1
|
Chumpon P, M N P, Lee DW, Soodpakdee K, Song JI. Sustainable chitosan bio-resin composites reinforced with flax fibers for high-performance food packaging. Int J Biol Macromol 2025; 309:142990. [PMID: 40210033 DOI: 10.1016/j.ijbiomac.2025.142990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
This study proposes an innovative strategy for developing chitosan-based bio-resin composites as sustainable alternatives to address the environmental impacts of petroleum-derived plastics in food packaging. The chitosan matrix was enhanced using a synergistic formulation of sorbitol (50 % w/v) as a plasticizer and genipin (0.1 % w/v) as a cross-linking agent, which significantly improved its mechanical and functional performance. Further reinforcement with short flax fibers (5 wt%) resulted in a chitosan-flax fiber (CS/FF) composite with a remarkable 220 % increase in tensile strength, reaching 11.20 MPa, and an enhanced thermal stability with an onset degradation temperature of 350 °C. The composite demonstrated exceptional functional properties, including 98 % UV-blocking efficiency, superior antibacterial activity with a 90 % reduction in microbial growth, and complete biodegradability within 30 days. Additionally, preservation trials on bananas showed a broad extension in shelf life compared with conventional packaging materials. These findings highlight the potential of CS/FF composites as high-performance, biodegradable alternatives for smart food packaging applications, offering an environmentally sustainable solution that combines advanced mechanical and functional properties with effective food preservation capabilities.
Collapse
Affiliation(s)
- Pawarit Chumpon
- Department of Mechanical Engineering Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon, Gyeongsangnam-do 51140, Republic of Korea
| | - Prabhakar M N
- Research Institute of Mechatronics, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon, Gyeongsangnam-do 51140, Republic of Korea; Bristol Composite Institute, School of Civil, Aerospace and Design Engineering, University of Bristol, Bristol BS8 1UP, United Kingdom.
| | - Dong Woo Lee
- Research Institute of Mechatronics, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon, Gyeongsangnam-do 51140, Republic of Korea
| | - Kanjana Soodpakdee
- Microbial Products and Innovation Research Group, School of Science, Mae Fah Luang University, 333 Tha Sut, Mueang Chiang Rai District, Chiang Rai 57100, Thailand
| | - Jung-Il Song
- Research Institute of Mechatronics, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon, Gyeongsangnam-do 51140, Republic of Korea
| |
Collapse
|
2
|
Zhu Y, Sang L, Sharafeldin S, Zhao L, Chen R, Wang C, Xue Y, Shen Q. The effects of chitosan oligosaccharides on the structure and shelf-life of whole-millet cakes. Food Chem 2025; 466:142267. [PMID: 39631132 DOI: 10.1016/j.foodchem.2024.142267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/16/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
The production of high-quality gluten-free whole-millet cakes presents significant challenges to the food industry. This research examined the impact of chitosan oligosaccharides (COS) on the structural properties and shelf life of whole-millet cakes. Fourier transform infrared spectroscopy and X-ray diffraction analyses revealed that hydrogen bonding between COS and millet starch reduced the relative crystallinity of the cakes. Increased concentrations of COS were associated with a reduction in free water migration within the system, thereby enhancing water retention capacity. A suitable concentration of COS contributed to a more continuous protein network structure, preserving the internal integrity of the cakes. At a COS concentration of 0.8 %, minimal changes were observed in color, hardness, springiness, and moisture loss during storage. Furthermore, the incorporation of COS extended the shelf-life of the cakes by 3-6 days. These findings suggest that COS enhances the quality and storage stability of gluten-free food products.
