1
|
Zhao M, Liu Z, Zhang W, Xia G, Li C, Rakariyatham K, Zhou D. Advance in aldehydes derived from lipid oxidation: A review of the formation mechanism, attributable food thermal processing technology, analytical method and toxicological effect. Food Res Int 2025; 203:115811. [PMID: 40022339 DOI: 10.1016/j.foodres.2025.115811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 03/03/2025]
Abstract
The aldehydes derived from lipid oxidation are highly active electrophilic compounds including saturated aldehydes, dialdehydes, olefin aldehydes and hydroxyl aldehydes. The active groups like carbonyls, C=C bond, and hydroxyl groups make them prone to participate in chemical reactions with protein, phospholipids, which can further affect food properties. In addition, aldehydes can attack the nucleic acids and thiol group of endogenous antioxidants, result in oxidative stress and biological damage of cells, which usually serve as the direct trigger of various diseases. However, their structure-activity relationship has not received enough attention. Therefore, to provide a comprehensive understanding of reactive aldehydes on food safety and human health, the formation mechanism of aldehydes, attributable fundamental thermal processing, analytical methods, and toxicological effects based on the structure-activity relationship, have been reviewed and discussed. It was indicated that aldehydes generation exerted significant specificity of fatty acids substrate. Significant structure-activity relationships for the toxicological effects of aldehydes could be observed. Effective, accurate and eco-friendly detection techniques should be established based on the inherent advantages and limitations for food quality preservation and safety assurance.
Collapse
Affiliation(s)
- Mantong Zhao
- College of Food Science and Engineering, Hainan University, Haikou, China 570228; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China 116034; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou Key Laboratory of Deep Processing of Marine Food, Haikou, China 570228
| | - Zhongyuan Liu
- College of Food Science and Engineering, Hainan University, Haikou, China 570228; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China 116034; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou Key Laboratory of Deep Processing of Marine Food, Haikou, China 570228.
| | - Wanli Zhang
- College of Food Science and Engineering, Hainan University, Haikou, China 570228
| | - Guanghua Xia
- College of Food Science and Engineering, Hainan University, Haikou, China 570228; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China 116034; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou Key Laboratory of Deep Processing of Marine Food, Haikou, China 570228
| | - Chuan Li
- College of Food Science and Engineering, Hainan University, Haikou, China 570228; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China 116034; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou Key Laboratory of Deep Processing of Marine Food, Haikou, China 570228
| | | | - Dayong Zhou
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China 116034
| |
Collapse
|
2
|
Zhang Q, Huang R, Wang L, Ge Y, Fang H, Chen G. Comparative study on the effects of different drying technologies on the structural characteristics and biological activities of polysaccharides from Idesia polycarpa maxim cake meal. Food Chem X 2025; 26:102348. [PMID: 40160202 PMCID: PMC11951029 DOI: 10.1016/j.fochx.2025.102348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
To extract oil, the fruits of Idesia polycarpa Maxim (IPM) must first undergo a drying process. This study aimed to investigate how different industrial drying techniques-microwave vacuum drying (MVD), microwave drying, infrared drying, and hot air drying-affect the structural characteristics and bioactivities of IPM cake meal polysaccharides (IPMPs). The results revealed significant differences in the structure and composition of the four IPMPs. MVD-IPMP, dried using MVD, exhibited a lower molecular weight (346.26 kDa), higher uronic acid content (30.74 %), and a distinct triple-helix structure. These structural features contributed to its enhanced antioxidant activity, α-glucosidase inhibition, and prevention of glycation. IPMPs induced secondary conformational changes in α-glucosidase, leading to decreased enzyme activity. Additionally, IPMPs caused static quenching of the enzyme's intrinsic fluorescence, suggesting a specific interaction mechanism, with MVD-IPMP demonstrating the highest binding affinity. These findings suggest that MVD is an effective technique for the large-scale production of high-quality IPMPs.
