1
|
Xu J, Liu Y. Nanomaterials for liver cancer targeting: research progress and future prospects. Front Immunol 2025; 16:1496498. [PMID: 40092984 PMCID: PMC11906451 DOI: 10.3389/fimmu.2025.1496498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/07/2025] [Indexed: 03/19/2025] Open
Abstract
The incidence and mortality rates of liver cancer in China remain elevated. Although early-stage liver cancer is amenable to surgical resection, a significant proportion of patients are diagnosed at advanced stages. Currently, in addition to surgical resection for hepatocellular carcinoma, the primary treatment modalities predominantly include chemotherapy. The widespread use of chemotherapy, which non-selectively targets both malignant and healthy cells, often results in substantial immunosuppression. Simultaneously, the accumulation of chemotherapeutic agents can readily induce drug resistance upon reaching the physiological threshold, thereby diminishing the efficacy of these treatments. Besides chemotherapy, there exist targeted therapy, immunotherapy and other therapeutic approaches. Nevertheless, the development of drug resistance remains an inevitable challenge. To address these challenges, we turn to nanomedicine, an emerging and widely utilized discipline that significantly influences medical imaging, antimicrobial strategies, drug delivery systems, and other related areas. Stable and safe nanomaterials serve as effective carriers for delivering anticancer drugs. They enhance the precision of drug targeting, improve bioavailability, and minimize damage to healthy cells. This review focuses on common nanomaterial carriers used in hepatocellular carcinoma (HCC) treatment over the past five years. The following is a summary of the three drugs: Sorafenib, Gefitinib, and lenvatinib. Each drug employs distinct nanomaterial delivery systems, which result in varying levels of bioavailability, drug release rates, and therapeutic efficacy.
Collapse
Affiliation(s)
- Jiahong Xu
- Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Yefu Liu
- Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
2
|
Andler R, González-Arancibia F, Vilos C, Sepulveda-Verdugo R, Castro R, Mamani M, Valdés C, Arto-Paz F, Díaz-Barrera A, Martínez I. Production of poly-3-hydroxybutyrate (PHB) nanoparticles using grape residues as the sole carbon source. Int J Biol Macromol 2024; 261:129649. [PMID: 38266847 DOI: 10.1016/j.ijbiomac.2024.129649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
The production of poly-3-hydroxybutyrate (PHB) on an industrial scale remains a major challenge due to its higher production cost compared to petroleum-based plastics. As a result, it is necessary to develop efficient fermentative processes using low-cost substrates and identify high-value-added applications where biodegradability and biocompatibility properties are of fundamental importance. In this study, grape residues, mainly grape skins, were used as the sole carbon source in Azotobacter vinelandii OP cultures for PHB production and subsequent nanoparticle synthesis based on the extracted polymer. The grape residue pretreatment showed a high rate of conversion into reducing sugars (fructose and glucose), achieving up to 43.3 % w w-1 without the use of acid or external heat. The cultures were grown in shake flasks, obtaining a biomass concentration of 2.9 g L-1 and a PHB accumulation of up to 37.7 % w w-1. PHB was characterized using techniques such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The formation of emulsified PHB nanoparticles showed high stability, with a particle size between 210 and 240 nm and a zeta potential between -12 and - 15 mV over 72 h. Owing to these properties, the produced PHB nanoparticles hold significant potential for applications in drug delivery.
Collapse
Affiliation(s)
- R Andler
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca, Chile.