Collapse
Affiliation(s)
- Yiqing Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
| | - Luman Sang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
| | - Sameh Sharafeldin
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Department of Food and Dairy Sciences and Technology, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Liangxing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
| | - Rui Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
| | - Chao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| | - Yong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| |
Collapse
|
3
|
Li H, Lv Y, Zhang Y, Wang X, Li Z, Qu J. Improvement of the freezing resistance characteristics of yeast in dough starter. Food Chem 2024; 458:140258. [PMID: 38959800 DOI: 10.1016/j.foodchem.2024.140258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Improving the freezing resistance of yeast in dough starters is one of the most effective methods to promote the healthy development of frozen dough technology. When the dough starter was composed of yeast, lactic acid bacteria and acetic acid bacteria, the microbial proportion was 10:1:5, and the ratio of wheat flour to corn flour was 1:1. The proline contents of the starters and the survival rates and fermentation capacity of yeast significantly increased compared with those of the starter composed of yeast and wheat flour only (P < 0.05). Laser confocal microscopy observation showed that the cell membrane damage of yeast obviously decreased. Low-field nuclear magnetic resonance method revealed that the water distribution state of starters changed. Adding corn flour and acetic acid bacteria to dough starter in appropriate proportions improves yeast freezing resistance.
Collapse
Affiliation(s)
- Haifeng Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Yulan Lv
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yingmiao Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Xifeng Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Zhijian Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jianhang Qu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
4
|
Ha E, Kweon M. Assessing the Impact of Arabinoxylans on Dough Mixing Properties and Noodle-Making Performance through Xylanase Treatment. Foods 2024; 13:3158. [PMID: 39410193 PMCID: PMC11475448 DOI: 10.3390/foods13193158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/20/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
This study examined the impact of xylanases, focusing on the hydrolysis of water-extractable (WE-AX) and water-unextractable arabinoxylans (WU-AX) and on the quality and noodle-making performance of flours with varying gluten strengths. Flours categorized as strong (S), medium (M), and weak (W) were treated with two xylanases (WE and WU) at concentrations ranging from 0.01% to 0.2%. Parameters such as solvent retention capacity (SRC), SDS sedimentation volume, dough mixing properties, and noodle characteristics were measured. The SRC revealed that flour S had the highest water-holding capacity, gluten strength, and arabinoxylan content. Xylanase treatment reduced water SRC values in flour S and increased the SDS sedimentation volume, with a greater effect from xylanase WU, indicating the potential enhancement of gluten strength. The impact of xylanases was pronounced at higher enzyme concentrations, with differences in dough mixing properties, resistance, and extensibility of fresh noodles, producing softer and stretchable noodles. Cooked noodles made from flours treated with xylanase were softer and had decreased firmness and chewiness, especially those made from flours S and M. This study concludes that WE-AX and WU-AX influence noodle texture; therefore, controlling their degradation with xylanases can produce noodles with varied textures, depending on the gluten strength of the flour.
Collapse
Affiliation(s)
- Eunbin Ha
- Nutrition Education Major, Department of Education, Pusan National University, Busan 46241, Republic of Korea;
| | - Meera Kweon
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
- Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
5
|
Obadi M, Li Y, Xu B. Recent advances in extending the shelf life of fresh wet noodles: Influencing factors and preservation technologies. J Food Sci 2023; 88:3626-3648. [PMID: 37548645 DOI: 10.1111/1750-3841.16719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/20/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
Fresh wet noodles (FWNs) are popular among people and have attracted increasing attention because of their characteristics of freshness, chewiness, good taste, and better maintenance of noodle flavor. However, due to the high moisture content and abundance of nutrients in FWN, they are prone to spoilage, which shortens their shelf life and reduces their quality, greatly restricting their large-scale production. Therefore, seeking effective preservation methods to prolong the shelf life is a major breakthrough for the industrialization of FWN. The present review provides a comprehensive overview of the main factors that contribute to the spoilage and degradation of FWN. These factors encompass microorganisms, moisture content, nutritional composition, enzymes, and storage temperature. Moreover, the recent developments in novel shelf-life extension technology applied to FWN, such as chemical preservatives, natural preservatives, physical treatment technologies, and composite preservation technology, are presented and discussed. From the literature reviewed, the application of technologies, such as adding preservatives, modified atmosphere packaging, microwave, cold plasma, ozone, and other technologies, has a certain effect on improving the shelf life of FWN, but the single preservation technology still has some deficiencies. In order to further improve the preservation efficiency, using two or more preservation methods is an important direction for future research on the preservation technology of FWN.
