal and Edible Fungi, Department of Vegetables, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Li H, Wu X, Wu W. Natural protein-polysaccharide-phenol complex particles from rice bran as novel food-grade Pickering emulsion stabilizers. Int J Biol Macromol 2024; 277:134314. [PMID: 39094879 DOI: 10.1016/j.ijbiomac.2024.134314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/03/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
To develop novel food-grade Pickering emulsion stabilizers, insoluble rice bran protein-polysaccharide-phenol natural complex (IRBPPP) was prepared into Pickering emulsion stabilizers after different mechanical pretreatments (shear, high-pressure homogenization, ultrasonic, and combined mechanical pretreatment). With the increase in mechanical pretreatment types, the covalent binding of proteins and polysaccharides in IRBPPP gradually enhanced, the breakage efficiency of IRBPPP gradually increased (IRBPPP particle size decreased from 220.54 to 67.89 μm, the specific surface area of IRBPPP particle increased from 993.47 to 2033.86 cm-1/g), and the microstructure of IRBPPP gradually showed an orderly network structure, which enhanced the IRBPPP dispersion stability and the Pickering emulsion stability. Pickering emulsion stability was highly correlated (P < 0.01) with the breakage efficiency of IRBPPP particles. Overall, the combined mechanical pretreatment improved the stability of the IRBPPP-stabilized Pickering emulsion. The study added value to rice bran products and offered a new way to create stable food-grade Pickering emulsions for functional foods using natural protein-polysaccharide-phenol complex particles.
Collapse
Affiliation(s)
- Helin Li
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaojuan Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Wei Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
5
|
Huang X, Xia B, Liu Y, Wang C. Non-covalent interactions between rice protein and three polyphenols and potential application in emulsions. Food Chem X 2024; 22:101459. [PMID: 38803669 PMCID: PMC11129171 DOI: 10.1016/j.fochx.2024.101459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
Rice protein (RP) and polyphenols are often used in functional foods. This study investigated the non-covalent interactions between RP and three polyphenols (curcumin, CUR; quercetin, QUE; resveratrol, RES) and used the complexes as emulsifiers to create emulsions. Three polyphenols interacted with RP to varying extents, with QUE showing the greatest binding affinity and inducing the greatest alterations in its secondary structure. Molecular docking analysis elucidated the driving forces between them including hydrophobic interactions, hydrogen bonding, and van der Waals forces. Combination with QUE or RES induced structural changes of RP, increasing particle size of complexes. The synergistic effect of polyphenols and protein also enhanced radical scavenging capacity of complexes. Compared to pure protein, all complexes successfully created emulsions with smaller particle size (378-395 nm vs. 470 nm), higher absolute potential (37.43-38.26 mV vs. 35.62 mV), and greater lipid oxidation stability by altering protein conformation.
Collapse
Affiliation(s)
- Xin Huang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Boxue Xia
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yaxuan Liu
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
6
|
Pukhrambam PD, Devi KK, Maibam C, Mutum RD, Devi ML, Das S. Phenolics and flavonoids from Polygonum posumbu and comparision of flavonoid compounds content in different tissues (leaves, stems and roots). Fitoterapia 2024; 174:105864. [PMID: 38408515 DOI: 10.1016/j.fitote.2024.105864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/28/2024]
Abstract
The growing global need for antioxidative phenolics and flavonoids for maintenance of human health resulted into search of new sustainable unexplored medicinal plants used by the traditional healers for various ailments. Many synthetic based products of phenolics and flavonoids have been used, however the demand of eco-friendly, natural herbal based products are increasing. As a result, the current study aims to explore traditional potential of Polygonum posumbu related to its phenolics and flavonoids. Optimization of extraction parameters were employed which includes: solvent selection (water, ethanol, methanol, acetone and ethyl acetate), ethanol composition (40-100%), solvent to sample ratio (30-70 ml/g), temperature (50-80 °C) and time (1-5 h). Under optimal conditions, total phenolics (TPC), total flavonoids (TFC), the extract yield (EY) and antioxidant activities of leaves extract were 162.79 ± 2.28 mg GAE/g, 56.57 ± 6.22 mg QE/g 27.96 ± 0.91%, and 27.34 ± 0.98 μg/ml respectively. Seven flavonoids were quantified in different tissues with significant (p ≤ 0.05) differences found in flavonoids contents in different parts of the plant. Highest concentration of flavonoids was observed in stems: (-)-epicatechin-53.19 ± 1.13 mg/g, myricetin-15.90 ± 0.13 mg/g, quercetin-50.66 ± 0.08 mg/g, luteolin-43.10 ± 0.47 mg/g, apigenin-16.73 ± 0.43 mg/g. Leaves and roots had the highest amount of genistein (05.06 ± 0.01 mg/g) and kaempferol (11.13 ± 0.06 mg/g) respectively. From the study it had been found that Polygonum posumbu possess a very good amount of phenolics and flavonoids and this study details first ever investigation on this plant in terms of phenolics and flavonoids. Therefore, this study enhanced the importance of this bioresource in functional food or nutraceutical industries.