| | - F González-Arancibia
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca, Chile
| | - C Vilos
- Laboratory of Nanomedicine and Targeted Delivery, School of Medicine, Universidad de Talca, Talca 3460000, Chile; Center for Nanomedicine, Diagnostic & Drug Development (cND3), Universidad de Talca, Talca 3460000, Chile; Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
| | - R Sepulveda-Verdugo
- Laboratory of Nanomedicine and Targeted Delivery, School of Medicine, Universidad de Talca, Talca 3460000, Chile; Center for Nanomedicine, Diagnostic & Drug Development (cND3), Universidad de Talca, Talca 3460000, Chile; Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
| | - R Castro
- Multidisciplinary Agroindustry Research Laboratory, Carrera de Ingeniería en Construcción, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Talca, Chile
| | - M Mamani
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Chile
| | - C Valdés
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Chile
| | - F Arto-Paz
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca, Chile
| | - A Díaz-Barrera
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - I Martínez
- Department of Chemical Engineering, Biotechnology and Materials, Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Chile, Santiago, Chile
| |
Collapse
|
3
|
Assunção LS, Oliveira de Souza C, Shahidi F, Santos Oliveira T, Assis DDJ, Pereira Santos LF, Nunes IL, Machado BAS, Ferreira Ribeiro CD. Optimization and Characterization of Interspecific Hybrid Crude Palm Oil Unaué HIE OxG Nanoparticles with Vegetable By-Products as Encapsulants. Foods 2024; 13:523. [PMID: 38397500 PMCID: PMC10887919 DOI: 10.3390/foods13040523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Interspecific hybrid crude palm oil (HCPO) HIE OxG derived from crossbred African oil palm (Elaeis guineensis) and American Caiaué (Elaeis oleifera) is prominent for its fatty acid and antioxidant compositions (carotenoids, tocopherols, and tocotrienols), lower production cost, and high pest resistance properties compared to crude palm oil. Biodegradable and sustainable encapsulants derived from vegetable byproducts were used to formulate HCPO nanoparticles. Nanoparticles with hybrid crude palm oil and jackfruit seed flour as a wall material (N-JSF) and with hybrid crude palm oil and jackfruit axis flour as a wall material (N-JAF) were optimized using a 22 experimental design. They exhibited nanoscale diameters (<250 nm) and were characterized based on their zeta potential, apparent viscosity, pH, color, and total carotenoid content. The nanoparticles demonstrated a monodisperse distribution, good uniformity, and stability (polydispersity index < 0.25; zeta potentials: N-JSF -19.50 ± 1.47 mV and N-JAF -12.50 ± 0.17 mV), as well as high encapsulation efficiency (%) (N-JSF 86.44 ± 0.01 and N-JAF 90.43 ± 1.34) and an optimal carotenoid retention (>85%). These nanoparticles show potential for use as sustainable and clean-label HCPO alternatives in the food industry.
Collapse
Affiliation(s)
- Larissa Santos Assunção
- Graduate Program in Food Science, College of Pharmacy, Federal University of Bahia, Rua Barão de Jeremoabo, 147, Ondina, Salvador 40170-115, Brazil; (L.S.A.); (C.O.d.S.); (T.S.O.)
| | - Carolina Oliveira de Souza
- Graduate Program in Food Science, College of Pharmacy, Federal University of Bahia, Rua Barão de Jeremoabo, 147, Ondina, Salvador 40170-115, Brazil; (L.S.A.); (C.O.d.S.); (T.S.O.)
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
| | - Tainara Santos Oliveira
- Graduate Program in Food Science, College of Pharmacy, Federal University of Bahia, Rua Barão de Jeremoabo, 147, Ondina, Salvador 40170-115, Brazil; (L.S.A.); (C.O.d.S.); (T.S.O.)
| | - Denilson de Jesus Assis
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia, Salvador 40210-630, Brazil;
| | - Luis Fernandes Pereira Santos
- Graduate Program in Food, Nutrition and Health, Federal University of Bahia, Basílio da Gama Street, Rua Basilio da Gama-w/n-Campus Canela, Salvador 40110-907, Brazil;
| | - Itaciara Larroza Nunes
- Graduate Program in Food Science, Department of Food Science and Technology, Federal University of Santa Catarina, Admar Gonzaga Highway, 1346, Itacorubi, Florianópolis 88034-000, Brazil;
| | - Bruna Aparecida Souza Machado
- Laboratory of Pharmaceutical’s Formulations, SENAI Institute of Innovation (ISI) in Advanced Health Systems (CIMATEC ISI SAS), National Service of Industrial Learning, University Center SENAI CIMATEC, Salvador 41650-010, Brazil;
| | - Camila Duarte Ferreira Ribeiro
- Graduate Program in Food Science, College of Pharmacy, Federal University of Bahia, Rua Barão de Jeremoabo, 147, Ondina, Salvador 40170-115, Brazil; (L.S.A.); (C.O.d.S.); (T.S.O.)
