1
|
Yue Q, Peng Y, Li Z, Yi J, Zhou L. High pressure processing of glutinous Rice starch complexed with Buddleja officinalis maxim. Extract: Structural stability and digestibility improvements. Int J Biol Macromol 2025:143454. [PMID: 40280515 DOI: 10.1016/j.ijbiomac.2025.143454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/09/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
This study investigated the impact of high pressure processing (HPP) on yellow glutinous rice starch (Y-GRS) formed by glutinous rice starch (GRS) complexed with Buddleja officinalis Maxim. extract (BOME). Y-GRS at 500 MPa achieved the highest complex index (0.506), indicating stronger starch-BOME interactions. Particle size analysis revealed that Y-GRS exhibited superior resistance to swelling, with D (Song et al., 2021; Leone et al., 2018 [3,4]) increasing by 18.97 μm for Y-GRS and 31.64 μm for GRS as the pressure increased from 400 to 600 MPa. Y-GRS retained higher thermal stability, with an enthalpy change of 1.55 J/g at 500 MPa, compared with 0.83 J/g for GRS. The relative crystallinity of Y-GRS was 8.81 % higher than that of GRS. Structural analyses confirmed BOME mitigated higher pressure-induced damage to starch granule, preserving double helix and crystal structure. Rheologically, Y-GRS exhibited stable peak viscosity, weaker shear thinning behavior, and greater resistance to deformation than GRS. Following HPP, Y-GRS contained lower levels of rapidly digestible starch (RDS) and higher levels of resistant starch (RS) than GRS. In conclusion, these findings highlight HPP as a promising strategy for enhancing the functional properties of Y-GRS, offering improved stability and digestibility for starch-based food applications.
Collapse
Affiliation(s)
- Qisheng Yue
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China
| | - Yijin Peng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China
| | - Zi Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China.
| |
Collapse
|
2
|
Wang S, Li Y, Wang L, Lv L, Liu H, Zhang G, Zhao Y. Rapid Screening of Lipase Inhibitors From Chrysanthemum Based on Ionic Liquid/Chitosan Bifunctionalized Magnetic Multi-Walled Carbon Nanotubes Immobilized Lipase. J Sep Sci 2025; 48:e70125. [PMID: 40205655 DOI: 10.1002/jssc.70125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 04/11/2025]
Abstract
In this study, a novel ionic liquid/chitosan bifunctionalized magnetic multi-walled carbon nanotubes composite material (m-MWCNTs@CS@IL) was utilized for the first time to immobilize lipase. The immobilized lipase exhibited exceptional stability and reusability, as evidenced by its characteristic properties. A ligand fishing approach utilizing the immobilized lipase was developed to enable rapid screening of lipase inhibitors from Chrysanthemum. Three ligands were successfully screened from Chrysanthemum and then identified as cynaroside, quercitrin, and linarin by ultra-high performance liquid chromatography-tandem mass spectrometry. The IC50 values of these three ligands were 76.77 ± 0.36, 83.01 ± 0.46, and 43.61 ± 0.77 µM, respectively. Furthermore, molecular docking analysis further confirmed the binding of three ligands to specific amino acid residues within the active site of lipase. This work presents a fast and efficient approach for screening lipase inhibitors from intricate natural sources, demonstrating promising prospects in discovering anti-obesity compounds.
Collapse
Affiliation(s)
- Sikai Wang
- School of Science, Xihua University, Chengdu, China
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yue Li
- School of Science, Xihua University, Chengdu, China
| | - Lei Wang
- School of Science, Xihua University, Chengdu, China
| | - Lin Lv
- School of Science, Xihua University, Chengdu, China
| | - Hongmei Liu
- School of Science, Xihua University, Chengdu, China
| | - Guoqi Zhang
- School of Science, Xihua University, Chengdu, China
| | - Yan Zhao
- School of Science, Xihua University, Chengdu, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua University, Chengdu, China
| |
Collapse
|
3
|
He Y, Zhao X, Yu M, Yang D, Chen L, Tang C, Zhang Y. Affinity Ultrafiltration Mass Spectrometry for Screening Active Ingredients in Traditional Chinese Medicine: A Review of the Past Decade (2014-2024). Molecules 2025; 30:608. [PMID: 39942712 PMCID: PMC11820328 DOI: 10.3390/molecules30030608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Discovering targets in natural products is a critical and challenging task in new drug development. Rapid and efficient screening of active ingredients from complex systems like traditional Chinese medicine (TCM) is now crucial in drug research. Affinity ultrafiltration (AUF) technology is widely used to screen active ingredients in natural medicines. AUF-liquid chromatography-mass spectrometry (AUF-LC-MS) leverages the affinity between natural medicine extracts and targets to isolate active ingredients from complex matrices, employing LC-MS for detection and activity assessment. This review discusses the developments in employing AUF-LC-MS to analyze TCM and TCM compound preparations over the last decade. This review succinctly presents the advantages and limitations of AUF-LC-MS, illustrating its benefits through the example of screening for active ingredients in natural pharmaceuticals.