Collapse
Affiliation(s)
- Premi Devi Pukhrambam
- Laboratory of Plant Molecular Genetics and Genomics, Institute of Bioresources and Sustainable Development, Takyelpat, Imphal 795001, Manipur, India; Department of Biotechnology, Gauhati University, Guwahati 781014, Assam, India.
| | - Khomdram Khedashwori Devi
- Laboratory of Plant Molecular Genetics and Genomics, Institute of Bioresources and Sustainable Development, Takyelpat, Imphal 795001, Manipur, India
| | - Chingoileima Maibam
- Laboratory of Plant Molecular Genetics and Genomics, Institute of Bioresources and Sustainable Development, Takyelpat, Imphal 795001, Manipur, India
| | - Roseeta Devi Mutum
- Laboratory of Plant Molecular Genetics and Genomics, Institute of Bioresources and Sustainable Development, Takyelpat, Imphal 795001, Manipur, India
| | - Moirangthem Lakshmipriyari Devi
- Laboratory of Plant Molecular Genetics and Genomics, Institute of Bioresources and Sustainable Development, Takyelpat, Imphal 795001, Manipur, India
| | - Sudripta Das
- Laboratory of Plant Molecular Genetics and Genomics, Institute of Bioresources and Sustainable Development, Takyelpat, Imphal 795001, Manipur, India
| |
Collapse
|
7
|
Zhang X, Hao J, Ma D, Li Z, Zhang S, Li Y. Alcalase-hydrolyzed insoluble soybean meal hydrolysate aggregates: Structure, bioactivity, function properties, and influences on the stability of oil-in-water emulsions. Int J Biol Macromol 2024; 265:131014. [PMID: 38521310 DOI: 10.1016/j.ijbiomac.2024.131014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
We studied the influences of hydrolysis time on the structure, functional properties, and emulsion stability of insoluble soybean meal hydrolysate aggregates (ISMHAs). We assume that the ISMHAs produced by soybean meal can be used as emulsifiers to prepare stable emulsions. The molecular weights of these ISMHAs were below 53 kDa. After hydrolysis, a decrease in α-helices and an increase in random coils indicated that the soybean meal proteins were unfolding. Moreover, the fluorescence intensity, UV absorption, and surface hydrophobicity of ISMHAs increased. These results would contribute to their antioxidant activity and functional properties. Additionally, the 90-min ISMHA sample exhibited the highest ABTS+• scavenging activity (80.02 ± 4.55 %), foaming stability (52.92 ± 8.06 %), and emulsifying properties (emulsifying activity index of 97.09 m2/g; emulsifying stability index of 371.47 min). The 90-min ISMHA emulsion exhibited the smallest particle size and excellent storage stability. Soybean meal peptide by-product emulsifier has potential for sustainable application.