- Graduate Program in Food, Nutrition and Health, Federal University of Bahia, Basílio da Gama Street, Rua Basilio da Gama-w/n-Campus Canela, Salvador 40110-907, Brazil;
| |
Collapse
|
4
|
Villaró S, García-Vaquero M, Morán L, Álvarez C, Cabral EM, Lafarga T. Effect of seawater on the biomass composition of Spirulina produced at a pilot-scale. N Biotechnol 2023; 78:173-179. [PMID: 37967766 DOI: 10.1016/j.nbt.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/31/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
The microalga Arthrospira platensis BEA 005B was produced in 11.4 m3 raceway photobioreactors and a culture medium based on commercial fertilisers and either freshwater or seawater. The biomass productivity of the reactors operated at a fixed dilution rate of 0.3 day-1 decreased from 22.9 g·m-2·day-1 when operated using freshwater to 16.3 g·m-2·day-1 when the biomass was produced using seawater. The protein content of the biomass produced in seawater was lower; however, the content of essential amino acids including valine, leucine and isoleucine was higher. Seawater also triggered the production of carotenoids and altered the synthesis and accumulation of fatty acids. For example, the biomass produced using seawater showed a 319% and 210% higher content of oleic and eicosenoic acid, respectively. The results demonstrate that it is possible to produce the selected microalga using seawater after an adaptation period and that the composition of the produced biomass is suitable for food applications.
Collapse
Affiliation(s)
- Silvia Villaró
- Department of Chemical Engineering, University of Almería, Almería, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, Almería, Spain
| | - Marco García-Vaquero
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Lara Morán
- Lactiker Research Group, Department of Pharmacy and Food Sciences, University of the Basque Country, Vitoria-Gasteiz, Spain
| | - Carlos Álvarez
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin, Ireland
| | - Eduarda Melo Cabral
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin, Ireland
| | - Tomas Lafarga
- Department of Chemical Engineering, University of Almería, Almería, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, Almería, Spain.
| |
Collapse
|
5
|
Pereira Martins JR, Linhares de Aguiar AL, Barros Nogueira KA, Uchôa Bastos Filho AJ, da Silva Moreira T, Lima Holanda Araújo M, Pessoa C, Eloy JO, da Silva Junior IJ, Petrilli R. Nanoencapsulation of R-phycoerytrin extracted from Solieria filiformis improves protein stability and enables its biological application as a fluorescent dye. J Microencapsul 2023; 40:37-52. [PMID: 36630267 DOI: 10.1080/02652048.2023.2168081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We aimed to encapsulate R-PE to improve its stability for use as a fluorescent probe for cancer cells. Purified R-PE from the algae Solieria filiformis was encapsulated in polymeric nanoparticles using PCL. Nanoparticles were characterised and R-PE release was evaluated. Also, cellular uptake using breast and prostate cancer cells were performed. Nanoparticles presented nanometric particle size (198.8 ± 0.06 nm) with low polydispersity (0.13 ± 0.022), negative zeta potential (-18.7 ± 1.10 mV), and 50.0 ± 7.3% encapsulation. FTIR revealed that R-PE is molecularly dispersed in PCL. DSC peak at 307 °C indicates the presence of R-PE in the nanoparticle. Also, in vitro, it was demonstrated low release for nanoparticles and degradation for the free R-PE. Finally, cellular uptake demonstrated the potential of R-PE/PCL nanoparticles for cancer cell detection. Nanoparticles loaded with R-PE can overcome instability and allow application as a fluorescent probe for cancer cells.
Collapse
Affiliation(s)
| | | | | | | | - Thais da Silva Moreira
- Department of Pharmacy, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | | | - Claudia Pessoa
- Department of Physiology and Pharmacology, College of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Josimar O Eloy
- Department of Pharmacy, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | | | - Raquel Petrilli
- Institute of Health Sciences, University of International Integration of the Afro-Brazilian Lusophony, Redenção, Brazil
| |
Collapse
|
6
|
Improvement in the Sequential Extraction of Phycobiliproteins from Arthrospira platensis Using Green Technologies. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111896. [PMID: 36431030 PMCID: PMC9692409 DOI: 10.3390/life12111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
Abstract
Arthrospira platensis (commercially known as Spirulina) is an excellent source of phycobiliproteins, especially C-phycocyanin. Phycobiliproteins are significant bioactive compounds with useful biological applications. The extraction process plays a significant role in downstream microalga production and utilisation. The important pigments found in A. platensis include chlorophyll and carotenoids as nonpolar pigments and phycobiliproteins as polar pigments. Supercritical fluid extraction (SFE) as a green extraction technology for the high-value metabolites of microalgae has potential for trends in food and human health. The nonpolar bioactive compounds, chlorophyll and carotenoids of A. platensis, were primarily separated using supercritical carbon dioxide (SC-CO2) solvent-free fluid extraction pressure; the temperature and ethanol as cosolvent conditions were compared. The residue from the A. platensis cells was subjected to phycobiliprotein extraction. The phosphate and water extraction of A. platensis SFE residue were compared to evaluate phycobiliprotein extraction. The SFE results exhibited higher pressure (350 bar) and temperature extraction (50 °C) with ethanol-free extraction and increased nonpolar pigment. Phycobiliprotein yield was obtained from A. platensis SFE residue by ethanol-free buffer extraction as a suitable process with antioxidant properties. The C-phycocyanin was isolated and enhanced to 0.7 purity as food grade. This developed method can be used as a guideline and applied as a sustainable process for important pigment extraction from Arthrospira microalgae.