Collapse
Affiliation(s)
- Qiuqiu Zhang
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Renshuai Huang
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Lisha Wang
- Experimental Center, Guizhou Police College, Guiyang, Guizhou 550005, PR China
| | - Yonghui Ge
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
- Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa, National Forestry and Grassland Administration of the People's Republic of China, Guiyang, Guizhou 550005, PR China
| | - Honggang Fang
- Guizhou Lincao Development Co., Ltd, Guiyang, Guizhou 550001, PR China
| | - Guangjing Chen
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
- Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa, National Forestry and Grassland Administration of the People's Republic of China, Guiyang, Guizhou 550005, PR China
| |
Collapse
|
3
|
Mansour ST, Ibrahim H, Zhang J, Farag MA. Extraction and analytical approaches for the determination of post-food processing major carcinogens: A comprehensive review towards healthier processed food. Food Chem 2025; 464:141736. [PMID: 39461318 DOI: 10.1016/j.foodchem.2024.141736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
Different food processing methods, e.g. fermentation, grilling, frying, etc., to improve food sensory attributes or shelf-stability are typically employed in different cuisines worldwide. These methods may illicit in-situ health-hazardous chemicals via thermal or enzymatic-mediated processes or chemical interactions with food preservatives. This review provides a comparative overview of the occurrence, extraction, and determination of the major food carcinogens such as nitrosamines (NAs), biogenic amines (BAs), heterocyclic aromatic amines (HAAs), polycyclic aromatic hydrocarbons (PAHs), ethyl carbamate (EC), and malondialdehyde (MDA). Their carcinogenicity levels vary from group 1 (carcinogenic to humans) e.g. benzo[a]pyrene, group 2A (probably carcinogenic to humans) e.g. N-nitrosodiethylamine, group 2B (possibly carcinogenic to humans) e.g. chrysene or group 3 (non-classifiable as carcinogenic to humans) e.g. MDA. Chromatography-based methods are the most predominant techniques used for their analysis. LC-MS is widely used for both volatile/non-volatile NAs, HAAs, BAs, and EC, whereas GC-MS is applied more for volatile NAs, PAHs and MDA.
Collapse
Affiliation(s)
- Somaia T Mansour
- Chemistry Department, American University in Cairo, New Cairo, Egypt.
| | - Hany Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt.
| | - Jiachao Zhang
- Department of Food Quality and Safety, College of Food Science and Engineering Hainan University, Haikou 570228, China.
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
4
|
Ying X, Li X, Deng S, Zhang B, Xiao G, Xu Y, Brennan C, Benjakul S, Ma L. How lipids, as important endogenous nutrient components, affect the quality of aquatic products: An overview of lipid peroxidation and the interaction with proteins. Compr Rev Food Sci Food Saf 2025; 24:e70096. [PMID: 39812142 DOI: 10.1111/1541-4337.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
As the global population continues to grow and the pressure on livestock and poultry supply increases, the oceans have become an increasingly important source of quality food for future generations. However, nutrient-rich aquatic product is susceptible to lipid oxidation during storage and transport, reducing its nutritional value and increasing safety risks. Therefore, identifying the specific effects of lipid oxidation on aquatic products has become particularly critical. At the same time, some lipid oxidation products have been found to interact with aquatic product proteins in various ways, posing a safety risk. This paper provides an in-depth exploration of the pathways, specific effects, and hazards of lipid oxidation in aquatic products, with a particular focus on the interaction of lipid oxidation products with proteins. Additionally, it discusses the impact of non-thermal treatment techniques on lipids in aquatic products and examines the application of natural antioxidants in aquatic products. Future research endeavors should delve into the interactions between lipids and proteins in these products and their specific effects to mitigate the impact of non-thermal treatment techniques on lipids, thereby enhancing the safety of aquatic products and ensuring food safety for future generations.
Collapse
Affiliation(s)
- Xiaoguo Ying
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xinyang Li
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Shanggui Deng
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Bin Zhang
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Gengsheng Xiao
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering/Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Yujuan Xu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Charles Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, Australia
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand
| | - Lukai Ma
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering/Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
5
|
Zhang Q, Wu S, Dai Q, Hu P, Chen G. Effects of Different Drying Methods on the Structural Characteristics and Multiple Bioactivities of Rosa roxburghii Tratt Fruit Polysaccharides. Foods 2024; 13:2417. [PMID: 39123608 PMCID: PMC11312052 DOI: 10.3390/foods13152417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Drying conditions significantly impact the compositions and microstructures of polysaccharides, leading to various effects on their chemical characteristics and bioactivities. The objective of this study was to investigate how different industrial drying techniques, i.e., hot air drying, infrared drying, microwave vacuum drying, and freeze drying, affect the structural properties and biological activities of polysaccharides extracted from Rosa roxburghii Tratt fruit (RRTP). Results revealed that these drying methods significantly altered the extraction yield, molecular weights, monosaccharide ratios, contents of uronic acid and total sugars, gelling properties, particle sizes, thermal stability, and microstructures of RRTPs. However, the monosaccharide composition and functional groups of polysaccharides remained consistent across the different drying techniques. Biological activity assays demonstrated that RRTPs, particularly those processed through microwave vacuum drying (MVD-RRTP), exhibited excellent anti-linoleic acid oxidation, robust anti-glycosylation effects, and significant α-glucosidase inhibition in vitro. The outcomes of this research demonstrate that microwave vacuum drying serves as an effective pre-extraction drying method for RRTPs, enhancing their biological activities. This technique is particularly advantageous for preparing RRTPs intended for use in functional foods and pharmaceuticals, optimizing their health-promoting properties for industrial applications.