Collapse
Affiliation(s)
- Yuqi He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (X.Z.); (D.Y.)
| | - Xinyan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (X.Z.); (D.Y.)
| | - Muze Yu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.Y.); (L.C.)
| | - Di Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (X.Z.); (D.Y.)
| | - Lian Chen
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.Y.); (L.C.)
| | - Ce Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (X.Z.); (D.Y.)
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.Y.); (L.C.)
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (X.Z.); (D.Y.)
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.Y.); (L.C.)
| |
Collapse
|
4
|
Hua X, Xu M, Yang M, Zhang Y, Ma J, Cheng L, Chu C, Wu Z, Guo M. Hypoglycemic and hypolipidemic bioactive compounds from edible traditional Chinese medicines and their action of mechanisms explored by multitarget affinity ultrafiltration with liquid chromatography–mass spectrometry. FOOD FRONTIERS 2024. [DOI: 10.1002/fft2.488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
AbstractEdible traditional Chinese medicines (TCMs) have a long‐standing history in tackling obesity, diabetes, and metabolic diseases, which, in turn, significantly promotes the exploration of functional food products derived from edible TCMs with lower toxicity and reduced side effects. However, most of bioactive components from TCMs and their mechanisms in regulating blood glucose and lipids remain elusive, which poses a challenge for the development of safer and more effective TCM products. In this context, the development of high‐throughput screening methods has become even more important for the identification of active components and the in‐depth evaluation of hypoglycemic and hypolipidemic activity in vitro and in vivo. Therefore, this work provides an overview of edible TCMs for managing glucose and lipid metabolism disorders and summarizes the most recent progresses in identifying hypoglycemic and hypolipidemic bioactive compounds in edible TCMs through various screening methods. One significant approach involves the utilization of multitarget‐based ultrafiltration liquid chromatography coupled with mass spectrometry. This technique enables the concurrent screening and identification of potential pharmacodynamically active components in TCMs, as well as the investigation of their mechanisms of action. The bioactive compounds identified may serve as crucial active agents in reducing blood glucose and lipids, exhibiting promising potential for incorporation into functional foods or natural health products.
Collapse
Affiliation(s)
- Xiaowen Hua
- Laboratory of Advanced Theranostic Materials and Technology Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials Ningbo Cixi Institute of Biomedical Engineering Cixi P. R. China
| | - Mengjia Xu
- Laboratory of Advanced Theranostic Materials and Technology Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials Ningbo Cixi Institute of Biomedical Engineering Cixi P. R. China
- Affiliated Cixi Hospital Wenzhou Medical University Cixi P. R. China
| | - Ming Yang
- Laboratory of Advanced Theranostic Materials and Technology Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials Ningbo Cixi Institute of Biomedical Engineering Cixi P. R. China
| | - Yingying Zhang
- Laboratory of Advanced Theranostic Materials and Technology Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials Ningbo Cixi Institute of Biomedical Engineering Cixi P. R. China
| | - Jianke Ma
- Affiliated Cixi Hospital Wenzhou Medical University Cixi P. R. China
| | - Li Cheng
- Affiliated Cixi Hospital Wenzhou Medical University Cixi P. R. China
| | - Chu Chu
- School of Pharmacy Zhejiang University of Technology Hangzhou P. R. China
| | - Zimiao Wu
- Affiliated Cixi Hospital Wenzhou Medical University Cixi P. R. China
| | - Mingquan Guo
- Laboratory of Advanced Theranostic Materials and Technology Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials Ningbo Cixi Institute of Biomedical Engineering Cixi P. R. China
| |
Collapse
|
5
|
Zhou X, Peng Y, Zhou H, Wang W, Yi G, Xia Q, Guo Y, Xie L. Profiling 32 alkaloid compounds from Macleaya cordata by UPLC-DAD-QTOF-MS/ms. Nat Prod Res 2024:1-8. [PMID: 39319415 DOI: 10.1080/14786419.2024.2408409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/29/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Macleaya cordata is a traditional herb medicine with alkaloids as the main bioactive substance. To identify alkaloid compounds from M. cordata, its crude extract was obtained with 0.2 mol/L hydrochloric acid, and alkaloid compounds in the demineralised extract by organic solvents from crude extract were qualitatively and quantitatively analysed by UPLC-DAD-QTOF-MS/MS. Through systematic analysis of retention times, mass spectrometry data, and diagnostic fragmentation pathways and rules, 32 alkaloids were rapidly unambiguously identified or tentatively deduced by comparison with standard MS spectra or literature data. Among them, 16 minor -alkaloid compounds including nandazurine, hydroxychelidonine, capauridine, (-)-dicentrine, leptopine, adlumidine, takatonine, (2, 3)-trans-N-(p-hydroxyphenethyl)ferulamide, 9-ethoxyaristololactam, thalicminine, cassythidine, acetylisocorynoline, oxynitidine, crinasiatine, zanthoxyline, and 7,9-dimethoxy-2,3-methylendioxybenzophenanthridine were found in M. cordata for the first time. The abundant alkaloids might be responsible for the bioactivity of M. cordata, which laid a foundation for the study of quality control, livestock, and clinical applications of M. cordata.
