1
|
Li H, Wu M, Ma Z, Wang X, Fan J, Hu K, Wei Y, Yao C, Liu J, Kang S, Kang X, Yuan J. Porcine plasma protein cold-set hydrogel crosslinked by genipin and the immunomodulatory, proliferation promoting and scar-remodeling in wound healing. BIOMATERIALS ADVANCES 2025; 170:214216. [PMID: 39923602 DOI: 10.1016/j.bioadv.2025.214216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/02/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025]
Abstract
Addressing the critical need for biocompatible and multifunctional wound dressings for chronic and non-healing wounds, cold-set hydrogel using natural biomacromolecules are potential candidates. This study developed a novel cold-set hydrogel of porcine plasma protein (PPP) through genipin (GP) as crosslinker and glucono delta-lactone (GDL) as acidifier. GP promoted hardness, springiness, water holding capacity (WHC) and modulus in a dose-dependent manner in the presence of GDL, and significantly enhanced microstructural density, integrity and anti-degradation, critical as wound dressing, achieving the optimal performance at 0.15 % GP and 0.2 % GDL. Subsequently, biocompatibility assessments revealed that the optimum PPP gel was low cytotoxicity and could support cell migration and proliferation, reduce apoptosis with dose-effect relationship of the filler PPP. Meanwhile, in vivo skin wound healing model indicated the efficacy in accelerating wound healing, reducing inflammation, and promoting tissue remodeling without excessive scar formation. These effects are attributed to the ability of PPP in the hydrogel to modulate local inflammatory responses, enhance angiogenesis, and balance extracellular matrix remodeling processes. In conclusion, this pioneering work establishes PPP cold-set hydrogels as promising candidates for advanced wound care solutions, combining the benefits of natural protein-based biomaterials with innovative crosslinking strategies to meet urgent clinical needs in regenerative medicine.
Collapse
Affiliation(s)
- Hanluo Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Meiling Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Zhuanzhuan Ma
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Xue Wang
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Shihezi University, Xinjiang 832008, China
| | - Junwei Fan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Kanghong Hu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Yanhong Wei
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Chenguang Yao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Jinbiao Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Sini Kang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Xu Kang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.
| | - Jianglan Yuan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
2
|
Weng J, Chen M, Zou Y, Li Y, Lan Y, Zhang H. Fabrication and characterization of electrospun core-shell nanofibers of bilayer zein/pullulan emulsions crosslinked by genipin. Int J Biol Macromol 2024; 281:136324. [PMID: 39374723 DOI: 10.1016/j.ijbiomac.2024.136324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/01/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
In this study, the electrospun core-shell nanofibers of zein/pullulan stabilized bilayer emulsions before and after genipin crosslinking were fabricated. The experimental results indicated that the addition of pullulan increased the apparent viscosity and elastic modulus of the bilayer emulsions, which was further increased after the chemical crosslinking of genipin. The nanofiber diameter increased from 102.9 nm to 169.9 nm with the increasing ratio of pullulan, but increased significantly to a range of 405.6-708.0 nm after genipin crosslinking. The electrospun nanofiber films of crosslinked emulsions had higher thermal stability and stronger water stability. The FTIR result proved the existence of hydrogen bond interaction between the zein, pullulan, and genipin molecules. In addition, before and after crosslinking, the encapsulation efficiency of electrospun fiber films for camellia oil was >77.68 %, and the maximum encapsulation efficiency could reach 87.94 %, and there was no significant change during the 7-day storage period, showing good stability. These research results can provide a theoretical basis for the encapsulation of hydrophobic active substances in zein-based emulsion electrospun core-shell nanofibers.
Collapse
Affiliation(s)
- Junjie Weng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Meiyu Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yucheng Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China.