Collapse
Affiliation(s)
- Mohammed Obadi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuntong Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Jishou University, Jishou, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
The effect of chitosan oligosaccharides on the shelf-life and quality of fresh wet noodles. Carbohydr Polym 2023; 309:120704. [PMID: 36906365 DOI: 10.1016/j.carbpol.2023.120704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
In this study, the effects of chitosan oligosaccharides (COS) on the microbial stability and quality properties of fresh wet noodles were evaluated. The addition of COS prolonged the shelf-life of fresh wet noodles at 4 °C by 3-6 days and effectively inhibited the growth of acidity value. However, the presence of COS increased the cooking loss of noodles significantly (P < 0.05) and decreased the hardness as well as tensile strength significantly (P < 0.05). The enthalpy of gelatinization (ΔH) was decreased by COS in the differential scanning calorimetry (DSC) analysis. Meanwhile, the addition of COS decreased the relative crystallinity of starch (from 24.93 % to 22.38 %) without changing the type of X-ray diffraction pattern, revealing that COS weakened the structural stability of starch. In addition, COS was observed to impair the development of compact gluten network by confocal laser scanning micrographs. Further, the free-sulfhydryl groups content and sodium dodecyl sulphate-extractable protein (SDS-EP) values of cooked noodles increased significant (P < 0.05), confirming the obstruction on the polymerization of gluten proteins during the hydrothermal process. Although COS adversely affected the quality of noodles, it was outstanding and feasible for the preservation of fresh wet noodles.
Collapse
|
7
|
Duan J, Zhou Q, Fu M, Cao M, Jiang M, Zhang L, Duan X. Research on Properties of Edible Films Prepared from Zein, Soy Protein Isolate, Wheat Gluten Protein by Adding Beeswax. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Wang YH, Zhang YR, Wang X, Yang YY, Guo WM, Fei YX, Qiao L. Improving the surface tackiness of frozen cooked noodles by the addition of glutenin, gliadin, and gluten. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
9
|
Lin Q, Shen H, Ma S, Zhang Q, Yu X, Jiang H. Morphological Distribution and Structure Transition of Gluten Induced by Various Drying Technologies and Its Effects on Chinese Dried Noodle Quality Characteristics. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-02993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Kai Y, Liu Y, Li H, Yang H. Wakame replacement alters the metabolic profile of wheat noodles after in vitro digestion. Food Res Int 2023; 164:112394. [PMID: 36737976 DOI: 10.1016/j.foodres.2022.112394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
The development of nutritional noodles of high quality has become a new hotspot of research in the area of food science. Since wakame is edible seaweed rich in dietary fiber and proteins and rarely found in ordinary noodle, this study investigated the release of metabolites, the texture quality, and the rheological properties of wakame noodle, as well as the mechanism by which extruded wakame flours can influence noodle texture and viscoelasticity through digestion. Basically, nuclear magnetic resonance spectra were applied to identify the 46 metabolites including amino acids, saccharides, fatty acids, and other metabolites. Both PCA and OPLS-DA model showed fit goodness and good predictivity, which were assessed the increasing release of most metabolites. Structural studies discussed the effects on the enhancement of interlinkage with gluten matrix and protein matrix, which were validated via the decreasing instantaneous compliance J0 (1.64 × 10-5 to 0.16 × 10-5 Pa-1). Wakame addition best matched the physiochemical properties of noodle, in terms of chewiness (99.10 vs 122.66 g.mm), gumminess (281.98 vs. 323.44 g), and gel strength (132.65 vs 173.95 kPa•s-1). Beyond the functional characteristics it contributes benefits like reduction of diet-related diabetes. As a consequence, the creation of personalized nutritious, healthy noodles will be an innovative route from a scientific viewpoint and an application standpoint.