Collapse
Affiliation(s)
- Xinji Zhou
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha, P. R. China
| | - Yuqing Peng
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha, P. R. China
| | - Hao Zhou
- College of Material Science and Technology, Central South University of Forestry and Technology, Changsha, P. R. China
| | - Wenyan Wang
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha, P. R. China
| | - Gui Yi
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha, P. R. China
| | - Qi Xia
- College of Material Science and Technology, Central South University of Forestry and Technology, Changsha, P. R. China
| | - Yaping Guo
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha, P. R. China
| | - Lianwu Xie
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha, P. R. China
- College of Material Science and Technology, Central South University of Forestry and Technology, Changsha, P. R. China
| |
Collapse
|
6
|
Liang H, Yuan S, Ma X, Song Q, Song Y, Tu P, Jiang Y. A quantitative chemomics strategy for the comprehensive comparison of Murraya paniculata and M. exotica using liquid chromatography coupled with mass spectrometry. J Chromatogr A 2024; 1718:464736. [PMID: 38364618 DOI: 10.1016/j.chroma.2024.464736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/03/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Murrayae Folium et Cacumen (MFC) is a traditional Chinese medicine (TCM) derived from two plant species, Murraya exotica L. and Murraya paniculata (L.) Jack, as recorded in the Chinese Pharmacopoeia. However, there is no research available on the comprehensive analysis and comparison of the chemical constituents of these two species. In the present study, an integrated LC-MS-based quantitative metabolome strategy was proposed to conduct a comprehensive and in-depth qualitative and quantitative analysis and comparison of the chemome of M. exotica and M. paniculata. Firstly, the universal chemical information of two plants was obtained by quadrupole-time-of-flight mass spectrometry (Q-TOF-MS) combined with hybrid triple quadrupole-linear ion trap mass spectrometry (Qtrap-MS). Subsequently, a UNIFI in house database, the proposed fragmentation patterns, and a quantitative structure chromatographic retention relationship (QSRR) model were integrated for the rapid, comprehensive, and accurate structural elucidation of the chemical constituents of these two species. Thirdly, a large-scale quantitation method was established using scheduled multiple reaction monitoring mode (sMRM) and 76 primary components were selected as quantitative markers for the method validation. The obtained dataset was then subjected for multivariate statistical analysis to comprehensive comparison of these two plants. As a result, a total of 209 and 212 compounds were identified from M. exotica and M. paniculata, respectively. Among them, 103 common constituents were disclosed in both plants. The multivariate statistical analysis and absolute quantitative analysis revealed noticeable differences in the contents of specific chemical constituents between these two plants. The higher quantity constituents in M. exotica are 7-methoxycoumarins, while polymethoxylated flavonoids are the major constituents in M. paniculata. The common compounds accounted for approximately 80 % of the quantitative components in both plants, which provides a theoretical basis for their common use as the official source of MFC. In sum, the established quantitative chemomics strategy supplies an effective means for comprehensive chemical comparison of multi-source TCMs.
Collapse
Affiliation(s)
- Haizhen Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shuo Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoli Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qingqing Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
7
|
Lam TP, Tran NVN, Pham LHD, Lai NVT, Dang BTN, Truong NLN, Nguyen-Vo SK, Hoang TL, Mai TT, Tran TD. Flavonoids as dual-target inhibitors against α-glucosidase and α-amylase: a systematic review of in vitro studies. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:4. [PMID: 38185713 PMCID: PMC10772047 DOI: 10.1007/s13659-023-00424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024]
Abstract
Diabetes mellitus remains a major global health issue, and great attention is directed at natural therapeutics. This systematic review aimed to assess the potential of flavonoids as antidiabetic agents by investigating their inhibitory effects on α-glucosidase and α-amylase, two key enzymes involved in starch digestion. Six scientific databases (PubMed, Virtual Health Library, EMBASE, SCOPUS, Web of Science, and WHO Global Index Medicus) were searched until August 21, 2022, for in vitro studies reporting IC50 values of purified flavonoids on α-amylase and α-glucosidase, along with corresponding data for acarbose as a positive control. A total of 339 eligible articles were analyzed, resulting in the retrieval of 1643 flavonoid structures. These structures were rigorously standardized and curated, yielding 974 unique compounds, among which 177 flavonoids exhibited inhibition of both α-glucosidase and α-amylase are presented. Quality assessment utilizing a modified CONSORT checklist and structure-activity relationship (SAR) analysis were performed, revealing crucial features for the simultaneous inhibition of flavonoids against both enzymes. Moreover, the review also addressed several limitations in the current research landscape and proposed potential solutions. The curated datasets are available online at https://github.com/MedChemUMP/FDIGA .