Collapse
Affiliation(s)
- Xiaoying Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaqi Hao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Danhua Ma
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ziyu Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
8
|
Wang X, Feng S, Song H. Caffeic Acid Phenethyl Ester Encapsulated in Self-Assemble Rice Peptides Nanoparticles: Storage Stability, In Vitro Release, and Their Interaction Mechanisms. Foods 2024; 13:755. [PMID: 38472867 DOI: 10.3390/foods13050755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Caffeic acid phenethyl ester (CAPE) is an important active component of propolis with many bioactivities. However, its efficiency and practical application are restricted due to its poor aqueous solubility and storage stability. In this study, a nanocarrier was fabricated to encapsulate CAPE using self-assembled rice peptides obtained by controllable enzymolysis. The physicochemical properties, encapsulation efficiency, and loading capacity of rice peptides nanoparticles (RPNs) were characterized. The storage stability, in vitro release, and interaction mechanisms between CAPE and RPNs were investigated. The results showed that RPNs, mainly assembled by disulfide bonds and hydrogen bonds, possessed an effective diameter of around 210 nm and a high encapsulation efficiency (77.77%) and loading capacity (3.89%). Importantly, the water solubility of CAPE was increased by 45 times after RPNs encapsulation. Moreover, RPNs encapsulation also significantly increased CAPE stability, about 1.4-fold higher than that of unencapsulated CAPE after 18-day storage. An in vitro release study demonstrated that RPNs could delay the release of CAPE, implying a better CAPE protection against extreme environments during digestion. Hydrogen bond and van der Waals force are the predominant interaction forces between RPNs and CAPE. Therefore, the newly developed nanoparticle is a potential delivery system that could effectively improve the aqueous solubility and stability of CAPE.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Siyi Feng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| |
Collapse
|
9
|
Ansari MA. Nanotechnology in Food and Plant Science: Challenges and Future Prospects. PLANTS (BASEL, SWITZERLAND) 2023; 12:2565. [PMID: 37447126 DOI: 10.3390/plants12132565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Globally, food safety and security are receiving a lot of attention to ensure a steady supply of nutrient-rich and safe food. Nanotechnology is used in a wide range of technical processes, including the development of new materials and the enhancement of food safety and security. Nanomaterials are used to improve the protective effects of food and help detect microbial contamination, hazardous chemicals, and pesticides. Nanosensors are used to detect pathogens and allergens in food. Food processing is enhanced further by nanocapsulation, which allows for the delivery of bioactive compounds, increases food bioavailability, and extends food shelf life. Various forms of nanomaterials have been developed to improve food safety and enhance agricultural productivity, including nanometals, nanorods, nanofilms, nanotubes, nanofibers, nanolayers, and nanosheets. Such materials are used for developing nanofertilizers, nanopesticides, and nanomaterials to induce plant growth, genome modification, and transgene expression in plants. Nanomaterials have antimicrobial properties, promote plants' innate immunity, and act as delivery agents for active ingredients. Nanocomposites offer good acid-resistance capabilities, effective recyclability, significant thermostability, and enhanced storage stability. Nanomaterials have been extensively used for the targeted delivery and release of genes and proteins into plant cells. In this review article, we discuss the role of nanotechnology in food safety and security. Furthermore, we include a partial literature survey on the use of nanotechnology in food packaging, food safety, food preservation using smart nanocarriers, the detection of food-borne pathogens and allergens using nanosensors, and crop growth and yield improvement; however, extensive research on nanotechnology is warranted.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
10
|
Camelo-Silva C, Figueredo LL, Cesca K, Verruck S, Ambrosi A, Di Luccio M. Membrane Emulsification as an Emerging Method for Lacticaseibacillus rhamnosus GG ® Encapsulation. FOOD BIOPROCESS TECH 2023:1-17. [PMID: 37363380 PMCID: PMC10120479 DOI: 10.1007/s11947-023-03099-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/12/2023] [Indexed: 06/28/2023]
Abstract
Techniques capable of producing small-sized probiotic microcapsules with high encapsulation yields are of industrial and scientific interest. In this study, an innovative membrane emulsification system was investigated in the production of microcapsules containing Lacticaseibacillus rhamnosus GG® (Lr), sodium alginate (ALG), and whey protein (WPI), rice protein (RPC), or pea protein (PPC) as encapsulating agents. The microcapsules were characterized by particle size distribution, optical microscopy, encapsulation yield, morphology, water activity, hygroscopicity, thermal properties, Fourier-transform infrared spectroscopy (FTIR), and probiotic survival during in vitro simulation of gastrointestinal conditions. The innovative encapsulation technique resulted in microcapsules with diameters varying between 18 and 29 μm, and encapsulation yields > 93%. Combining alginate and whey, rice, or pea protein improved encapsulation efficiency and thermal properties. The encapsulation provided resistance to gastrointestinal fluids, resulting in high probiotic viability at the end of the intestinal phase (> 7.18 log CFU g-1). The proposed encapsulation technology represents an attractive alternative to developing probiotic microcapsules for future food applications. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s11947-023-03099-w.