Collapse
Affiliation(s)
- Yi Kai
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Yi Liu
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Hongliang Li
- Guangzhou Welbon Biological Technology Co., Ltd, Guangzhou, Guangdong 523660, PR China
| | - Hongshun Yang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
11
|
Study on the quality characteristics of hot-dry noodles by microbial polysaccharides. Food Res Int 2023; 163:112200. [PMID: 36596138 DOI: 10.1016/j.foodres.2022.112200] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
The effect of curdlan gum (CG), gellan gum (GG), and xanthan gum (XG) on the quality characteristics of hot-dry noodles (HDN) was investigated. The rheology properties were used to evaluate the quality of the dough, the textural, viscosity, cooking characteristics and water states were investigated to study the quality changes of HDN. Three microbial polysaccharides were found that it could improve the quality of wheat flour and significantly increase the starch viscosity of HDN and delay the water migration rate of HDN. When 0.2% CG, 0.5% GG, and 0.5% XG were added, the HDN showed the best flour swelling power, texture, and tensile properties, and the structure of gluten network was significantly improved. The flourier transform infrared spectroscopy results showed that microbial polysaccharides with appropriate concentrations changed the formation of hydrogen bond in HDN, decreased α-helix and increased β-turn content. Meanwhile, the relative continuous and complete gluten network was formed, which could be proven by microstructure observation. This study provides a reference for functionality applications of HDN with microbial polysaccharides.
Collapse
|
12
|
Qi X, Hong T, Nie A, Xu D, Jin Y, Xu X, Wu F. Impacts of surfactin on the qualities and gluten network structure of fresh noodles during storage. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Zang P, Gao Y, Chen P, Lv C, Zhao G. Recent Advances in the Study of Wheat Protein and Other Food Components Affecting the Gluten Network and the Properties of Noodles. Foods 2022; 11:3824. [PMID: 36496632 PMCID: PMC9738829 DOI: 10.3390/foods11233824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Upon hydrating and mixing wheat flour, wheat protein forms a network that strongly affects the structure and physicochemical properties of dough, thus affecting the properties of noodles. Different approaches have been taken to alter the gluten network structure in order to control the dough properties. In the current review, we summarize the structure and function of wheat protein, including glutenin and gliadin, and describe food components that may affect noodle quality by interacting with wheat protein. In fact, the ratio of glutenin to gliadin is closely related to the viscosity of dough, and disulfide bonds also contribute to the gluten network formation. Meanwhile, wheat protein coexists with starch and sugar in wheat dough, and thus the nature of starch may highly influence gluten formation as well. Salts, alkali, enzymes and powdered plant food can be added during dough processing to regulate the extensional properties of wheat noodles, obtaining noodles of high quality, with improved sensory and storage properties. This review describes specific methods to reinforce the wheat protein network and provides a reference for improving noodle quality.
Collapse
Affiliation(s)
- Peng Zang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Yang Gao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Pu Chen
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
14
|
Yang W, Zhu K, Guo X. Effect of Bacteria Content in Wheat Flour on Storage Stability of Fresh Wet Noodles. Foods 2022; 11:foods11193093. [PMID: 36230168 PMCID: PMC9563474 DOI: 10.3390/foods11193093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
The effect of bacteria content in wheat flour on shelf life and storage stability of fresh wet noodles (FWNs) was evaluated in this study. Nine kinds of wheat flour with different bacterial contents were selected to make FWNs. With the increase in total plate count (TPC) from 120 CFU/g to 5500 CFU/g in flour, the shelf life of FWNs decreased from 23 d to 9 d at 4 °C. During storage, the acidity increased, which was significantly correlated with the change of TPC (p < 0.05), and the pH value and L* value of FWNs decreased significantly (p < 0.05). Changes in viscosity characteristics of starch components were also detected, the higher the TPC in flour, the more obvious the viscosity decreased. Moreover, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed that with the deterioration of FWNs, some low molecular weight protein subunits increased; texture analysis showed that the hardness of noodles increased firstly and then decreased, the adhesiveness increased and the springiness decreased during storage. In summary, choosing flour with low TPC to prepare FWNs can extend the shelf life and slow down the quality deterioration of FWNs during storage at 4 °C.