Collapse
Affiliation(s)
- Thua-Phong Lam
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Uppsala University, 75105, Uppsala, Sweden
| | - Ngoc-Vi Nguyen Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Uppsala University, 75105, Uppsala, Sweden
| | - Long-Hung Dinh Pham
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
| | - Nghia Vo-Trong Lai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Bao-Tran Ngoc Dang
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Ngoc-Lam Nguyen Truong
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Song-Ky Nguyen-Vo
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Thuy-Linh Hoang
- California Northstate University College of Pharmacy, California, 95757, USA
| | - Tan Thanh Mai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam.
| | - Thanh-Dao Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam.
| |
Collapse
|
8
|
Yang YL, Sun HD, Yang J, Liu CZ, Kang CZ, Liu J, Guo LP. Tandem mass spectrometry (MS/MS) molecular networking guided profiling of small molecules from Aquilaria sinensis (Lour.) Gilg leaves and their bioactivity evaluation. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:135-145. [PMID: 37743673 DOI: 10.1002/pca.3280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Agarwood, a fragrant resinous wood mainly formed by Aquilaria spp., is used worldwide as a natural fragrance and traditional medicine. A large amount of Aquilaria sinensis (Lour.) Gilg leaves are underutilised during the process of the agarwood industry, and the development of A. sinensis leaves as tea has recently attracted more and more attention. However, the small molecule profile of A. sinensis leaves and their bioactivities has been rarely reported. OBJECTIVE To conduct a rapid untargeted liquid chromatography-mass spectrometry (LC-MS) analysis of A. sinensis leaves with a molecular networking (MN) strategy and evaluate its antioxidant and antidiabetic value. METHOD A MN-assisted tandem mass spectrometry (MS/MS) analysis strategy was used to investigate the small molecule profile of A. sinensis leaves. Additionally, the integration of antioxidant and α-glucosidase inhibitory assays with MN analysis was executed to expeditiously characterise the bioactive compounds for potential prospective application. RESULTS Five main chemical groups including phenol C-glycosides, organic acids, 2-(2-phenylethyl) chromones, benzophenone O-glycosides and flavonoids were rapidly revealed from the A. sinensis leaves. Eighty-one compounds were provisionally identified by comparing their MS/MS fragments with canonical pathways. The featured xanthone C-glycosides and benzophenone C-glycosides were recognised as the primary components of A. sinensis leaves. Several dimers and a trimer of mangiferin were reported firstly in A. sinensis leaves. Furthermore, 17 and 14 potential bioactive molecules were rapidly annotated from antioxidant and α-glucosidase inhibitory fraction, respectively. CONCLUSION Our findings will help expand the utilisation of A. sinensis leaves and thus promote the high-quality development of agarwood industry.
Collapse
Affiliation(s)
- Ya-Ling Yang
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Hao-Di Sun
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, P. R. China
| | - Jian Yang
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Chang-Zheng Liu
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Chuan-Zhi Kang
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Juan Liu
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Lan-Ping Guo
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| |
Collapse
|
9
|
Feng Q, Yang W, Peng Z, Wang G. Utilizing bio-affinity ultrafiltration combined with UHPLC Q-Exactive Plus Orbitrap HRMS to detect potential α-glucosidase inhibitors in Oxalis corniculate L. Int J Biol Macromol 2023; 252:126490. [PMID: 37625761 DOI: 10.1016/j.ijbiomac.2023.126490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Oxalis corniculate L. (O. corniculate) was used to treat diabetes in Chinese folk as a popular tea drink. In this work, 31 compounds from O. corniculate were screened and identified as potential α-Glucosidase inhibitors (α-GIs). Among them, 6 compounds displayed stronger inhibitory activity than acarbose (IC50 = 212.9 ± 5.98 μg/mL). Especially, the most effective compounds quercetin (Qu, IC50 = 4.70 ± 0.40 μg/mL) and luteolin (Lu, IC50 = 15.72 ± 0.75 μg/mL) inhibited α-Glu in competitive and mixed manners, respectively. Moreover, fluorescence quenching, circular dichroism (CD), and molecular docking study revealed that they can arouse the changes in the secondary structure and hydrophobic micro-environment of the enzyme mainly through a hydrophobic binding. Furthermore, it was observed that oral administration of Qu (20 mg/kg) can significantly reduce postprandial blood glucose (PBG) levels in mice vs. the control group. To sum up, the above research confirmed that O. corniculate could prevent and treat postprandial hyperglycemia as a good tea drink, and the plant was an excellent source to obtain natural α-GIs.
Collapse
Affiliation(s)
- Qianqian Feng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Wei Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
10
|
Tong C, Fan L, Cai G, Shi S, Yang Y, Guo Y. Design of a sustainable light-up flavonol probe for dual-ratiometric fluorescent sensing and visual differentiating ammonia and hydrazine. Food Chem 2023; 421:136216. [PMID: 37121017 DOI: 10.1016/j.foodchem.2023.136216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023]
Abstract
Ammonia (NH3) and hydrazine (N2H4) present potential risks to human health, food and environmental safety. A sustainable flavonol-based probe, quercetin pentaacetate (QPA, weak blue emission 417 nm), was fabricated for dual-ratiometric fluorescent sensing and visual differentiating NH3 and N2H4. Excited state intramolecular proton transfer-on products with green (487 nm) and yellow (543 nm) emissions occurred as meeting with NH3 and N2H4, respectively, for their different nucleophilicities. Such a promising response offered a great opportunity of QPA to discriminatively detect NH3 and N2H4 with large Stokes shifts (>122 nm), high sensitivity (limit of detection: 35.4 μM and 0.70 ppm for NH3 solution and gas; 0.26 μM for N2H4 solution), excellent accuracy (spiked recoveries from 98.6 % to 105 %), and superior selectivity. Importantly, QPA was utilized for monitoring NH3 vapor in fish spoilage procedures and detecting N2H4 in water samples for food and environmental safety evaluation.
