1
|
Li N, Wang A, Chen A, Wu M, Liu H, Yang Y, Wang C, Sun D. Simultaneous determination of 16 herbicides in Procambarus clarkii. Food Chem 2025; 484:144438. [PMID: 40273879 DOI: 10.1016/j.foodchem.2025.144438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/20/2025] [Accepted: 04/19/2025] [Indexed: 04/26/2025]
Abstract
This study is focused on developing a sensitive and reliable analytical method for determining 16 herbicides in Procambarus clarkii using pass-through solid phase extraction coupled with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The samples were extracted with ethyl acetate, concentrated using parallel rotary evaporator, and purified using neutral alumina solid-phase extraction column (Alumina-N SPE). Separation of herbicides was performed on an Eclipse Plus C18 column, followed by detection in positive ion mode via multiple reaction monitoring (MRM) and quantification using an external standard. An excellent linearity in the range of 0.25 to 80.0 μg/L was achieved, with correlation coefficients exceeding 0.99. The average recoveries of the 16 herbicide residues ranged from 73.7 % to 111.9 %, with relative standard deviations (RSDs) below 15 % at spiked levels of 0.4, 2.0, and 4.0 μg/kg. These results demonstrated that the developed method was suitable for detecting triazine, amide and dinitroaniline herbicides in Procambarus clarkii.
Collapse
Affiliation(s)
- Na Li
- Shandong Freshwater Fisheries Research Institute, Jinan 250117, Shandong, China..
| | - Aiying Wang
- Shandong Freshwater Fisheries Research Institute, Jinan 250117, Shandong, China
| | - Aijing Chen
- Shandong Freshwater Fisheries Research Institute, Jinan 250117, Shandong, China
| | - Mengmeng Wu
- Shandong Freshwater Fisheries Research Institute, Jinan 250117, Shandong, China
| | - Hongcai Liu
- Shandong Freshwater Fisheries Research Institute, Jinan 250117, Shandong, China
| | - Yanyan Yang
- Shandong Freshwater Fisheries Research Institute, Jinan 250117, Shandong, China
| | - Chao Wang
- Shandong Freshwater Fisheries Research Institute, Jinan 250117, Shandong, China
| | - Dong Sun
- Shandong Freshwater Fisheries Research Institute, Jinan 250117, Shandong, China..
| |
Collapse
|
2
|
Zhao LX, Luo K, Guo XD, Zou YL, Gao S, Fu Y, Ye F. Design, Synthesis, and Biological Activity Evaluation of Novel Phenoxypyridine Derivatives Containing Acylthiourea Fragments as Protoporphyrinogen Oxidase Inhibitor Herbicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5020-5032. [PMID: 39993238 DOI: 10.1021/acs.jafc.4c09757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Protoporphyrinogen oxidase (PPO, EC 1.3.3.4) plays a crucial role in the biosynthesis of chlorophyll in plants. PPO inhibitor herbicides are noted for their broad-spectrum activity, high efficiency, low toxicity, and minimal environmental impact, positioning them as effective targets for the discovery of environmentally friendly herbicides. In this research, utilizing the principles of bioisosterism and substructure activity splicing, 42 phenoxypyridine derivatives containing acylthiourea fragments were synthesized. Among them, the compound g13 exhibited superior inhibitory efficacy against six target weed species in greenhouse herbicidal trials. In vitro enzyme activity assays indicated that g13 significantly inhibited Echinochloa crus-galli PPO (EcPPO), with an IC50 value of 0.109 ± 0.018 μM, demonstrating superior inhibitory activity compared to oxyfluorfen. Furthermore, compound g13 exhibited superior crop safety compared to oxyfluorfen and holds potential application prospects for weed management in wheat and cotton. Molecular docking and dynamics simulations were employed to elucidate the binding mode and molecular mechanism of g13 with NtPPO. Potential metabolic pathways for g13 in plant systems were also analyzed. These experimental and theoretical results indicate that g13 is a promising lead candidate for PPO inhibitor herbicides.