Collapse
Affiliation(s)
- Callebe Camelo-Silva
- Laboratory of Membrane Processes, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970 Brazil
| | - Lais Leite Figueredo
- Laboratory of Membrane Processes, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970 Brazil
| | - Karina Cesca
- Laboratory of Biological Engineering, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970 Brazil
| | - Silvani Verruck
- Department of Food Science and Technology, Agricultural Sciences Center, Federal University of Santa Catarina, Florianópolis, SC 88034-001 Brazil
| | - Alan Ambrosi
- Laboratory of Membrane Processes, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970 Brazil
| | - Marco Di Luccio
- Laboratory of Membrane Processes, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970 Brazil
| |
Collapse
|
11
|
Tu Y, Zhang X, Wang L. Effect of salt treatment on the stabilization of Pickering emulsions prepared with rice bran protein. Food Res Int 2023; 166:112537. [PMID: 36914309 DOI: 10.1016/j.foodres.2023.112537] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023]
Abstract
In this study, salt addition (NaCl and CaCl2) was utilized to improve the stability of emulsions formed by rice bran protein (RBP). The result showed that salt addition improved the adsorption of protein on the oil-water interface and enhanced the physical stability of emulsions. Compared to NaCl condition, emulsions with CaCl2 (especially 200 mM) addition exhibited more significant storage stability, as microscopy images showed emulsion structure unchanged and droplet size increasing slightly from 12.02 µm to 16.04 µm in 7 days. It was attributed to the strengthened particle complexation with CaCl2 and the increased hydrophobic interactions, which is explained by the improved particle size (260.93 nm), surface hydrophobicity (1890.10) and fluorescence intensity, thus inducing dense and hardly destroyed interfacial layers. Rheological behavior analyses suggested that salt-induced emulsions had higher viscoelasticity and maintained a stable gel-like structure. The result of study explored the mechanism of salt treated protein particles, developed a further understanding of Pickering emulsion, and was beneficial to the application of RBP.
Collapse
Affiliation(s)
- Yi Tu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Xinxia Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Li Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
| |
Collapse
|
12
|
Tang T, Wu N, Tang S, Xiao N, Jiang Y, Tu Y, Xu M. Industrial Application of Protein Hydrolysates in Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1788-1801. [PMID: 36692023 DOI: 10.1021/acs.jafc.2c06957] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Protein hydrolysates, which may be produced by the protein in the middle of the process or added as an ingredient, are part of the food formula. In food, protein hydrolysates are found in many forms, which can regulate the texture and functionality of food, including emulsifying properties, foaming properties, and gelation. Therefore, the relationship between the physicochemical and structural characteristics of protein hydrolysates and their functional characteristics is of significant importance. In recent years, researchers have conducted many studies on the role of protein hydrolysates in food processing. This Review explains the relationship between the structure and function of protein hydrolysates, and their interaction with the main ingredients of food, to provide reference for their development and further research.
Collapse
Affiliation(s)
- Tingting Tang
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuaishuai Tang
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Nanhai Xiao
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Jiang
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
13
|
Hydrolyzed rice glutelin nanoparticles as particulate emulsifier for Pickering emulsion: Structure, interfacial properties, and application for encapsulating curcumin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Effect of molecular weight on the interfacial and emulsifying characteristics of rice glutelin hydrolysates. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Yusoff IM, Mat Taher Z, Rahmat Z, Chua LS. A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Res Int 2022; 157:111268. [DOI: 10.1016/j.foodres.2022.111268] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 12/27/2022]
|
16
|
Wang C, Wu J, Wang C, Mu C, Ngai T, Lin W. Advances in Pickering emulsions stabilized by protein particles: Toward particle fabrication, interaction and arrangement. Food Res Int 2022; 157:111380. [DOI: 10.1016/j.foodres.2022.111380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022]
|
17
|
Tovar CA, Lima KO, Alemán A, Montero MP, Gómez-Guillén MC. The effect of chitosan nanoparticles on the rheo-viscoelastic properties and lipid digestibility of oil/vinegar mixtures (vinaigrettes). J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
18
|
Zuo Z, Zhang X, Li T, Zhou J, Yang Y, Bian X, Wang L. High internal phase emulsions stabilized solely by sonicated quinoa protein isolate at various pH values and concentrations. Food Chem 2022; 378:132011. [PMID: 35042113 DOI: 10.1016/j.foodchem.2021.132011] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022]
Abstract
In this study, stable high internal phase emulsions (HIPEs) constructed solely by sonicated quinoa protein isolate (QPI) at various pH values and protein concentrations (c) were constructed, and differences of HIPE microstructures at these conditions were discussed. HIPEs stabilized by QPI at pH 7.0, 9.0 possessed smaller droplet size (14-24 μm), smoother appearance, and higher physical stability which were caused by polyhedral framework microstructure. However, at acidic conditions, QPI aggregates filled in the gaps between droplets (30-52 μm) instead of adsorbing to oil-water interface, which decreased the stability. The solid-like viscoelasticity of HIPEs were enhanced when the c increased while the increment of pH value had the significant opposite effect (decreased from about G' 1000 Pa, G″ 280 Pa to G' 350 Pa, G″ 50 Pa) due to the microstructure difference. This study broadens the commercial applications of quinoa protein in novel food products like fat substitutes.