Collapse
Affiliation(s)
- Chaoying Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Li Fan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Guihan Cai
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China; Department of Clinical Pharmacology, Xiangya Hospital, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China.
| | - Yangyu Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China.
| |
Collapse
|
11
|
Lee DH, Kwak HJ, Shin Y, Kim SJ, Lee GH, Park IH, Kim SH, Kang KS. Elucidation of Phytochemicals Affecting Platelet Responsiveness in Dangguisu-san: Active Ingredient Prediction and Experimental Research Using Network Pharmacology. PLANTS (BASEL, SWITZERLAND) 2023; 12:1120. [PMID: 36903980 PMCID: PMC10005453 DOI: 10.3390/plants12051120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Plant-derived phytochemicals are emerging as novel agents for protection against chronic disorders. Dangguisu-san is a herbal prescription to invigorate the blood and relieve pain. Among the numerous active constituents of Dangguisu-san, those expected to be effective at inhibiting platelet aggregation were predicted using a network pharmacological method, and their efficacy was experimentally demonstrated. All four identified chemical components, namely chrysoeriol, apigenin, luteolin, and sappanchalcone, suppressed the aggregation of platelets to a certain extent. However, we report, for the first time, that chrysoeriol acts as a strong inhibitor of platelet aggregation. Although additional in vivo studies are needed, among the complex constituents of herbal medicines, the components that exert an inhibitory effect on platelet aggregation were predicted using a network pharmacological method and experimentally confirmed with human platelets.
Collapse
Affiliation(s)
- Dong-Ha Lee
- Department of Biomedical Laboratory Science, Namseoul University, Cheonan 31020, Republic of Korea
| | - Hee Jae Kwak
- College of Pharmacy, Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea
| | - Yonghee Shin
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Sung Jin Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Ga Hee Lee
- Department of Biomedical Laboratory Science, Namseoul University, Cheonan 31020, Republic of Korea
| | - Il-Ho Park
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Seung Hyun Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
12
|
Zhao N, Liu D, Wang Y, Zhang X, Zhang L. Screening and identification of anti-acetylcholinesterase ingredients from Tianzhi granule based on ultrafiltration combined with ultra-performance liquid chromatography-mass spectrometry and in silico analysis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115641. [PMID: 35973628 DOI: 10.1016/j.jep.2022.115641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tianzhi granule (TZG) is a traditional Chinese formula that is widely used for the treatment of vascular dementia (VaD). AIM OF THE STUDY To discover the herbs in TZG possessing acetylcholinesterase (AChE) inhibitory activity and to screen the anti-acetylcholinesterase ingredients from active herbs. MATERIALS AND METHODS In vitro AChE inhibitory activity assay of eleven herbal extracts was conducted. An ultrafiltration combined with ultra-performance liquid chromatography-mass spectrometry method was established to screen and identify the anti-acetylcholinesterase ingredients from active extracts. In addition, in vitro AChE inhibitory activity assay and molecular docking were adopted for further investigation. Moreover, ultra-performance liquid chromatography-mass spectrometry was performed for the content determination of active compounds in TZG. RESULTS Three herbs in TZG showed significant AChE inhibitory activity. A total of thirteen active ingredients were screened out and identified, and all of these compounds were present in TZG. Five available commercial standards presented moderate AChE inhibitory activity, and all of which have a relatively high content in TZG. CONCLUSION A number of herbs and compounds with acetylcholinesterase inhibitory activity were found in TZG, which provided a scientific basis for the material basis and quality control research of TZG.
Collapse
Affiliation(s)
- Nan Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Dan Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yi Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaozhe Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
13
|
Lu Y, Wang X, Wu Y, Wang Z, Zhou N, Li J, Shang X, Lin P. Chemical characterization of the antioxidant and α-glucosidase inhibitory active fraction of Malus transitoria leaves. Food Chem 2022; 386:132863. [PMID: 35367798 DOI: 10.1016/j.foodchem.2022.132863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 11/27/2022]
Abstract
Chinese Tibetan tea made from the tender leaves of Malus transitoria is a widely consumed health drink, but there are few reports on its chemical composition and biological activity. In this study, we found that a 50% ethanol extract of M. transitoria had good antioxidant and α-glucosidase inhibitory activities in vitro. Guided by in vitro bioassays, chromatographic separation and purification were conducted, and the most active fraction in M. transitoria was determined. UPLC-Orbitrap-MS/MS was used to further quickly and comprehensively characterize the chemical composition. Library searches, MS/MS fragmentation patterns of two isolated reference compounds, and bibliography were used to annotate 81 compounds, of which 2 were new compounds, and 79 were identified from M. transitoria for the first time. This study provides a scientific basis for the development of antioxidant and anti-diabetic functional foods from M. transitoria.