Collapse
Affiliation(s)
- Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Kai Luo
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xian-Da Guo
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yue-Li Zou
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Dolling S, Reis‐Santos P, Williams M, Gillanders BM. Pharmaceuticals, Pesticides, and PFAS: Quantifying Endocrine Disrupting Compounds in Plastics and Fish Tissues Using Solvent Extraction and LC-MS/MS. J Sep Sci 2025; 48:e70084. [PMID: 39899462 PMCID: PMC11790066 DOI: 10.1002/jssc.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 02/05/2025]
Abstract
The rise of plastic pollution in marine environments has been heavily documented, with particular focus on the physical impacts the plastics can have on biota. But, plastics also sorb a range of hydrophobic chemical pollutants, acting as vectors for the transportation of these compounds throughout marine environments. Therefore, an analytical method that can target both marine biota and plastic matrices will be key to advance our understanding of the link between chemicals in the environment, plastic pollution, and effects on biota. Here, an efficient method for the detection and quantification of a broad suite of compounds in marine samples was developed. Five extraction methods were trialed for the analysis of 21 pesticides, PFAS, and pharmaceuticals in biota and plastics. This included three ultrasonic extraction methods and two QuEChERS methods. Ultrasonic extraction in acetonitrile with a microcentrifuge step then concentration by Bond Elut Carbon SPE resulted in best recovery across most compounds. Of the 21 compounds trialed, 16 were efficiently quantified. Method limits of quantification and detection were between 0.02 and 4.81 ppb (mLODs) and between 0.06 and 14.60 ppb (mLOQs). This method is widely applicable to a range of marine environments and supports routine evaluations of environmental safety and monitoring protocols.
Collapse
Affiliation(s)
- Sophie Dolling
- Southern Seas Ecology LaboratorySchool of Biological Sciences and Environment InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Patrick Reis‐Santos
- Southern Seas Ecology LaboratorySchool of Biological Sciences and Environment InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Mike Williams
- EnvironmentCSIRO EnvironmentWaite CampusAdelaideSouth AustraliaAustralia
| | - Bronwyn M. Gillanders
- Southern Seas Ecology LaboratorySchool of Biological Sciences and Environment InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
4
|
Guo L, Wang Q, Wu Q, Wang C, Chen B. β-Cyclodextrin based magnetic hyper-crosslinked polymer: A recyclable adsorbent for effective preconcentration of triazine herbicides in complex sample matrices. Food Chem 2025; 463:141219. [PMID: 39276543 DOI: 10.1016/j.foodchem.2024.141219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
High efficiency enrichment and trace analysis of triazine herbicide residues are crucial for ensuring environmental and food safety. Herein, a series of magnetic hyper-crosslinked polymers (CD-gs-MHCPs) were synthesized with different crosslinkers, which might possess different pore structure and surface area, so they might dispay variable adsorption performance. CD-gs-MHCP2 with dichloroxylene as crosslinker delivered superior adsorption ability for triazine herbicides (THs). The synergistic effect of hydrogen bonds, hydrophobic interaction, π-π stacking interaction and pore adsorption were proved to be the main adsorption mechanism. Combined CD-gs-MHCP2 based magnetic solid-phase extraction (MSPE) with high-performance liquid chromatography, the quantitative analysis of THs in river water and vegetable samples (zucchini, pakchoi) was achieved. Under the optimal conditions, the enrichment factors for three different samples ranged from 94 to 244 and low detection limit (S/N = 3) of the four THs were obtained from 0.05 to 0.15 ng mL-1 for river water and 0.31-3.10 ng g-1 for vegetable samples. The method recoveries were in the range of 86.2 %-120 % with relative standard deviations lower than 7.4 %. This work not only offers a new strategy for fabrication β-CD-based HCPs, but also provided a practical and effective method for efficient isolation and sensitive detection of trace THs residues in complex samples.