Collapse
|
15
|
Zhang M, Ma M, Jia R, Yang T, Sun Q, Li M. Delineating the dynamic transformation of gluten morphological distribution, structure, and aggregation behavior in noodle dough induced by mixing and resting. Food Chem 2022; 386:132853. [PMID: 35378343 DOI: 10.1016/j.foodchem.2022.132853] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/04/2022] [Accepted: 03/27/2022] [Indexed: 12/16/2022]
Abstract
To understand the formation of gluten network and its regulation on noodle qualities upon mixing and resting, the dynamic distribution and molecular transformation of gluten were tracked and quantified. Confocal laser scanning microscopy and scanning electron microscopy images showed that appropriate mixing (8 min) and resting (60 min) induced a compact gluten network with higher gluten junctions. Both height and width of protein molecular chains were increased by hydration during mixing and reduced after excessive resting (90 min). According to the size exclusion/reversed phase-HPLC profiles, mixing induced slight depolymerization of large glutenin polymer, and α-gliadin subunits were more susceptible to polymerization after appropriate mixing and resting. Increased mixing time was accompanied by the strengthening of ionic and hydrogen bonds, and the weakening of hydrophobic interaction. PCA and correlation analysis revealed the accurate regulation of mixing and resting induced dynamic distribution and evolution of gluten on the macroscopic noodle qualities.
Collapse
Affiliation(s)
- Mengli Zhang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, PR China
| | - Meng Ma
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, PR China; Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Services, Beltsville 20705, United States
| | - Ruobing Jia
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, PR China
| | - Tianbao Yang
- Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Services, Beltsville 20705, United States
| | - Qingjie Sun
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, PR China
| | - Man Li
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, PR China.
| |
Collapse
|
16
|
Ge Z, Wang W, Xu M, Gao S, Zhao Y, Wei X, Zhao G, Zong W. Effects of Lactobacillus plantarum and Saccharomyces cerevisiae co-fermentation on the structure and flavor of wheat noodles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4697-4706. [PMID: 35191031 DOI: 10.1002/jsfa.11830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Although traditional fermented noodles possess high eating quality, it is difficult to realize large-scale industrialization as a result of the complexity of spontaneous fermentation. In present study, commercial Lactobacillus plantarum and Saccharomyces cerevisiae were applied in the preparation of fermented noodles. RESULTS The changes in the structural characteristics and aroma components of noodles after fermentation were investigated via scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), low-field magenetic resonance imaging, electronic nose, and simultaneous distillation and extraction/gas chromatography-mass spectrometry (GC-MS) analysis. SEM images revealed that co-fermentation of the L. plantarum and S. cerevisiae for 10-40 min enhanced the continuity of the gluten network and promoted the formation of pores. FTIR spectra analysis showed that the co-fermentation increased significantly (P < 0.05) the proportion of α-helices of noodles gluten protein, enhancing the orderliness of the molecular structure of protein. After fermentation for 10-40 min, the signal density of hydrogen protons increased from the surface to the core, indicating that the water in the noodles migrated inward during a short fermentation process. The results of multivariate statistical analysis demonstrated that the main aroma differences between unfermented and fermented noodles were mainly in hydrocarbons, aromatic compounds and inorganic sulfides. GC-MS analysis indicated that the main volatile compounds detected were 2, 4-di-tert-butylphenol, bis (2-ethylhexyl) adipate, butyl acetate, dibutyl phthalate, dioctyl terephthalate, bis (2-ethylhexyl) phthalate, pentanol and 2-pentylfuran, etc. CONCLUSION: Co-fermentation with L. plantarum and S. cerevisiae improved the structure of gluten network and imparted more desirable volatile components to wheat noodles. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhenzhen Ge
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Weijing Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- HaoXiangNi Health Food Co., Ltd, Zhengzhou, China
| | - Mingyue Xu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Shanshan Gao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuxiang Zhao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xiaopeng Wei
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Guangyuan Zhao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Wei Zong
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| |
Collapse
|
17
|
Du Y, Li W, Mariga AM, Fang Y, Sun X, Hu Q, Pei F. Effect of
Auricularia auricula
polysaccharide on characteristic structure, rheological properties, and tensile texture in whole wheat dough. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yifei Du