Collapse
Affiliation(s)
- Yongchang Lu
- Qinghai Provincial Key Laboratory of Phytochemistry for Tibetan Plateau, Qinghai University for Nationalities, Xining 810000, China.
| | - Xin Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China.
| | - Yong Wu
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China.
| | - Zeyu Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China.
| | - Na Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China.
| | - Jinjie Li
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China.
| | - Xiaoya Shang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China.
| | - Pengcheng Lin
- Qinghai Provincial Key Laboratory of Phytochemistry for Tibetan Plateau, Qinghai University for Nationalities, Xining 810000, China.
| |
Collapse
|
14
|
Feng H, Chen G, Zhang Y, Guo M. Potential Multifunctional Bioactive Compounds from Dysosma versipellis Explored by Bioaffinity Ultrafiltration-HPLC/MS with Topo I, Topo II, COX-2 and ACE2. J Inflamm Res 2022; 15:4677-4692. [PMID: 35996684 PMCID: PMC9392260 DOI: 10.2147/jir.s371830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Background Dysosma versipellis (D. versipellis) has been traditionally used as a folk medicine for ages. However, the specific phytochemicals responsible for their correlated anti-inflammatory, anti-proliferative and antiviral activities remain unknown. Purpose This study aimed to explore the specific active components in D. versipellis responsible for its potential anti-inflammatory, anti-proliferative, and antiviral effects, and further elucidate the corresponding mechanisms of action. Methods Bioaffinity ultrafiltration coupled to liquid chromatography–mass spectrometry (UF-LC/MS) was firstly hired to fast screen for the anti-inflammatory, anti-proliferative and antiviral compounds from rhizomes of D. versipellis, and then further validation was conducted using in vitro inhibition assays and molecular docking. Results A total of 12, 12, 9 and 12 phytochemicals with considerable affinities to Topo I, Topo II, COX-2 and ACE2 were fished out, respectively. The anti-proliferative assay in vitro indicated that podophyllotoxin and quercetin exhibited comparably strong inhibitory rates on A549 and HT-29 cells compared with 5-FU and etoposide. Meanwhile, kaempferol displayed prominent dose-dependent inhibition against COX-2 with IC50 value at 0.36 ± 0.02 μM lower than indomethacin at 0.73 ± 0.07 μM. Furthermore, quercetin exerted stronger inhibitory effect against ACE2 with IC50 value at 104.79 ± 8.26 μM comparable to quercetin 3-O-glucoside at 135.25 ± 6.54 μM. Conclusion We firstly showcased an experimental investigation on the correlations between bioactive phytochemicals of D. versipellis and their multiple drug targets reflecting its potential pharmacological activities, and further constructed a multi-target and multi-component network to decipher its empirical traditional applications. It could not only offer a reliable and valuable experimental basis to better comprehend the curative effects of D. versipellis but also provide more new insights and strategies for other traditional medicinal plants.
Collapse
Affiliation(s)
- Huixia Feng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Yongli Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| |
Collapse
|
15
|
Cheng L, Wang F, Cao Y, Tong C, Wei Q, Shi S, Guo Y. Rapid profiling of potential antitumor polymethoxylated flavonoids in natural products by integrating cell biospecific extraction with neutral loss/diagnostic ion filtering-based high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:895-905. [PMID: 35668040 DOI: 10.1002/pca.3147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/14/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Citri Reticulatae Pericarpium Viride (CRPV, Qing Pi in Chinese) has been widely used in traditional Chinese medicine. Polymethoxylated flavonoids (PMFs), which are a special group of flavonoids with strong antitumor activity, are broadly distributed in citrus peels. However, systematic investigation of antitumor PMFs in CRPV has received little attention to date. OBJECTIVES An MCF-7 cell biospecific extraction method integrated with neutral loss/diagnostic ion filtering-based HPLC-QTOF-MS/MS strategy was developed for rapid and specific profiling of antitumor PMFs and systematic identification of PMFs in CRPV. METHODOLOGY By incubating MCF-7 cells with CRPV extract, potential antitumor PMFs specifically bound to cells and were isolated. Then, by systematic investigation of fragmentation pathways, neutral loss and diagnostic ion filtering strategies were proposed to comprehensively and accurately identify PMFs. RESULTS Sixteen antitumor PMFs were unambiguously or tentatively identified. Among them, minor compound 15 (5-hydroxy-6,7,8,3',4'-pentamethoxyflavone with a free hydroxyl group at C-5) exhibited excellent antitumor activity, with an IC50 value of 2.81 ± 0.76 μg/mL, which is lower than that of 5-fluorouracil (IC50 , 4.92 ± 0.83 μg/mL). Nobiletin (12) and tangeretin (16), two major PMFs, presented moderate antitumor activities with IC50 values of 13.06 ± 1.85 and 17.07 ± 1.18 μg/mL, respectively, and their contents were sensitively and precisely determined. CONCLUSIONS To the best of our knowledge, this is the first report on the systematic investigation of antitumor PMFs in CRPV. The study will lay a foundation for the quality control and clinical application of CRPV.