Collapse
Affiliation(s)
- Linna Guo
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
5
|
Zhang Z, Feng Y, Wang W, Ru S, Zhao L, Ma Y, Song X, Liu L, Wang J. Pollution level and ecological risk assessment of triazine herbicides in Laizhou Bay and derivation of seawater quality criteria. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135270. [PMID: 39053056 DOI: 10.1016/j.jhazmat.2024.135270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Triazine herbicides are widely used in agriculture and have become common pollutants in marine environments. However, the spatiotemporal distribution characteristics and water quality criteria (WQC) of triazine herbicides are still unclear. This study found that triazine herbicides had a high detection rate of 100 % in surface seawater of Laizhou Bay, China, with average concentrations of 217.61, 225.13, 21.97, and 1296.72 ng/L in March, May, August, and October, respectively. Moreover, estuaries were important sources, and especially the Yellow River estuary exhibited the highest concentrations of 16,115.86 ng/L in October. The 10 triazine herbicides were detected in the sediments of Laizhou Bay, with a concentration ranging from 0.14-1.68 μg/kg. Atrazine and prometryn accounted for 33.41 %-59.10 % and 28.93 %-50.06 % of the total triazine herbicides in the seawater, and prometryn had the highest proportion (63.50 %) in the sediments. Correlation analysis revealed that triazine herbicides led to the loss of plankton biodiversity, which further decreased the dissolved oxygen. In addition, this study collected 45 acute toxicity data and 22 chronic toxicity data of atrazine, 16 acute toxicity data of prometryn, and supplemented with toxicity experiments of prometryn on marine organisms. Based on the toxicity database, the WQCs of atrazine and prometryn were derived using species sensitivity distribution. The overall risk probability of atrazine and prometryn were both less than 1.75 % in the Laizhou Bay, indicating an acceptable risk. This study not only clarified the pollution status and ecological risk of triazine herbicides, but also provided scientific basis for their environmental management standards.
Collapse
Affiliation(s)
- Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yongliang Feng
- Department of Basic Courses, Tangshan University, Tangshan 063000, China
| | - Weizhong Wang
- Shandong Blue Ocean Technology Co., Ltd, Yantai 264006, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Lingchao Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuanqing Ma
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai 264006, China
| | - Xiukai Song
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai 264006, China
| | - Lijuan Liu
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai 264006, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
6
|
Manjarrés-López DP, Montemurro N, Ulrich N, Ebert RU, Jahnke A, Pérez S. Assessment, distribution, and ecological risk of contaminants of emerging concern in a surface water-sediment-fish system impacted by wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173358. [PMID: 38768727 DOI: 10.1016/j.scitotenv.2024.173358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
The presence of contaminants of emerging concern in aquatic ecosystems represents an ever-increasing environmental problem. Aquatic biota is exposed to these contaminants, which can be absorbed and distributed to their organs. This study focused on the assessment, distribution, and ecological risk of 32 CECs in a Spanish river impacted by effluents from a wastewater treatment plant, analyzing the organs and plasma of common carp. Environmental concentrations in water and sediment were examined at sites upstream and downstream of the wastewater treatment plant. The two downstream sites showed 15 times higher total concentrations (12.4 μg L-1 and 30.1 μg L-1) than the two upstream sites (2.08 μg L-1 and 1.66 μg L-1). Half of the CECs were detected in fish organs, with amantadine having the highest concentrations in the kidney (158 ng g-1 w.w.) and liver (93 ng g-1 w.w.), followed by terbutryn, diazepam, and bisphenol F in the brain (50.2, 3.82 and 1.18 ng g-1 w.w.). The experimental bioaccumulation factors per organ were compared with the bioconcentration factors predicted by a physiologically based pharmacokinetic model, obtaining differences of one to two logarithmic units for most compounds. Risk quotients indicated a low risk for 38 % of the contaminants. However, caffeine and terbutryn showed an elevated risk for fish. The mixed risk quotient revealed a medium risk for most of the samples in the three environmental compartments: surface water, sediment, and fish.