| |
Collapse
|
3
|
Ojeda-Hernández DD, Velasco-Lozano S, Fraile JM, Mateos-Díaz JC, Rojo FJ, Benito-Martín MS, Selma-Calvo B, Fuente-Martín SDL, García-Martín M, Larriba-González MT, Hernández-Sapiéns MA, Canales-Aguirre AA, Matias-Guiu JA, Matias-Guiu J, Gomez-Pinedo U. Thermosensitive chitosan-based hydrogel: A vehicle for overcoming the limitations of nose-to-brain cell therapy. Acta Biomater 2024; 188:157-168. [PMID: 39245308 DOI: 10.1016/j.actbio.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Cell therapy is a promising strategy for treating neurological pathologies but requires invasive methods to bypass the blood-brain barrier restrictions. The nose-to-brain route has been presented as a direct and less invasive alternative to access the brain. The primary limitations of this route are low retention in the olfactory epithelium and poor cell survival in the harsh conditions of the nasal cavity. Thus, using chitosan-based hydrogel as a vehicle is proposed in this work to overcome the limitations of nose-to-brain cell administration. The hydrogel's design was driven to achieve gelification in response to body temperature and a mucosa-interacting chemical structure biocompatible with cells. The hydrogel showed a < 30 min gelation time at 37 °C and >95 % biocompatibility with 2D and 3D cultures of mesenchymal stromal cells. Additionally, the viability, stability, and migration capacity of oligodendrocyte precursor cells (OPCs) within the hydrogel were maintained in vitro for up to 72 h. After the intranasal administration of the OPCs-containing hydrogel, histological analysis showed the presence of viable cells in the nasal cavity for up to 72 h post-administration in healthy athymic mice. These results demonstrate the hydrogel's capacity to increase the residence time in the nasal cavity while providing the cells with a favorable environment for their viability. This study presents for the first time the use of thermosensitive hydrogels in nose-to-brain cell therapy, opening the possibility of increasing the delivery efficiency in future approaches in translational medicine. STATEMENT OF SIGNIFICANCE: This work highlights the potential of biomaterials, specifically hydrogels, in improving the effectiveness of cell therapy administered through the nose. The nose-to-brain route has been suggested as a non-invasive way to directly access the brain. However, delivering stem cells through this route poses a challenge since their viability must be preserved and cells can be swept away by nasal mucus. Earlier attempts at intranasal cell therapy have shown low efficiency, but still hold promise to the future. The hydrogels designed for this study can provide stem cells with a biocompatible environment and adhesion to the nasal atrium, easing the successful migration of viable cells to the brain.
Collapse
Affiliation(s)
- Doddy Denise Ojeda-Hernández
- Laboratorio de Neurobiología, Instituto de Neurociencias. Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Susana Velasco-Lozano
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, 12, 50009 Zaragoza, Spain; Aragonese Foundation for Research and Development (ARAID), Av. Ranillas, 1-D, 50018 Zaragoza, Spain
| | - José M Fraile
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, 12, 50009 Zaragoza, Spain
| | - J C Mateos-Díaz
- Unidad de Biotecnología Industrial. Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| | - Francisco J Rojo
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain; Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain; Grupo de Biomateriales y Medicina Regenerativa, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - María Soledad Benito-Martín
- Laboratorio de Neurobiología, Instituto de Neurociencias. Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Belén Selma-Calvo
- Laboratorio de Neurobiología, Instituto de Neurociencias. Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Sarah de la Fuente-Martín
- Laboratorio de Neurobiología, Instituto de Neurociencias. Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Marina García-Martín
- Laboratorio de Neurobiología, Instituto de Neurociencias. Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - María Teresa Larriba-González
- Laboratorio de Neurobiología, Instituto de Neurociencias. Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Mercedes Azucena Hernández-Sapiéns
- Unidad de Evaluación Preclínica, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Alejandro A Canales-Aguirre
- Unidad de Evaluación Preclínica, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Jordi A Matias-Guiu
- Laboratorio de Neurobiología, Instituto de Neurociencias. Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain; Servicio de Neurología, Instituto de Neurociencias. Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Universidad Complutense de Madrid, Spain
| | - Jorge Matias-Guiu
- Laboratorio de Neurobiología, Instituto de Neurociencias. Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain; Servicio de Neurología, Instituto de Neurociencias. Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Universidad Complutense de Madrid, Spain
| | - Ulises Gomez-Pinedo
- Laboratorio de Neurobiología, Instituto de Neurociencias. Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain.