Collapse
Affiliation(s)
- Li Cheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Fang Wang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yuanxin Cao
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, China
| | - Chaoying Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Qisheng Wei
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, China
| | - Shuyun Shi
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, China
| | - Ying Guo
- Department of Clinical Pharmacology, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Hunan Key Laboratory of Pharmacogenetics, Central South University, Hunan, Changsha, China
| |
Collapse
|
16
|
Cheng L, Wang F, Cao Y, Cai G, Wei Q, Shi S, Guo Y. Screening of potent α-glucosidase inhibitory and antioxidant polyphenols in Prunella vulgaris L. by bioreaction-HPLC-quadrupole-time-of-flight-MS/MS and in silico analysis. J Sep Sci 2022; 45:3393-3403. [PMID: 35819998 DOI: 10.1002/jssc.202200374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/11/2022]
Abstract
Prunella vulgaris L. is a well-known traditional Chinese medicine for blood glucose homeostasis and antioxidant potential. Ethyl acetate fraction of P. vulgaris L. demonstrated higher phenolic content (85.53 ± 6.74 mg gallic acid equivalents per gram dry weight), α-glucosidase inhibitory (IC50 , 69.13 ± 2.86 μg/mL), and antioxidant (IC50 , 8.68 ± 1.01 μg/mL) activities. However, the bioactive polyphenols responsible for the beneficial properties remain unclear. Here, bioreaction-HPLC-quadrupole-time-of-flight-MS/MS method was developed for rapid, accurate, and efficient screening and identification of polyphenols with α-glucosidase inhibitory and antioxidant activities from P. vulgaris L. Bioactive polyphenols can specifically bind with α-glucosidase or react with 1,1-diphenyl-2-picryl-hydrazyl radical, which was easily discriminated from nonactive compounds. Subsequently, twenty bioactive polyphenols (sixteen phenyl propionic acid derivatives and four flavonoids) were screened and identified. Furthermore, molecular docking analysis revealed that screened twenty polyphenols bind with the active sites of α-glucosidase through hydrogen bonding and π-π stacking. Density functional theory calculations demonstrated their electron transport ability and chemical reactivity. The in silico analysis confirmed the screened results. In summary, this study provided a valuable strategy for rapid discovering bioactive compounds from complex natural products, and offered scientific evidence for further development and application of P. vulgaris L. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Li Cheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China.,College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Fang Wang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China
| | - Yuanxin Cao
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, 533612, P. R. China
| | - Guihan Cai
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Qisheng Wei
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, 533612, P. R. China
| | - Shuyun Shi
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China.,College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.,Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, 533612, P. R. China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, China
| |
Collapse
|
17
|
Li YJ, Wan GZ, Xu FC, Guo ZH, Chen J. Screening and identification of α-glucosidase inhibitors from Cyclocarya paliurus leaves by ultrafiltration coupled with liquid chromatography-mass spectrometry and molecular docking. J Chromatogr A 2022; 1675:463160. [DOI: 10.1016/j.chroma.2022.463160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
|
18
|
Li S, Wang R, Hu X, Li C, Wang L. Bio-affinity ultra-filtration combined with HPLC-ESI-qTOF-MS/MS for screening potential α-glucosidase inhibitors from Cerasus humilis (Bge.) Sok. leaf-tea and in silico analysis. Food Chem 2022; 373:131528. [PMID: 34774376 DOI: 10.1016/j.foodchem.2021.131528] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/06/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022]
Abstract
Cerasus humilis(Bge.) Sok. leaf-tea (CLT) has a potential anti-α-glucosidase effect. However, its anti-α-glucosidase functional compositions remain unclear. Results showed that 70% methanol extract of CLT (IC50 = 36.57 μg/mL) with the highest total phenolic/flavonoid contents exhibited significantly higher α-glucosidase inhibitory activity (α-GIA) than acarbose (IC50 = 189.57 μg/mL). Additionally, phenolic constituents of the CLT extract were analyzed for the first time in this work. Ten major potential α-glucosidase inhibitors (α-GIs) with high bio-affinity degree in the CLT extract were recognized using a bio-affinity ultra-filtration and HPLC-ESI-qTOF-MS/MS method. In vitro α-GIA assay confirmed that myricetin (IC50 = 36.17 μg/mL), avicularin (IC50 = 69.84 μg/mL), quercitrin, isoquercitrin, prunin and guajavarin were responsible for the α-GIA of the CLT extract. More importantly, the interaction mechanism between α-GIs and α-glucosidase was investigated via in silico analysis. This study provides a high-throughput screening platform for identification of the potential α-GIs from natural products.