Collapse
|
7
|
Wang M, Morón-Ortiz Á, Zhou J, Benítez-González A, Mapelli-Brahm P, Meléndez-Martínez AJ, Barba FJ. Effects of Pressurized Liquid Extraction with dimethyl sulfoxide on the recovery of carotenoids and other dietary valuable compounds from the microalgae Spirulina, Chlorella and Phaeodactylum tricornutum. Food Chem 2022; 405:134885. [DOI: 10.1016/j.foodchem.2022.134885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
|
8
|
Influence of Geographical Location of Spirulina (Arthrospira platensis) on the Recovery of Bioactive Compounds Assisted by Pulsed Electric Fields. SEPARATIONS 2022. [DOI: 10.3390/separations9090257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spirulina (Arthrospira platensis) has been consumed by humans since ancient times. It is rich in high added-value compounds such as chlorophylls, carotenoids and polyphenols. Pulsed electric fields (PEF) is an innovative non-thermal technique that improves the extraction of bioactive compounds from diverse sources. PEF pre-treatment (3 kV/cm, 100 kJ/kg) combined with supplementary extraction with binary solvents at different times was evaluated to obtain the optimal conditions for extraction. In addition, the results obtained were compared with conventional treatment (without PEF pre-treatment and constant shaking) and different strains of Spirulina from diverse geographical locations. The optimal extraction conditions for recovering the bioactive compounds were obtained after applying PEF treatment combined with the binary mixture EtOH/H2O for 180 min. The recovery of total phenolic content (TPC) (19.76 ± 0.50 mg/g DM (dry matter) and carotenoids (0.50 ± 0.01 mg/g DM) was more efficient in the Spirulina from Spain. On the other hand, there was a higher recovery of chlorophylls in the Spirulina from China. The highest extraction of total antioxidant compounds was in Spirulina from Costa Rica. These results show that PEF, solvents and the condition of growing affect the extraction of antioxidant bioactive compounds from Spirulina. The combination of PEF and EtOH/H2O is a promising technology due to its environmental sustainability.
Collapse
|
9
|
Elbaz AM, Ahmed AMH, Abdel-Maqsoud A, Badran AMM, Abdel-Moneim AME. Potential ameliorative role of Spirulina platensis in powdered or extract forms against cyclic heat stress in broiler chickens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45578-45588. [PMID: 35149947 PMCID: PMC9209341 DOI: 10.1007/s11356-022-19115-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/03/2022] [Indexed: 05/07/2023]
Abstract
Global warming has become intensified and widespread, threatening the world with causing acute heatwaves that adversely affect poultry production and producers' profitability. Spirulina platensis is a precious and promising mitigating strategy to combat the detrimental impacts of heat stress due to its high contents of nutrients and bioactive components. The current study was designed to compare the incorporation impact of S. platensis powder or aqueous extract on the growth and physiological responses of heat-stressed broiler chicks. Six hundred 1-day-old Ross 308 male broiler chicks were allocated into five experimental groups with six replicates of 20 chicks each. The control group fed the basal diet without additives, SPP1 and SPP2 groups fed the basal diet with 1 g/kg and 2 g/kg S. platensis powder, respectively, while SPE1 and SPE2 groups received 1 ml/L and 2 ml/L S. platensis aqueous extract in the drinking water, respectively. All birds were exposed to cyclic heat stress (34 ± 2 °C for 12 h) for three successive days a week from day 10 to day 35. In vitro analysis showed that total phenols, flavonoids, and antioxidant activity of S. platensis were remarkably decreased (P < 0.001) in the aqueous extract compared to the powder form. Body weight, weight gain, and feed conversion ratio were improved (P < 0.001) in all treated groups, while carcass yield and dressing percentage were increased only in SPP1 and SPP2. Feed and water intake and blood biochemical parameters were not affected. Both forms of S. platensis enhanced the lipid profile, redox status, and humoral immune response of heat-stressed chicks superior to the powder form. Conclusively, the powder form of S. platensis was more effective in enhancing the productivity of broilers and alleviating the negative impacts of heat stress than the aqueous extract form.