| |
Collapse
|
4
|
Liu Z, Xu M, Zhou S, Wang J, Huang Z. Enhancing the Thermal Stability of Zein Particle-Stabilized Aeratable Emulsions Through Genipin-Protein Cross-Linking and Its Possible Mechanism of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3707-3718. [PMID: 38268446 DOI: 10.1021/acs.jafc.3c07770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Protein particle-stabilized emulsions often lack thermal stability, impacting their industrial use. This study investigated the effects of genipin (GP)-zein cross-linked particles with varying GP-to-protein weight ratios (0/0.02/0.1:1) on emulsion thermal stability. Enhanced stability was observed at the GP level of 0.1. Heat treatment increased the covalent cross-linking in raw particles and emulsions. Isolated particles from heated emulsions grew in size (micrometer scale) with higher GP levels, unlike heated raw particles (nanoscale). GP-protein cross-linking reduced the droplet-droplet and particle-emulsifier interactions in the heated emulsion. Spectroscopic analysis and electrophoresis revealed that GP-zein cross-linking increased protein structural stability and inhibited nondisulfide and non-GP cross-linking reactions in heated emulsions. The GP-zein bridges between particles at the oil-water interface create strong connections in the particle layer (shell), referred to as "particle-shell locking", enhancing the thermal stability of emulsion significantly. This insight aids the future design of protein-particle-based emulsions, preserving properties like aeratability during thermal processing.
Collapse
Affiliation(s)
- Zelong Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| | - Meiyu Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| | - Zhaoxian Huang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Yan M, Wang Y, Wang C, Feng S, Zhang T. Whey protein isolate-resveratrol complex as a radical scavenging foaming ingredient with increased ultraviolet stability. Food Chem 2024; 434:137519. [PMID: 37748290 DOI: 10.1016/j.foodchem.2023.137519] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/27/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023]
Abstract
Functional foaming food ingredients play a vital role in preparing healthcare foods, however, the weak foamability and low photostability of ingredients severely limit their further development. Herein, whey protein isolate-resveratrol complexes (WPI-RES) were fabricated to address these challenges. Multi-spectral analysis and molecular simulation results revealed the key driving forces of hydrogen bonding and hydrophobic interactions to promote the formation of WPI-RES complexes, leading to the enhanced foamability and emulsifying properties of WPI after binding with RES. Importantly, the robust radical scavenging activity of RES within WPI was maintained under UV light irradiation compared to that of free RES as identified by DPPH assay, which was presumably due to inhibited photoisomerization of RES after binding to WPI. This work provides a promising foaming ingredient with increased ultraviolet stability and radical scavenging activity, paves the way to develop stable health-promoting foaming food products.
Collapse
Affiliation(s)
- Mi Yan
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China
| | - Yingyi Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China
| | - Cuina Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China
| | - Sitong Feng
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
6
|
Ahmed R, Ul Ain Hira N, Wang M, Iqbal S, Yi J, Hemar Y. Genipin, a natural blue colorant precursor: Source, extraction, properties, and applications. Food Chem 2024; 434:137498. [PMID: 37741231 DOI: 10.1016/j.foodchem.2023.137498] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
Natural cross-linkers are extensively employed due to their low toxicity and biocompatibility benefits. Genipin acts as a precursor for producing blue colorants. The formation of these colorants involves the cross-linking reaction between genipin and primary amines present in amino acids, peptides, and proteins. Genipin is extracted from Gardenia jasminoides and Genipa americana. This article explains the cross-linking mechanism of genipin with proteins/polysaccharides to provide an overall understanding of its properties. Furthermore, it explores new sources of genipin and innovative methodologies to make the genipin recovery process efficient. Genipin increases food products' texture, gel strength, stability, and shelf life. The antibacterial, anti-inflammatory, and antioxidant properties of chitosan, gelatin, alginate, and hyaluronic acid increased after genipin cross-linking. Lastly, drawbacks, toxicity, and directions regarding the genipin cross-linking have also been addressed. The review article covers how to recover and cross-link genipin with biopolymers for industrial applications.