Collapse
Affiliation(s)
- Diana P Manjarrés-López
- Environmental and Water Chemistry for Human Health (ONHEALTH) group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Nicola Montemurro
- Environmental and Water Chemistry for Human Health (ONHEALTH) group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Nadin Ulrich
- Department of Exposure Science, Helmholtz-Centre for Environmental Research (UFZ), Permoserstr. 15, 04318 Leipzig, Germany
| | - Ralf-Uwe Ebert
- Department of Exposure Science, Helmholtz-Centre for Environmental Research (UFZ), Permoserstr. 15, 04318 Leipzig, Germany
| | - Annika Jahnke
- Department of Exposure Science, Helmholtz-Centre for Environmental Research (UFZ), Permoserstr. 15, 04318 Leipzig, Germany; Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Sandra Pérez
- Environmental and Water Chemistry for Human Health (ONHEALTH) group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
7
|
Harindintwali JD, Wen X, He C, Zhao M, Wang J, Dou Q, Xiang L, Fu Y, Alessi DS, Jiang X, Jiang J, Wang F. Synergistic mitigation of atrazine-induced oxidative stress on soybeans in black soil using biochar and Paenarthrobacter sp. AT5. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120951. [PMID: 38669877 DOI: 10.1016/j.jenvman.2024.120951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Atrazine, a widely used herbicide in modern agriculture, can lead to soil contamination and adverse effects on specific crops. To address this, we investigated the efficacy of biochar loaded with Paenarthrobacter sp. AT5 (an atrazine-degrading bacterial strain) in mitigating atrazine's impact on soybeans in black soil. Bacterially loaded biochar (BBC) significantly enhanced atrazine removal rates in both unplanted and planted soil systems. Moreover, BBC application improved soybean biomass, photosynthetic pigments, and antioxidant systems while mitigating alterations in metabolite pathways induced by atrazine exposure. These findings demonstrate the effectiveness of BBC in reducing atrazine-induced oxidative stress on soybeans in black soil, highlighting its potential for sustainable agriculture.
Collapse
Affiliation(s)
- Jean Damascene Harindintwali
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Wen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao He
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mingxu Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jianhao Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qingyuan Dou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; RWTH Aachen University, Institute for Environmental Research, WorringerWeg 1, 52074, Aachen, Germany.
| |
Collapse
|
8
|
Yu X, Pu H, Sun DW. Developments in food neonicotinoids detection: novel recognition strategies, advanced chemical sensing techniques, and recent applications. Crit Rev Food Sci Nutr 2023; 65:1216-1234. [PMID: 38149655 DOI: 10.1080/10408398.2023.2290698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Neonicotinoid insecticides (NEOs) are a new class of neurotoxic pesticides primarily used for pest control on fruits and vegetables, cereals, and other crops after organophosphorus pesticides (OPPs), carbamate pesticides (CBPs), and pyrethroid pesticides. However, chronic abuse and illegal use have led to the contamination of food and water sources as well as damage to ecological and environmental systems. Long-term exposure to NEOs may pose potential risks to animals (especially bees) and even human health. Consequently, it is necessary to develop effective, robust, and rapid methods for NEOs detection. Specific recognition-based chemical sensing has been regarded as one of the most promising detection tools for NEOs due to their excellent selectivity, sensitivity, and robust interference resistance. In this review, we introduce the novel recognition strategies-enabled chemical sensing in food neonicotinoids detection in the past years (2017-2023). The properties and advantages of molecular imprinting recognition (MIR), host-guest recognition (HGR), electron-catalyzed recognition (ECR), immune recognition (IR), aptamer recognition (AR), and enzyme inhibition recognition (EIR) in the development of NEOs sensing platforms are discussed in detail. Recent applications of chemical sensing platforms in various food products, including fruits and vegetables, cereals, teas, honey, aquatic products, and others are highlighted. In addition, the future trends of applying chemical sensing with specific recognition strategies for NEOs analysis are discussed.