Collapse
Affiliation(s)
- Qiuqiu Zhang
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (Q.Z.); (S.W.); (Q.D.)
| | - Sha Wu
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (Q.Z.); (S.W.); (Q.D.)
| | - Qinghua Dai
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (Q.Z.); (S.W.); (Q.D.)
| | - Peng Hu
- School of Pharmacy, Hunan Traditional Chinese Medical College, Zhuzhou 412012, China
| | - Guangjing Chen
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (Q.Z.); (S.W.); (Q.D.)
| |
Collapse
|
6
|
Zhang C, Wang X, Liu Y, Wang J, Xie J. Characteristics of meat flavoring prepared using hydrolyzed plant protein mix by three different heating processes. Food Chem 2024; 446:138853. [PMID: 38422645 DOI: 10.1016/j.foodchem.2024.138853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/13/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
Meat flavoring was prepared using mainly enzymatic hydrolysate of plant protein mix, VB1, cysteine, and glucose by three heating processes, including A (80 °C-140 min), B (two-stage, 80 °C-30 min/120 °C-30 min), and C (120 °C-40 min). The A-, B-, and C-heated samples exhibited the strongest fatty and weakest meaty, the strongest meaty and kokumi, and the strongest roasted and bitterness characteristics, respectively. PLS-DA for free amino acids with TAVs and that for SPME/GC-MS results with GC-O and OAVs, suggested three amino acids and eight flavor compounds contributed significantly in differentiating taste or aroma attributes of the three heated samples. Molecular weight distribution and degree of amino substitution suggested 1-5 kDa peptides contributed to kokumi taste. Overall, C- and A-heating exhibited the highest rates in Maillard reaction and lipid oxidation, respectively, while those of B heating were between these two heating processes and responsible for better flavor of meat flavoring.
Collapse
Affiliation(s)
- Chenping Zhang
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xuan Wang
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yang Liu
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jianan Wang
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jianchun Xie
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
7
|
Dordevic D, Gablo N, Zelenkova L, Dordevic S, Tremlova B. Utilization of Spent Coffee Grounds as a Food By-Product to Produce Edible Films Based on κ-Carrageenan with Biodegradable and Active Properties. Foods 2024; 13:1833. [PMID: 38928775 PMCID: PMC11202819 DOI: 10.3390/foods13121833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Coffee ranks as the second most consumed beverage globally, and its popularity is associated with the growing accumulation of spent coffee grounds (SCG), a by-product that, if not managed properly, constitutes a serious ecological problem. Analyses of SCG have repeatedly shown that they are a source of substances with antioxidant and antimicrobial properties. In this study, we assessed SCG as a substrate for the production of edible/biodegradable films. The κ-carrageenan was utilized as a base polymer and the emulsified SCG oil as a filler. The oil pressed from a blend of Robusta and Arabica coffee had the best quality and the highest antioxidant properties; therefore, it was used for film production. The film-forming solution was prepared by dissolving κ-carrageenan in distilled water at 50 °C, adding the emulsified SCG oil, and homogenizing. This solution was cast onto Petri dishes and dried at room temperature. Chemical characterization showed that SCG increased the level of polyphenols in the films and the antioxidant properties, according to the CUPRAC assay (CC1 23.90 ± 1.23 µmol/g). SCG performed as a good plasticizer for κ-carrageenan and enhanced the elongation at the break of the films, compared with the control samples. The solubility of all SCG films reached 100%, indicating their biodegradability and edibility. Our results support the application of SCG as an active and easily accessible compound for the food packaging industry.