Collapse
Affiliation(s)
- Zhongyu Zuo
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xinxia Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Ting Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianjun Zhou
- Zhejiang Tianxia Zhengfang Agricultural Development Co., Ltd., Jinhua 321000, China
| | - Yang Yang
- Zhejiang Tianxia Zhengfang Agricultural Development Co., Ltd., Jinhua 321000, China
| | - Xiaobo Bian
- Jinhua Academy of Agricultural Sciences, Jinhua 321000, China
| | - Li Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
19
|
Li W, Jiao B, Li S, Faisal S, Shi A, Fu W, Chen Y, Wang Q. Recent Advances on Pickering Emulsions Stabilized by Diverse Edible Particles: Stability Mechanism and Applications. Front Nutr 2022; 9:864943. [PMID: 35600821 PMCID: PMC9121063 DOI: 10.3389/fnut.2022.864943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/23/2022] [Indexed: 01/03/2023] Open
Abstract
Pickering emulsions, which are stabilized by particles, have gained considerable attention recently because of their extreme stability and functionality. A food-grade particle is preferred by the food or pharmaceutical industries because of their noteworthy natural benefits (renewable resources, ease of preparation, excellent biocompatibility, and unique interfacial properties). Different edible particles are reported by recent publications with distinct shapes resulting from the inherent properties of raw materials and fabrication methods. Furthermore, they possess distinct interfacial properties and functionalities. Therefore, this review provides a comprehensive overview of the recent advances in the stabilization of Pickering emulsions using diverse food-grade particles, as well as their possible applications in the food industry.
Collapse
Affiliation(s)
- Wei Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bo Jiao
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Sisheng Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shah Faisal
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Weiming Fu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yiying Chen
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
20
|
Leng X, Cheng S, Wu H, Nian Y, Zeng X, Hu B. High Internal Phase Emulsions Stabilized with Polyphenol-Amyloid Fibril Supramolecules for Encapsulation and Protection of Lutein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2328-2338. [PMID: 35133823 DOI: 10.1021/acs.jafc.1c04615] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High internal phase emulsions (HIPEs), also called highly concentrated emulsions with a minimal internal phase volume fraction of 74%, have been paid increasing attention in the development of functional foods due to their high potential in loading with large amounts of hydrophobic nutriceuticals. In the present study, HIPEs stabilized by polyphenol-amyloid supramolecular filaments were prepared for encapsulation of olive oil and loading with lutein. Binding and stacking of the green tea polyphenol epigallocatechin gallate (EGCG) on the surface of amyloid fibrils fabricated from hen egg lysozyme resulted in the hybrid supramolecules, which assembled to form hydrogels. The amyloid fibril clusters shrouded by EGCG were observed in the microstructure of the hydrogels characterized by atomic force microscopy (AFM). HIPEs stabilized by the EGCG-amyloid fibril supramolecules showed the typical microstructure of highly packed polyhedral geometric oil droplets. The gel strength of the HIPEs stabilized by the hybrid supramolecules was greater than that of HIPEs stabilized by pure amyloid fibrils. The droplet size of the HIPEs first decreased and then increased with the increase of EGCG contents in the hybrid supramolecules, which was consistent with the corresponding emulsion morphologies obtained from the images of confocal laser scanning microscopy (CLSM). Aggregation of the protein-based nanofibrils appeared in the continuous phase at higher EGCG contents. The droplet size of the HIPEs decreased with the increase of the amyloid fibril concentration, accompanied by more packed and homogenously dispersed lipid droplets, as shown in the CLSM images. A high loading content of lutein of up to 10 mg/mL in the prepared HIPEs was realized, and the stability of lutein against ultraviolet irradiation, heat, iron, and hydrogen peroxide was promoted significantly. In addition, encapsulation with the HIPEs prevented the oxidization of olive oil, and this effect was enhanced with the increase of the EGCG content in the hybrid supramolecules ranging from 0 to 0.25 wt %. The protection function of the HIPEs might be ascribed to the membrane of interfacial amyloid fibrils and the crowded oil droplet environment, both of which could shield the pro-oxidation factors.