Collapse
Affiliation(s)
| | - Ayman M H Ahmed
- Poultry Production Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | | | - Aml M M Badran
- Poultry Breeding Department, Animal Production Research Institute, Agricultural Research Center, Ministry of Agriculture, Dokki, Giza, Egypt
| | | |
Collapse
|
10
|
Buoso S, Belletti G, Ragno D, Castelvetro V, Bertoldo M. Rheological Response of Polylactic Acid Dispersions in Water with Xanthan Gum. ACS OMEGA 2022; 7:12536-12548. [PMID: 35474836 PMCID: PMC9026014 DOI: 10.1021/acsomega.1c05382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
In this work, the rheological behavior of stable poly(lactic acid) (PLA) dispersions in water, intended for coating applications, was investigated. The newly prepared dispersion consists of PLA particles with an average diameter of 222 ± 2 nm based on dynamic light scattering (DLS) and scanning electron microscopy (SEM) analyses, at concentrations varying in the 5-22 wt % range. Xanthan gum (XG), a bacterial polysaccharide, was used as a thickening agent to modulate the viscosity of the formulations. The rheological properties of the PLA dispersions with different XG and PLA contents were studied in steady shear, amplitude sweep, and frequency sweep experiments. Under steady shear conditions, the viscosity of all the formulations showed a shear-thinning behavior similar to XG solutions in the whole investigated 1-1000 s-1 range, with values dependent on both PLA particles and XG concentrations. Amplitude and frequency sweep data revealed a weak-gel behavior except in the case of the most diluted sample, with moduli dependent on both PLA and XG contents. A unified scaling parameter was identified in the volume fraction (ϕ) of the PLA particles, calculated by considering the dependence of the continuous phase density on the XG concentration. Accordingly, a master curve at different volume fractions was built using the time-concentration-superposition approach. The master curve describes the rheological response of the system over a wider frequency window than the experimentally accessible one and reveals the presence of a superimposed β relaxation process in the high-frequency region.
Collapse
Affiliation(s)
- Sara Buoso
- Institute
of Organic Synthesis and Photoreactivity−Italian National Research
Council, via P. Gobetti,
101, Bologna 40129, Italy
| | - Giada Belletti
- Institute
of Organic Synthesis and Photoreactivity−Italian National Research
Council, via P. Gobetti,
101, Bologna 40129, Italy
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via. L. Borsari, 46, Ferrara 44121, Italy
| | - Daniele Ragno
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via. L. Borsari, 46, Ferrara 44121, Italy
| | - Valter Castelvetro
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via G. Moruzzi,
2, Pisa 56124, Italy
| | - Monica Bertoldo
- Institute
of Organic Synthesis and Photoreactivity−Italian National Research
Council, via P. Gobetti,
101, Bologna 40129, Italy
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via. L. Borsari, 46, Ferrara 44121, Italy
| |
Collapse
|
11
|
Immunomodulatory and Antioxidant Potential of Biogenic Functionalized Polymeric Nutmeg Oil/Polyurethane/ZnO Bionanocomposite. Pharmaceutics 2021; 13:pharmaceutics13122197. [PMID: 34959478 PMCID: PMC8703756 DOI: 10.3390/pharmaceutics13122197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/04/2022] Open
Abstract
The current study is focused on the biosynthesis of nutmeg oil/ polyurethane/ZnONPs bionanocomposite film for immunomodulatory and antioxidant activities. The fabricated film was prepared by using naturally extracted nutmeg oil functionalized with ZnONPs in the presence of polyutherane (PU) medium. The bionanocomposite film was obtained by incorporating dropwise 10 % (w/v) of nutmeg oil to the PU solution/ZnONPs blend. The active constituents of nutmeg oil were determined by gas chromatography coupled with mass spectrometry (GC-MS). The morphological characteristics of the resulting bionanocomposite film were confirmed using various microscopic and spectroscopic methods. Immunomodulatory potential of bionanocomposite was evaluated for RAW 264.7 macrophages. The results exhibited an excellent reduction in inflammatory cytokines (IL-6, IL-10, and TNFα) secretions after the treatment with bionanocomposite. The bionanocomposite exerted the highest inhibitory effects on certain cell signaling constituents that influence the initiation of expression of proinflammatory cytokines. The bionanocomposite was also tested for DPPH and ABTS free radicals scavenging assays and showed excellent antioxidant potential with IC50 values (0.28 ± 0.22 and 0.49 ± 0.36), respectively. The outcomes suggested promising immunomodulatory and antioxidant potentials for the biogenic synthesized nutmeg oil/PU/ZnONPs polymeric bionanocomposite.