Collapse
Affiliation(s)
- Songjie Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Ruimin Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Xiaoping Hu
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
19
|
Lan Z, Zhang Y, Sun Y, Wang L, Huang Y, Cao H, Wang S, Meng J. Identifying of Anti-Thrombin Active Components From Curcumae Rhizoma by Affinity-Ultrafiltration Coupled With UPLC-Q-Exactive Orbitrap/MS. Front Pharmacol 2021; 12:769021. [PMID: 34955839 PMCID: PMC8703108 DOI: 10.3389/fphar.2021.769021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/11/2021] [Indexed: 01/14/2023] Open
Abstract
Recent studies concerning products that originate from natural plants have sought to clarify active ingredients, which both explains the mechanisms of the function and aids in quality control during production. As a traditional functional plant, Curcumae Rhizoma (CR) has been proven to be effective in promoting blood circulation and removing blood stasis. However, the components that play a role in its huge compound library are still unclear. The present study aimed to develop a high-throughput screening method to identify thrombin inhibitors in CR and validate them by in vitro and in vivo experiments. The effect of CR on thrombin in HUVECs cells was determined by ELISA, then an affinity-ultrafiltration-UPLC-Q-Exactive Orbitrap/MS approach was applied. Agatroban and adenosine were used as positive and negative drugs respectively to verify the reliability of the established method. The in vitro activity of the compounds was determined by specific substrate S-2238. The in vivo effect of the active ingredients was determined using zebrafish. Molecular docking was used to understand the internal interactions between compounds and enzymes. ELISA results showed that CR had an inhibitory effect on thrombin. The screening method established in this paper is reliable, by which a total of 15 active compounds were successfully identified. This study is the first to report that C7, 8, and 11 have in vitro thrombin-inhibitory activity and significantly inhibit thrombosis in zebrafish models at a safe dose. Molecular docking studies were employed to analyze the possible active binding sites, with the results suggesting that compound 16 is likely a better thrombin inhibitor compared with the other compounds. Based on the affinity-ultrafiltration-UPLC-Q-Exactive Orbitrap/MS approach, a precisely targeted therapy method using bio-active compounds from CR might be successfully established, which also provides a valuable reference for targeted therapy, mechanism exploration, and the quality control of traditional herbal medicine.
Collapse
Affiliation(s)
- Zhenwei Lan
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Ying Zhang
- College of Pharmacy, Jinan University, Research Center for Traditional Chinese Medicine of Lingnan, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| | - Yue Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Lvhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Yuting Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Hui Cao
- College of Pharmacy, Jinan University, Research Center for Traditional Chinese Medicine of Lingnan, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| | - Shumei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Jiang Meng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| |
Collapse
|
20
|
Wang F, Cheng L, Cao Y, Wei Q, Tong C, Shi S. Online extraction and enrichment coupling with high-speed counter-current chromatography for effective and target isolation of antitumor anthraquinones from seeds of Cassia obtusifolia. J Sep Sci 2021; 45:938-944. [PMID: 34932273 DOI: 10.1002/jssc.202100775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022]
Abstract
Traditional bioassay-guided investigation of bioactive compounds from natural products comprises critical steps, such as extraction, repeated column separation, and activity assay. Thus, the development of facile, rapid, and efficient technology is critically important. Here, a HepG2 cell-based extraction method was first developed to rapidly screen potential antitumor compounds from the seeds ofCassia obtusifolia. Then, an online extraction and enrichment-high-speed counter-current chromatography (HSCCC) strategy was fabricated to facilely and efficiently isolate target antitumor compounds, which included direct extraction from solid C. obtusifolia, removal of polar interferences, enrichment of target compounds, and preparative isolation by HSCCC using flow rate stepwise increasing mode. After further purification by Sephadex LH-20 column, five antitumor anthraquinones, aurantio-obtusin, 1-desmethylaurantio-obtusin, chryso-obtusin, obtusin, and questin, were obtained for structural characterization and bioassay verification. The results may not only provide new perspectives for facile and rapid investigation of bioactive compounds from complex natural products, but also offer a scientific basis for the potential applications of C. obtusifolia.
Collapse
Affiliation(s)
- Fang Wang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, P. R. China
| | - Li Cheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| | - Yuanxin Cao
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, P. R. China
| | - Qisheng Wei
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, P. R. China
| | - Chaoying Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| | - Shuyun Shi
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, P. R. China.,College of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China.,Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, P. R. China
| |
Collapse
|
21
|
Rapid Screening Alpha-Glucosidase Inhibitors from Polygoni Vivipari Rhizoma by Multi-Step Matrix Solid-Phase Dispersion, Ultrafiltration and HPLC. Molecules 2021; 26:molecules26206111. [PMID: 34684692 PMCID: PMC8541178 DOI: 10.3390/molecules26206111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Polygoni Vivipari Rhizoma (PVR), the dried root of Polygonum viviparum, has been used as herbal medicine in China for a long time. In the present study, a new method based on multi-step matrix solid-phase dispersion (MSPD), ultrafiltration and high performance liquid chromatography (HPLC) for screening alpha-glucosidase inhibitors (AGIs) from PVR was proposed. First, three different PVR extractions were prepared by multi-step MSPD with 15% methanol, 60% methanol and 100% methanol. Second, the alpha-glucosidase inhibition tests for the three extracts were carried out, and the 60% methanol extraction showed the best activity. Then, the AGIs screening experiment was performed with ultrafiltration and HPLC analysis using the 60% methanol extraction. Seven binding components (quercetin−3−O−vicianoside, quercetin 3−O−neohesperidoside, rutin, hyperoside, quercetin 3−O−glucuronide, luteolin−7−O−neohesperidoside, kaempferol 3−glucuronide) were found. These seven components were further validated as the AGIs by molecular docking analysis. The developed method was a rapid and efficient tool for screening AGIs from PVR, which provided scientific data for the bioactive components study of PVR.
Collapse
|