Collapse
Affiliation(s)
- Rizwan Ahmed
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China; Shenzhen Key Laboratory of Food Macromolecules Science and Processing, Shenzhen University, Shenzhen, Guangdong 518060, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Noor Ul Ain Hira
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China; Shenzhen Key Laboratory of Food Macromolecules Science and Processing, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Mingwei Wang
- State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shahid Iqbal
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiang Yi
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China; Shenzhen Key Laboratory of Food Macromolecules Science and Processing, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Yacine Hemar
- School of Natural Sciences, Massey University, Private Bag 11 222. Palmerston North, 4442, New Zealand
| |
Collapse
|
7
|
Delanne-Cuménal A, Lainé E, Hoffart V, Verney V, Garrait G, Beyssac E. Effect of Molecules' Physicochemical Properties on Whey Protein/Alginate Hydrogel Rheology, Microstructure and Release Profile. Pharmaceutics 2024; 16:258. [PMID: 38399312 PMCID: PMC10892444 DOI: 10.3390/pharmaceutics16020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The encapsulation of molecules with different physicochemical properties (theophylline, blue dextran, salicylic acid and insulin) in whey protein (WP) and alginate (ALG) microparticles (MP) for oral administration was studied. MP based on WP/ALG were prepared by a cold gelation technique and coated with WP solution after reticulation. Molecules influenced polymer solution viscosity and elasticity, resulting in differences regarding encapsulation efficiency (from 23 to 100%), MP structure and swelling (>10%) and in terms of pH tested. Molecule release was due to diffusion and/or erosion of MP and was very dependent on the substance encapsulated. All the loaded MP were successfully coated, but variation in coating thickness (from 68 to 146 µm) and function of the molecules encapsulated resulted in differences in molecule release (5 to 80% in 1 h). Gel rheology modification, due to interactions between WP, ALG, calcium and other substances, was responsible for the highlighted differences. Measuring rheologic parameters before extrusion and reticulation appeared to be one of the most important aspects to study in order to successfully develop a vector with optimal biopharmaceutical properties. Our vector seems to be more appropriate for anionic high-molecular-weight substances, leading to high viscosity and elasticity and to MP enabling gastroresistance and controlled release of molecules at intestinal pH.
Collapse
Affiliation(s)
- A. Delanne-Cuménal
- UMR454 MEDIS, INRAE-UCA, 63000 Clermont-Ferrand, France; (A.D.-C.); (G.G.); (E.B.)
| | - E. Lainé
- UMR454 MEDIS, INRAE-UCA, 63000 Clermont-Ferrand, France; (A.D.-C.); (G.G.); (E.B.)
| | - V. Hoffart
- UMR8258 CNRS—U1022 Inserm, UTCBS, Université Paris Cité, 75013 Paris, France;
| | - V. Verney
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, 63000 Clermont-Ferrand, France;
| | - G. Garrait
- UMR454 MEDIS, INRAE-UCA, 63000 Clermont-Ferrand, France; (A.D.-C.); (G.G.); (E.B.)
| | - E. Beyssac
- UMR454 MEDIS, INRAE-UCA, 63000 Clermont-Ferrand, France; (A.D.-C.); (G.G.); (E.B.)
| |
Collapse
|
8
|
Bakadia BM, Qaed Ahmed AA, Lamboni L, Shi Z, Mutu Mukole B, Zheng R, Pierre Mbang M, Zhang B, Gauthier M, Yang G. Engineering homologous platelet-rich plasma, platelet-rich plasma-derived exosomes, and mesenchymal stem cell-derived exosomes-based dual-crosslinked hydrogels as bioactive diabetic wound dressings. Bioact Mater 2023; 28:74-94. [PMID: 37234363 PMCID: PMC10206161 DOI: 10.1016/j.bioactmat.2023.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
The management of diabetic wounds remains a critical therapeutic challenge. Platelet-rich plasma (PRP) gel, PRP-derived exosomes (PRP-Exos), and mesenchymal stem cell-derived exosomes (MSC-Exos) have demonstrated therapeutic potential in wound treatment. Unfortunately, their poor mechanical properties, the short half-lives of growth factors (GFs), and the burst release of GFs and exosomes have limited their clinical applications. Furthermore, proteases in diabetic wounds degrade GFs, which hampers wound repair. Silk fibroin is an enzyme-immobilization biomaterial that could protect GFs from proteases. Herein, we developed novel dual-crosslinked hydrogels based on silk protein (SP) (sericin and fibroin), including SP@PRP, SP@MSC-Exos, and SP@PRP-Exos, to promote diabetic wound healing synergistically. SP@PRP was prepared from PRP and SP using calcium gluconate/thrombin as agonist, while SP@PRP-Exos and SP@MSC-Exos were derived from exosomes and SP with genipin as crosslinker. SP provided improved mechanical properties and enabled the sustained release of GFs and exosomes, thereby overcoming the limitations of PRP and exosomes in wound healing. The dual-crosslinked hydrogels displayed shear-induced thinning, self-healing, and eradication of microbial biofilms in a bone-mimicking environment. In vivo, the dual-crosslinked hydrogels contributed to faster diabetic wound healing than PRP and SP by upregulating GFs expression, down-regulating matrix metalloproteinase-9 expression, and by promoting an anti-NETotic effect, angiogenesis, and re-epithelialization. Hence, these dual-crosslinked hydrogels have the potential to be translated into a new generation of diabetic wound dressings.