Collapse
Affiliation(s)
- Xinru Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
9
|
Zhao LX, Chen KY, He XL, Zou YL, Gao S, Fu Y, Ye F. Design, Synthesis, and Biological Activity Determination of Novel Phenylpyrazole Protoporphyrinogen Oxidase Inhibitor Herbicides Containing Five-Membered Heterocycles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14164-14178. [PMID: 37732717 DOI: 10.1021/acs.jafc.3c03108] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Protoporphyrinogen oxidase (PPO, EC 1.3.3.4) inhibitor herbicides have attracted widespread attention in recent years as ideal herbicides due to their high efficiency, low toxicity, and low pollution. In this article, 30 phenylpyrazole derivatives containing five-membered heterocycles were designed and synthesized according to the principle of bioelectronic isoarrangement and active substructure splicing. A series of structural characterizations were performed on the synthesized compounds. The herbicide activity in greenhouse was evaluated to determine their growth inhibition effect on weeds, their IC50 value through in vitro PPO enzyme activity measurement was calculated, and target compounds 2i and 3j that have herbicide effects comparable to pyraflufen-ethyl were selected. Crop safety experiments have shown that when the spraying concentration is 300 g of ai/ha, gramineous crops such as wheat, corn, and rice are more tolerant to compound 2i, with wheat exhibiting high tolerance, which is equivalent to the crop safety of pyraflufen-ethyl. Compound 2i can be used as a candidate herbicide for wheat, corn, and paddy fields, and the results are consistent with the cumulative concentration experiment. Molecular docking results showed that compound 2i interacted with the amino acid residue ARG-98 by forming two hydrogen bonds and interacted with the amino acid residue PHE-392 by forming two π-π stacking interactions, indicating that compound 2i has more excellent herbicidal activity than pyraflufen-ethyl and is expected to become a potential lead compound of phenylpyrazole PPO inhibitor herbicides.
Collapse
Affiliation(s)
- Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Kun-Yu Chen
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xiao-Li He
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yue-Li Zou
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
10
|
Guo Y, Xie J, Dong F, Wu X, Pan X, Liu X, Zheng Y, Zhang J, Xu J. Highly-Selective Analytical Strategy for 90 Pesticides and Metabolites Residues in Fish and Shrimp Samples. Molecules 2023; 28:molecules28104235. [PMID: 37241976 DOI: 10.3390/molecules28104235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The analysis of pesticide residues in aquatic products is challenging due to low residue levels and the complex matrix interference. In this study, we developed a simple, fast method for the trace analysis of 90 pesticides and metabolites in aquatic products. The analytes covered a wide polarity range with log Kow (log octanol-water partition coefficient) ranging from -1.2 to 6.37. Grass carp (Ctenopharyngodon idellus) and prawn (Penaeus chinensis) samples were chosen to validate the quantification method. The samples were extracted by 0.2% formic-acetonitrile, cleaned by solid-phase extraction (PRiME HLB), and analyzed by high performance liquid chromatography-tandem mass spectrometry. The results showed good linearities for the analytes and were observed in the range of 0.05-50 μg/L. The recoveries of the method were within 50.4-118.6%, with the relative standard deviations being lower than 20%. The limits of quantifications (LOQs) of the method were in the range of 0.05-5.0 μg/kg, which were superior to values compared with other research. The developed method was applied to detect pesticide residues in prawn samples from eastern coastal areas of China. Three herbicide residues of diuron, prometryn, and atrazine were detected in prawn samples. The method was sensitive and efficient, which is of significance in expanding the screening scope and improving the quantitative analysis efficiency in aquatic products.