Collapse
Affiliation(s)
- Xue Leng
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, P. R. China
| | - Siying Cheng
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, P. R. China
| | - Huaqian Wu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, P. R. China
| | - Yingqun Nian
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, P. R. China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, P. R. China
| | - Bing Hu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, P. R. China
| |
Collapse
|
21
|
Zhang W, Jia N, Zhu Z, Wang Y, Wang J, Xue C. Changes of antioxidative activities and peptidomic patterns of Auxenochlorella pyrenoidosa protein hydrolysates: Effects of enzymatic hydrolysis and decoloration processes. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Niu F, Zhang Q, Yu J, Huo Y, Zhuo L, Niu D, Pan W. Interfacial adsorption behavior of ovalbumin/ sodium carboxymethyl cellulose colloidal particles: The effects of preparation methods. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Huang Y, Xiang X, Luo X, Li X, Yu X, Li S. Study on the emulsification and oxidative stability of ovalbumin-pectin-pumpkin seed oil emulsions using ovalbumin solution prepared by ultrasound. ULTRASONICS SONOCHEMISTRY 2021; 78:105717. [PMID: 34509956 PMCID: PMC8441206 DOI: 10.1016/j.ultsonch.2021.105717] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 05/07/2023]
Abstract
Pumpkin seed oil (PSO), which is a valuable compound with high nutritional value used for the prevention of various chronic diseases, is prone to oxidation. In this work, small and uniform (su) ovalbumin (OVA) and pectin (PEC) were used to stabilize PSO in the form of an emulsion. The results showed that suOVA-PEC-PSO emulsion with a droplet size of 9.82 ± 0.05 μm was successfully self-assembled from PSO, PEC, and suOVA solution (with a droplet size of 230.13 ± 14.10 nm) treated with 300 W ultrasound, owing to the formation of a more stable interfacial film on the surface of droplets. The interfacial, rheological, emulsifying, and antioxidant properties of the suOVA-PES-PSO emulsions were excellent, owing to the synergistic effects between PEC and suOVA solution. Moreover, the physical stability of the suOVA-PEC-PSO emulsions to salt stress, a freeze-thaw cycle, and heat treatment was also increased and the oxidation of linolenic acid was notably delayed. These results have extended the food-related applications of OVA and PSO, and provide a promising foundation for further exploration of the self-assembly of composite emulsions by small and uniform proteins.
Collapse
Affiliation(s)
- Yu Huang
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology/School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xiaole Xiang
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China
| | - Xiaoying Luo
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology/School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 102488, China.
| | - Xiongwei Yu
- Wuhan Xudong Food Co., Ltd., Wuhan 430000, China
| | - Shugang Li
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology/School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China; Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
24
|
Li XL, Xie QT, Liu WJ, Xu BC, Zhang B. Self-Assembled Pea Protein Isolate Nanoparticles with Various Sizes: Explore the Formation Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9905-9914. [PMID: 34412476 DOI: 10.1021/acs.jafc.1c02105] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pea protein isolate nanoparticles (PPINs) were successfully prepared by potassium metabisulfite (K2S2O5). The disulfide bonds were disrupted by K2S2O5, and then the PPINs were formed through self-assembly. The average diameter of PPINs increased from 124.7 to 297.5 nm as the concentration of K2S2O5 was increased from 2 to 8 mM, and the PPINs showed higher ζ-potentials (-32.2 to -35.8 mV) and unimodal distribution. The content of free sulfhydryl groups first increased and then decreased with the fracture and reformation of disulfide bonds. Subsequently, the increase of the β-sheet, which has considerable hydrophobicity, promoted the formation of PPINs. The formation mechanism of PPINs was explored by dissociation tests: hydrophobic interactions maintained the basic skeleton of PPINs, disulfide bonds stabilized the internal structure, and hydrogen bonds existed on the exterior of the particles. This study provided a simple and economical method to fabricate nanoparticles.
Collapse
Affiliation(s)
- Xiao-Long Li
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| | - Qiu-Tao Xie
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410082, P. R. China
| | - Wen-Jie Liu
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| | - Bao-Cai Xu
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| | - Bao Zhang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| |
Collapse
|
25
|
Zhang T, Xu J, Chen J, Wang Z, Wang X, Zhong J. Protein nanoparticles for Pickering emulsions: A comprehensive review on their shapes, preparation methods, and modification methods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|