Collapse
Affiliation(s)
- Bianza Moise Bakadia
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institut Supérieur des Techniques Médicales de Lubumbashi, Lubumbashi, Congo
| | - Abeer Ahmed Qaed Ahmed
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100, Pavia, Italy
| | - Lallepak Lamboni
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | - Ruizhu Zheng
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mazono Pierre Mbang
- Institut Supérieur des Techniques Médicales de Lubumbashi, Lubumbashi, Congo
| | - Bi Zhang
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Mario Gauthier
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
9
|
Structural manipulation of the gelatin/genipin network to inform the molecular transport of caffeine. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
10
|
Weng J, Durand A, Desobry S. Chitosan-Based Particulate Carriers: Structure, Production and Corresponding Controlled Release. Pharmaceutics 2023; 15:1455. [PMID: 37242694 PMCID: PMC10221392 DOI: 10.3390/pharmaceutics15051455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The state of the art in the use of chitosan (CS) for preparing particulate carriers for drug delivery applications is reviewed. After evidencing the scientific and commercial potentials of CS, the links between targeted controlled activity, the preparation process and the kinetics of release are detailed, focusing on two types of particulate carriers: matrix particles and capsules. More precisely, the relationship between the size/structure of CS-based particles as multifunctional delivery systems and drug release kinetics (models) is emphasized. The preparation method and conditions greatly influence particle structure and size, which affect release properties. Various techniques available for characterizing particle structural properties and size distribution are reviewed. CS particulate carriers with different structures can achieve various release patterns, including zero-order, multi-pulsed, and pulse-triggered. Mathematical models have an unavoidable role in understanding release mechanisms and their interrelationships. Moreover, models help identify the key structural characteristics, thus saving experimental time. Furthermore, by investigating the close relation between preparation process parameters and particulate structural characteristics as well as their effect on release properties, a novel "on-demand" strategy for the design of drug delivery devices may be developed. This reverse strategy involves designing the production process and the related particles' structure based on the targeted release pattern.
Collapse
Affiliation(s)
- Jiaqi Weng
- Université de Lorraine, LIBio, F-54000 Nancy, France;
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France;
| | - Alain Durand
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France;
| | | |
Collapse
|
11
|
He Z, Liu C, Zhao J, Guo F, Wang Y. Enhanced gelling properties and hydration capacity of ginkgo seed proteins by genipin cross-linking. Food Chem 2023; 399:133924. [DOI: 10.1016/j.foodchem.2022.133924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
|
12
|
Synthesis and characterization of novel Spirulina protein isolate (SPI)-based hydrogels through dual-crosslinking with genipin/Zn2+. Food Res Int 2022; 162:112107. [DOI: 10.1016/j.foodres.2022.112107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
|
13
|
Liu Q, Sun Y, Zhang J, Zhang M, Cheng J, Guo M. Physicochemical and in vitro digestion properties of soy isoflavones loaded whey protein nanoparticles using a pH-driven method. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
14
|
Kosztołowicz T, Dutkiewicz A, Lewandowska KD, Wąsik S, Arabski M. Subdiffusion equation with Caputo fractional derivative with respect to another function in modeling diffusion in a complex system consisting of a matrix and channels. Phys Rev E 2022; 106:044138. [PMID: 36397549 DOI: 10.1103/physreve.106.044138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Anomalous diffusion of an antibiotic (colistin) in a system consisting of packed gel (alginate) beads immersed in water is studied experimentally and theoretically. The experimental studies are performed using the interferometric method of measuring concentration profiles of a diffusing substance. We use the g-subdiffusion equation with the fractional Caputo time derivative with respect to another function g to describe the process. The function g and relevant parameters define anomalous diffusion. We show that experimentally measured time evolution of the amount of antibiotic released from the system determines the function g. The process can be interpreted as subdiffusion in which the subdiffusion parameter (exponent) α decreases over time. The g-subdiffusion equation, which is more general than the "ordinary" fractional subdiffusion equation, can be widely used in various fields of science to model diffusion in a system in which parameters, and even a type of diffusion, evolve over time. We postulate that diffusion in a system composed of channels and a matrix can be described by the g-subdiffusion equation, just like diffusion in a system of packed gel beads placed in water.