Collapse
Affiliation(s)
- Yage Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Zhang
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
11
|
Diallo T, Leleu J, Parinet J, Guérin T, Thomas H, Lerebours A. Approaches to determine pesticides in marine bivalves. Anal Bioanal Chem 2023:10.1007/s00216-023-04709-4. [PMID: 37127735 DOI: 10.1007/s00216-023-04709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Due to agricultural runoff, pesticides end up in aquatic ecosystems and some accumulate in marine bivalves. As filter feeders, bivalves can accumulate high concentrations of chemicals in their tissue representing a potential risk to the health of human and aquatic ecosystems. So far, most of the studies dealing with pesticide contamination in marine bivalves, for example, in the French Atlantic and English Channel coasts, have focused on the old generation of pesticides. Only a few investigated the newly emerging pesticides partly due to methodological challenges. A better understanding of the most sensitive and reliable methods is thus essential for accurately determining a wide variety of environmentally relevant pesticides in marine bivalves. The review highlighted the use of more environmentally friendly and efficient materials such as sorbents and the "quick easy cheap effective rugged safe" extraction procedure to extract pesticides from bivalve matrices, as they appeared to be the most efficient while being the safest. Moreover, this method combined with the high-resolution mass spectrometry (MS) technique offers promising perspectives by highlighting a wide range of pesticides including those that are not usually sought. Finally, recent developments in the field of ultra-high-performance liquid chromatography coupled to MS, such as two-dimensional chromatography and ion mobility spectrometry, will improve the analysis of pesticides in complex matrices.
Collapse
Affiliation(s)
- Thierno Diallo
- Laboratory for Food Safety, ANSES, F-94701, Maisons-Alfort, France
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042, La Rochelle Cedex 01, France
| | - Julia Leleu
- Laboratory for Food Safety, ANSES, F-94701, Maisons-Alfort, France
| | - Julien Parinet
- Laboratory for Food Safety, ANSES, F-94701, Maisons-Alfort, France
| | - Thierry Guérin
- ANSES, Strategy and Programmes Department, F-94701, Maisons-Alfort, France
| | - Hélène Thomas
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042, La Rochelle Cedex 01, France
| | - Adélaïde Lerebours
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042, La Rochelle Cedex 01, France.
| |
Collapse
|
12
|
Chemical Evaluation, Phytotoxic Potential, and In Silico Study of Essential Oils from Leaves of Guatteria schomburgkiana Mart. and Xylopia frutescens Aubl. (Annonaceae) from the Brazilian Amazon. Molecules 2023; 28:molecules28062633. [PMID: 36985605 PMCID: PMC10059729 DOI: 10.3390/molecules28062633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
The essential oils (EOs) of Guatteria schomburgkiana (Gsch) and Xylopia frutescens (Xfru) (Annonaceae) were obtained by hydrodistillation, and their chemical composition was evaluated by gas chromatography-mass spectrometry (GC/MS). Herbicide activity was measured by analyzing the seed germination percentage and root and hypocotyl elongation of two invasive species: Mimosa pudica and Senna obtusifolia. The highest yield was obtained for the EO of Xfru (1.06%). The chemical composition of Gsch was characterized by the presence of the oxygenated sesquiterpenes spathulenol (22.40%) and caryophyllene oxide (14.70%). Regarding the EO of Xfru, the hydrocarbon monoterpenes α-pinene (35.73%) and β-pinene (18.90%) were the components identified with the highest concentrations. The germination of seeds of S. obtusifolia (13.33 ± 5.77%) showed higher resistance than that of seeds of M. pudica (86.67 ± 5.77%). S. obtusifolia was also more sensitive to the EO of Xfru in terms of radicle (55.22 ± 2.72%) and hypocotyl (71.12 ± 3.80%) elongation, while M. pudica showed greater sensitivity to the EO of Gsch. To screen the herbicidal activity, the molecular docking study of the major and potent compounds was performed against 4-hydroxyphenylpyruvate dioxygenase (HPPD) protein. Results showed good binding affinities and attributed the strongest inhibitory activity to δ-cadinene for the target protein. This work contributes to the study of the herbicidal properties of the EOs of species of Annonaceae from the Amazon region.