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance 210023 Nanjing China
| | - Wen Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance 210023 Nanjing China
| | - Alfred Mugambi Mariga
- Faculty of Agriculture and Food Science Meru University of Science and Technology Meru County, P.O Box 972‐602400 Kenya
| | - Yong Fang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance 210023 Nanjing China
| | - Xinyang Sun
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance 210023 Nanjing China
| | - Qiuhui Hu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance 210023 Nanjing China
| | - Fei Pei
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance 210023 Nanjing China
| |
Collapse
|
18
|
Zhao TT, Guo XN, Zhu KX. Effect of phosphate salts on the shelf-life and quality characteristics of semi-dried noodles. Food Chem 2022; 384:132481. [DOI: 10.1016/j.foodchem.2022.132481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 11/24/2022]
|
19
|
Zhang T, Guan E, Yang Y, Zhang L, Liu Y, Bian K. Comparison and mechanism analysis of the changes in viscoelasticity and texture of fresh noodles induced by wheat flour lipids. Food Chem 2022; 397:133567. [DOI: 10.1016/j.foodchem.2022.133567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/04/2022]
|
20
|
Wang YH, Zhang YR, Yang YY, Shen JQ, Zhang QM, Zhang GZ. Effect of wheat gluten addition on the texture, surface tackiness, protein structure, and sensory properties of frozen cooked noodles. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Gao H, Liu Y, Cao M, Zeng J. Effects of composite preservatives, CO2-filled packaging and heat convection treatments on the shelf life and physicochemical properties of fresh raw noodles. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Wang J, Li A, Hu J, Zhang B, Liu J, Zhang Y, Wang S. Effect of Frying Process on Nutritional Property, Physicochemical Quality, and in vitro Digestibility of Commercial Instant Noodles. Front Nutr 2022; 9:823432. [PMID: 35252303 PMCID: PMC8891372 DOI: 10.3389/fnut.2022.823432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/05/2022] [Indexed: 01/05/2023] Open
Abstract
The effects of frying process on the nutritional property, physicochemical quality, and in vitro digestibility of instant noodle products are investigated in this study. Scanning electron microscope (SEM) and Fourier transform infrared spectrometer (FT-IR) were also used to explore the changes in the microstructure and protein transformation. Noodles, after the frying process, showed a lower proportion of carbohydrate, protein, fiber, and also total starch and digestible starch, but higher content of fat and resistant starch in the proximate analysis. The frying process was also considered to improve the texture, surface color, and sensory properties of instant noodle products, accompanied by better cooking quality, including shorter cooking time and lower cooking loss during the rehydration. The honeycomb-like, porous, and less uniformed structure, and also the higher levels of β-sheets and β-turns, and the lower proportion of α-helixes of protein structure from fried instant noodle was also observed. The in vitro digestibility of starch and protein were downregulated in the fried group (81.96% and 81.31, respectively, on average) compared with the non-fried group (97.58% and 88.78, respectively, on average). Thus, the frying process lowered the glycemic index and regulated protein secondary structure by inhibiting continuous digesting enzyme activity, generating starch-lipid complexes, and changing the levels of protein transformation. In conclusion, our findings will provide an innovative evaluation of the frying process on instant noodles and even other various starch-based prepared food products.
Collapse
Affiliation(s)
- Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Ang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Jiaqiang Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Jingmin Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
23
|
Peng J, Zhu KX, Guo XN, Zhou HM. Egg white protein addition induces protein aggregation and fibrous structure formation of textured wheat gluten. Food Chem 2022; 371:131102. [PMID: 34537616 DOI: 10.1016/j.foodchem.2021.131102] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022]
Abstract
The effect of egg white protein addition on the fibrous structure and protein aggregation of textured wheat gluten (TWG) extrudates was investigated. The hardness, springiness, chewiness, and degree of texturization of TWG significantly increased with the addition of egg white protein. Analysis of morphological characteristics showed a positive effect of egg white protein on the formation of the fibrous structure of TWG. The results of size-exclusion high performance liquid chromatography (SE-HPLC) indicated that the egg white protein improved the degree of wheat gluten aggregation, and the analysis of the protein intermolecular forces proved that disulfide bonds were the main contributor to the cross-linking of protein. In addition, an increase in the β-sheets also indicated an increase in protein aggregation induced by egg white protein. The addition of egg white protein promoted protein interactions and improved the fibrous structure of TWG.