Collapse
|
12
|
Handa M, Singh A, Flora SJS, Shukla R. Stimuli-responsive Polymeric nanosystems for therapeutic applications. Curr Pharm Des 2021; 28:910-921. [PMID: 34879797 DOI: 10.2174/1381612827666211208150210] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recent past decades have reported emerging of polymeric nanoparticles as a promising technique for controlled and targeted drug delivery. As nanocarriers, they have high drug loading and delivery to the specific site or targeted cells with an advantage of no drug leakage within en route and unloading of a drug in a sustained fashion at the site. These stimuli-responsive systems are functionalized in dendrimers, metallic nanoparticles, polymeric nanoparticles, liposomal nanoparticles, quantum dots. PURPOSE OF REVIEW The authors reviewed the potential of smart stimuli-responsive carriers for therapeutic application and their behavior in external or internal stimuli like pH, temperature, redox, light, and magnet. These stimuli-responsive drug delivery systems behave differently in In vitro and In vivo drug release patterns. Stimuli-responsive nanosystems include both hydrophilic and hydrophobic systems. This review highlights the recent development of the physical properties and their application in specific drug delivery. CONCLUSION The stimuli (smart, intelligent, programmed) drug delivery systems provide site-specific drug delivery with potential therapy for cancer, neurodegenerative, lifestyle disorders. As development and innovation, the stimuli-responsive based nanocarriers are moving at a fast pace and huge demand for biocompatible and biodegradable responsive polymers for effective and safe delivery.
Collapse
Affiliation(s)
- Mayank Handa
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002. India
| | - Ajit Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002. India
| | - S J S Flora
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002. India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002. India
| |
Collapse
|
13
|
Micro and Nanoencapsulation of Natural Colors: a Holistic View. Appl Biochem Biotechnol 2021; 193:3787-3811. [PMID: 34312787 DOI: 10.1007/s12010-021-03631-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022]
Abstract
The applications of natural plant pigments are growing rapidly with the increasing awareness of the negative health impacts of synthetic colorants. Additionally, natural pigments possess various biological properties and therapeutic activities. But their functions are hindered by their poor bioavailability, bioaccessibility, low absorption rate, and susceptibility to destructive environmental changes during processing and delivery. Encapsulation is a method of entrapment of bioactive ingredients within suitable carriers to provide protection and for the appropriate delivery into the targeted site by the formation of particles or capsules in micrometer or nanometer scales. Encapsulation imparts several benefits including improved thermal and chemical stability, preserves or masks flavor, taste, or aroma, controlled and targeted release, and enhanced bioavailability of pigments. Micro and nanoencapsulation of pigments will provide extensive and intensive platforms for the development of a new stage in the production of novel and healthy foods. This review mainly focuses on the advanced developments in the fields of micro and nanoencapsulation of pigments.
Collapse
|
14
|
Boey JY, Mohamad L, Khok YS, Tay GS, Baidurah S. A Review of the Applications and Biodegradation of Polyhydroxyalkanoates and Poly(lactic acid) and Its Composites. Polymers (Basel) 2021; 13:1544. [PMID: 34065779 PMCID: PMC8150976 DOI: 10.3390/polym13101544] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Overconsumption of plastic goods and improper handling of petroleum-derived plastic waste have brought a plethora of negative impacts to the environment, ecosystem and human health due to its recalcitrance to degradation. These drawbacks become the main driving force behind finding biopolymers with the degradable properties. With the advancement in biopolymer research, polyhydroxyalkanoate (PHA) and poly(lacyic acid) (PLA) and its composites have been alluded to as a potential alternative to replace the petrochemical counterpart. This review highlights the current synthesis process and application of PHAs and PLA and its composites for food packaging materials and coatings. These biopolymers can be further ameliorated to enhance their applicability and are discussed by including the current commercially available packaging products. Factors influencing biodegradation are outlined in the latter part of this review. The main aim of this review article is to organize the scattered available information on various aspects of PHAs and PLA, and its composites for packaging application purposes. It is evident from a literature survey of about 140 recently published papers from the past 15 years that PLA and PHA show excellent physical properties as potential food packaging materials.
Collapse
Affiliation(s)
| | | | | | | | - Siti Baidurah
- School of Industrial Technology, Universiti Sains Malaysia, Minden 11800, Malaysia; (J.Y.B.); (L.M.); (Y.S.K.); (G.S.T.)
| |
Collapse
|