Collapse
|
13
|
Fama F, Feltracco M, Moro G, Barbaro E, Bassanello M, Gambaro A, Zanardi C. Pesticides monitoring in biological fluids: Mapping the gaps in analytical strategies. Talanta 2023; 253:123969. [PMID: 36191513 DOI: 10.1016/j.talanta.2022.123969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/13/2022]
Abstract
Pesticides play a key-role in the development of the agrifood sector allowing controlling pest growth and, thus, improving the production rates. Pesticides chemical stability is responsible of their persistency in environmental matrices leading to bioaccumulation in animal tissues and hazardous several effects on living organisms. The studies regarding long-term effects of pesticides exposure and their toxicity are still limited to few studies focusing on over-exposed populations, but no extensive dataset is currently available. Pesticides biomonitoring relies mainly on chromatographic techniques coupled with mass spectrometry, whose large-scale application is often limited by feasibility constraints (costs, time, etc.). On the contrary, chemical sensors allow rapid, in-situ screening. Several sensors were designed for the detection of pesticides in environmental matrices, but their application in biological fluids needs to be further explored. Aiming at contributing to the implementation of pesticides biomonitoring methods, we mapped the main gaps between screening and chromatographic methods. Our overview focuses on the recent advances (2016-2021) in analytical methods for the determination of commercial pesticides in human biological fluids and provides guidelines for their application.
Collapse
Affiliation(s)
- Francesco Fama
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy
| | - Matteo Feltracco
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy
| | - Giulia Moro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy.
| | - Elena Barbaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy; Istituto di Scienze Polari (ISP-CNR), Via Torino 155, 30172, Venezia, Italy
| | - Marco Bassanello
- Health Direction Monastier di Treviso Hospital, Via Giovanni XXIII 7, 31050, Treviso, Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy; Istituto di Scienze Polari (ISP-CNR), Via Torino 155, 30172, Venezia, Italy.
| | - Chiara Zanardi
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy; Institute for the Organic Synthesis and Photosynthesis, Research National Council, 40129, Bologna, Italy
| |
Collapse
|
14
|
Development and application of a rapid screening and quantification method for multi-class herbicide residues in fishery products using UPLC-Q-Tof-MS/MS: Evidence for prometryn residues in shellfish. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Optimization of the QuEChERS method for multi-residue analysis of pharmaceuticals and pesticides in aquaculture products. Food Chem 2023; 399:133958. [DOI: 10.1016/j.foodchem.2022.133958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/04/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022]
|
16
|
Pan QF, Jiao HF, Liu H, You JJ, Sun AL, Zhang ZM, Shi XZ. Highly selective molecularly imprinted-electrochemiluminescence sensor based on perovskite/Ru(bpy) 32+ for simazine detection in aquatic products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156925. [PMID: 35753451 DOI: 10.1016/j.scitotenv.2022.156925] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
A novel molecularly imprinted electrochemiluminescence (MIECL) sensor based on the luminescence of molecularly imprinted polymer-perovskite (MIP-CsPbBr3) layer and Ru(bpy)32+ was fabricated for simazine detection. MIP-CsPbBr3 layers were immobilized onto the surface of glassy carbon electrode as the capture and signal amplification probe, and Ru(bpy)32+ and co-reactant tripropylamine exhibited stronger electrochemiluminescence (ECL) emission. Under optimal conditions, the ECL signal of the MIECL sensor was linearly quenched, with the logarithm of simazine concentration ranging from 0.1 μg/L to 500.0 μg/L, correlation coefficient of 0.9947, and limit of detection of 0.06 μg/L. The practicality of the developed MIECL sensor method for simazine determination in aquatic samples was validated. Excellent recoveries of 86.5 %-103.9 % with relative standard deviation below 1.6 % were obtained for fish and shrimp samples at three different spiked concentrations. The MIECL sensor exhibited excellent selectivity, sensitivity, reproducibility, accuracy, and precision for simazine determination in actual aquatic samples.