Collapse
Affiliation(s)
- Jing Peng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ke-Xue Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiao-Na Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hui-Ming Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
24
|
The development and application of nanocomposites with pH-sensitive “gates” to control the release of active agents: Extending the shelf-life of fresh wheat noodles. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Evaluation of the Storage Stability and Quality Properties of Fresh Noodles Mixed with Plasma-Activated Water. Foods 2022; 11:foods11010133. [PMID: 35010258 PMCID: PMC8750178 DOI: 10.3390/foods11010133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 12/10/2022] Open
Abstract
Enhancing the quality retention of fresh noodles remains challenging. In this study, we investigated the effect of dough mixing with plasma-activated water (PAW) of different activation times on the storage stability and quality characteristics of fresh noodles. It was found that the total plate count in the fresh noodles prepared by PAW (PAWN) showed no obvious inhibition during storage at 25 °C, but could be significantly reduced at 4 °C as compared with the control. The decrease in L* value and pH of the PAWN was significantly retarded during storage, indicating an enhanced storage stability. The stability time of dough mixed with PAW could be significantly improved. PAW treatment decreased the viscosity properties and setback value of starch, while enhancing the interaction of water and non-water components in fresh noodles. In addition, dynamic polymerization and depolymerization of proteins were detected in Size-Exclusion High-Performance Liquid Chromatography (SE-HPLC) profiles of PAWN. The hardness and adhesiveness of the cooked noodles decreased, while the springiness significantly increased. These results implied the potential of PAW in improving the storage stability and quality of fresh noodles.
Collapse
|
26
|
|
27
|
Contribution of catechin monomers in tea polyphenols to the structure and physicochemical properties of wheat gluten and its sub-fractions. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Effect of phosphate salts on the gluten network structure and quality of wheat noodles. Food Chem 2021; 358:129895. [PMID: 33933957 DOI: 10.1016/j.foodchem.2021.129895] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 11/22/2022]
Abstract
The effects of three phosphate salts (PS) on the secondary structure, microstructure of gluten, rheological properties of dough and water status of noodles were investigated to determine the mechanisms underlying the changes in the quality of noodles. Changes in the secondary structure detected were the increased number of β-sheet and decreased number of random coil structures. PS reduced the content of free sulfhydryl (SH) and increased the content of disulfide (SS) bonds. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicated that the band density of the high molecular regions of the gluten was reduced. The results showed that adding PS induced a more compact microstructure and improved the G' and G'' values of the dough. After adding PS, the water-solids interaction in noodles was enhanced by the decreased water mobility. It was concluded that PS promoted the water holding capacity of the noodles and strengthened the gluten network.
Collapse
|
29
|
Yang S, Zhang MN, Shan CS, Chen ZG. Evaluation of cooking performance, structural properties, storage stability and shelf life prediction of high-moisture wet starch noodles. Food Chem 2021; 357:129744. [PMID: 33878579 DOI: 10.1016/j.foodchem.2021.129744] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/16/2023]
Abstract
Cooking performance, micro- and molecular structure, storage stability and shelf-life prediction of high-moisture wet starch noodles (SN) were investigated. SEM images revealed that compared to dried SN, cooked wet SN had more evenly honeycomb-like network with smaller size of pores, indicating stronger interaction among molecules and causing favorable cooking performance. XRD and ATR-FTIR results evidenced that wet SN contained more complete crystallites and higher proportion of crystalline region. During storage, the quality decay of wet SN was mainly associated to the increment of total aerobic viable count (TAVC), titrable acidity and amylase, as well as the decreased textural hardness, overall acceptability and lightness. Based on TAVC, titrable acidity and overall acceptability, predicted shelf-life of vacuum-packed wet SN at 25 °C was 15.31, 21.54 and 16.65 weeks respectively, with relative error all within 20%, proving that the validated model could be an effective tool for monitoring the shelf-life of wet SN.
Collapse
Affiliation(s)
- Sha Yang
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Meng-Na Zhang
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Chang-Song Shan
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Zhi-Gang Chen
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|