Collapse
Affiliation(s)
- Tadeusz Kosztołowicz
- Institute of Physics, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Aldona Dutkiewicz
- Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Uniwersytetu Poznańskiego 4, 61-614 Poznań, Poland
| | - Katarzyna D Lewandowska
- Department of Radiological Informatics and Statistics, Medical University of Gdańsk, Tuwima 15, 80-210 Gdańsk, Poland
| | - Sławomir Wąsik
- Department of Medical Physics and Biophysics, Institute of Physics, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Michał Arabski
- Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland
| |
Collapse
|
15
|
Su K, Sun J, Han J, Zheng T, Sun B, Liu S. Combined morphological and multi-omics analyses to reveal the developmental mechanism of Zanthoxylum bungeanum prickles. FRONTIERS IN PLANT SCIENCE 2022; 13:950084. [PMID: 36072325 PMCID: PMC9441855 DOI: 10.3389/fpls.2022.950084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Zanthoxylum bungeanum Maxim. as an important economic forest, its epidermis bears prickles which complicate the harvesting process and increase the labor costs. To explore the developmental mechanism of prickles, three varieties of Zanthoxylum bungeanum (PZB, SZB, GSZB) were selected for morphological and multi-omics analyses. The absorption spectra of prickles and stems were detected using Fourier-transform infrared spectroscopy (FTIR), and they were found different at 1617, 1110, 3319, and 1999 cm-1. The morphology of prickles and stems were observed using light microscopy and transmission electron microscopy (TEM). The growth direction of cells on the prickle side and stem side were perpendicular to each other, and there was a resembling abscission zone (RAZ) between them. The vacuolar deposits of prickle cells were much more than stem cells, indicating that the lignification degree of prickles was higher than stems. In addition, 9 candidate genes (ZbYABBY2, ZbYABBY1, ZbYABBY5, ZbWRKY, ZbLOG5, ZbAZG2, ZbGh16, ZbIAA33, and ZbGh16X1) were screened out and validated base on transcriptome and qRT-PCA. As well as, 30 key metabolites were found related to prickle development base on metabolome analysis. Among them, 4-hydroxy-2-oxopentanoate, trans-2-hydroxy-cinnamate, trans-cinnamate, polyhydroxy-fatty acid, 10,16-dihydroxypalmitate, cinnamic acid were related to the biosynthesis of cutin, suberine and wax. Indole-3-acetate, tryptamine, anthranilate, fromylanthranilate, N6-(delta2-isopentenyl)-adenine were related to plant hormone signal transduction. Generally, this is the first study to reveal the developmental mechanism of prickles. The results of this study lay the foundation for the breeding of non-prickle Zanthoxylum bungeanum.
Collapse
Affiliation(s)
- Kexing Su
- College of Science, Northwest Agriculture and Forestry University, Xianyang, China
| | - Jiaqian Sun
- Powerchina Northwest Engineering Corporation Limited, Xi’an, China
- Shaanxi Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and Restoration, Xi’an, China
| | - Jun Han
- Forestry and Grassland Bureau of Xunhua County, Qinghai, China
| | - Tao Zheng
- College of Science, Northwest Agriculture and Forestry University, Xianyang, China
| | - Bingyin Sun
- Department of Ecological Engineering, Yangling Vocational and Technical College, Xianyang, China
| | - Shuming Liu
- College of Science, Northwest Agriculture and Forestry University, Xianyang, China
| |
Collapse
|
16
|
Insights into whey protein-based carriers for targeted delivery and controlled release of bioactive components. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Teimouri S, Kasapis S, Dokouhaki M. Diffusional characteristics of food protein-based materials as nutraceutical delivery systems: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Teimouri S, Kasapis S. Mechanistic interpretation of vitamin B6 transport from swelling matrices of genipin-crosslinked gelatin, BSA and WPI. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|