Collapse
Affiliation(s)
- Qiao-Fen Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, PR China
| | - Hai-Feng Jiao
- College of Biological and Environment Science, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Hua Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Jin-Jie You
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, PR China
| | - Ai-Li Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Ze-Ming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xi-Zhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
17
|
Cao J, Liu X, Wu X, Xu J, Dong F, Zheng Y. Uptake and distribution of difenoconazole in rice plants under different culture patterns. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1100-1108. [PMID: 35357266 DOI: 10.1080/19440049.2022.2056640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of spraying and root irrigation on the uptake and transport of the fungicide difenoconazole under hydroponic and soil cultivation were investigated. Rice was used as the crop for a short-term exposure experiment. A modified QuEChERS pre-treatment combined with ultra-high-performance liquid chromatography-tandem mass spectrometry was used to extract and detect difenoconazole from rice plants, water and soil. The recoveries of difenoconazole were in the range of 72.8-110.5%, with a relative standard deviation of 2.4-19.5% for all the samples when spiked with 0.01, 0.1 and 1 mg kg-1 of difenoconazole, respectively. The limit of quantitation (LOQ) of this method was 0.01 mg kg-1. The exposure results showed that difenoconazole could be absorbed by rice plants and transmitted to different parts of rice plants in all the treatments. In the hydroponic experiment, difenoconazole was mainly distributed in the roots of rice regardless of whether irrigation or spraying was used. For rice cultivated in soil, difenoconazole mainly accumulated in leaves after the root irrigation treatment, whereas after the spraying treatment, the rice roots were the main site of accumulation of difenoconazole. This experiment extends our knowledge of the influence of the cultivation system and application mode on the translocation of difenoconazole in rice plants.
Collapse
Affiliation(s)
- Junli Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.,Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan, People's Republic of China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.,College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, People's Republic of China
| |
Collapse
|
18
|
Farooq S, Wu H, Nie J, Ahmad S, Muhammad I, Zeeshan M, Khan R, Asim M. Application, advancement and green aspects of magnetic molecularly imprinted polymers in pesticide residue detection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150293. [PMID: 34798762 DOI: 10.1016/j.scitotenv.2021.150293] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Molecularly imprinted polymers (MIPs) have added a vital contribution to food quality and safety with the effective extraction of pesticide residues due to their unique properties. Magnetic molecularly imprinted polymers (MMIPs) are a superior approach to overcome stereotypical limitations due to their unique core-shell and novel composite structure, including high chemothermal stability, rapid extraction, and high selectivity. Over the past two decades, different MMIPs have been developed for pesticide extraction in actual food samples with a complex matrix. Nevertheless, such developments are desirable, yet the synthesis and mode of application of MMIP have great potential as a green chemistry approach that can significantly reduce environmental pollution and minimize resource utilization. In this review, the MMIP application for single or multipesticide detection has been summarized by critiquing each method's uniqueness and efficiency in real sample analysis and providing a possible green chemistry exploration procedure for MMIP synthesis and application for escalated food and environmental safety.
Collapse
Affiliation(s)
- Saqib Farooq
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College of Guangxi University, Nanning 530004, PR China
| | - Haiyan Wu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College of Guangxi University, Nanning 530004, PR China.
| | - Jiyun Nie
- College of Horticulture, Qingdao Agriculture University/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, PR China
| | - Shakeel Ahmad
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College of Guangxi University, Nanning 530004, PR China
| | - Ihsan Muhammad
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College of Guangxi University, Nanning 530004, PR China
| | - Muhammad Zeeshan
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College of Guangxi University, Nanning 530004, PR China
| | - Rayyan Khan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao 266101, PR China
| | - Muhammad Asim
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao 266101, PR China
| |
Collapse
|