Collapse
Affiliation(s)
| | - Natalia Gablo
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic; (D.D.); (L.Z.); (S.D.); (B.T.)
| | | | | | | |
Collapse
|
8
|
Luo X, Hu B, Jia C, Liu R, Rong J, Zhao S, Niu M, Xu Y, Yin T, You J. Study by means of 1H nuclear magnetic resonance of the oxidation process in high oleic sunflower oil and palm oil during deep-frying of fish cakes. Food Res Int 2024; 179:113942. [PMID: 38342517 DOI: 10.1016/j.foodres.2024.113942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 02/13/2024]
Abstract
This study aimed to compare the frying performance of palm oil (PO) and high oleic sunflower oil (HOSO) during frying aquatic products. The quality change and frying performance of HOSO and PO during frying of fish cakes were investigated. The oxidation and hydrolysis products of both oils were explored by the nuclear magnetic resonance technique. The results showed that the color deepening rate of PO was higher than that of HOSO. After 18 h of frying, the total polar compound content of PO and HOSO reached 25.67% and 27.50%, respectively. HOSO had lower degree of oxidation than PO after 24 h of continuous frying. The polyunsaturated fatty acid content in HOSO and PO significantly decreased. The oleic acid content in HOSO remained above 80% during the frying process. The major aldehydes in both oils were (E, E)-2,4-alkadienals and n-alkanals and glycerol diesters (DAGs) were abundant in PO. Furthermore, the addition of fish cakes had slight effect on the quality of the frying oil. Therefore, HOSO is an appropriate candidate for frying owing to its excellent frying stability and nutritional value.
Collapse
Affiliation(s)
- Xiaoyu Luo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Benlun Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Caihua Jia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei Province 430070, PR China.
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Jianhua Rong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Siming Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Meng Niu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Yan Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Tao Yin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Juan You
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| |
Collapse
|
9
|
do Nascimento MP, Marchiori Berlande B, Guedes Fraga Lopes M, Cardoso de Lima MF, Teodoro de Souza C, Leal de Oliveira MA. Malondialdehyde Analysis in Biological Samples by Capillary Electrophoresis: The State of Art. Crit Rev Anal Chem 2023:1-13. [PMID: 38147303 DOI: 10.1080/10408347.2023.2296948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Lipid peroxidation occurs when substances, such as reactive oxygen species, attack lipids. Polyunsaturated fatty acids are the main targets. Several products are formed, including primary products such as lipid hydroperoxides and secondary products such as malondialdehyde (MDA), the most used lipid peroxidation biomarker. As MDA levels are elevated in several diseases, MDA is an essential indicator for assessing pathological states. The thiobarbituric acid reactive substances assay is the most widely used method for MDA determination. However, it lacks specificity. Capillary Electrophoresis (CE) is a separation technique that has been used to quantify MDA in biological samples. This technique has advantages such as the low amount of biological sample required, absence or low volume of organic solvent, short analysis time, separation of interferents, sample preparation step with only protein precipitation, and the possibility of direct detection of the MDA, without derivatization. To our knowledge, this review article is the first to show the CE background for analyzing MDA in biological samples. Therefore, given the potential of MDA in evaluating pathological states, this article demonstrates the potential of CE to become a reference method for MDA determination in clinical analysis laboratories, which will play a significant role in diagnosing and monitoring diseases.
Collapse
Affiliation(s)
- Maria Patrícia do Nascimento
- Grupo de Química Analítica e Quimiometria - GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Bruna Marchiori Berlande
- Grupo de Química Analítica e Quimiometria - GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Marina Guedes Fraga Lopes
- Post Graduate program in Health, Department of Internal Medicine, Medicine School, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Mário Flávio Cardoso de Lima
- Post Graduate program in Health, Department of Internal Medicine, Medicine School, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Claudio Teodoro de Souza
- Post Graduate program in Health, Department of Internal Medicine, Medicine School, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Marcone Augusto Leal de Oliveira
- Grupo de Química Analítica e Quimiometria - GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
- National Institute of Science and Technology for Bioanalytics - INCTBio, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
10
|
Randhawa S, Mukherjee T. Effect of containers on the thermal degradation of vegetable oils. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Enhanced preservation effects of clove (Syzygium aromaticum) essential oil on the processing of Chinese bacon (preserved meat products) by beta cyclodextrin metal organic frameworks (β-CD-MOFs). Meat Sci 2023; 195:108998. [DOI: 10.1016/j.meatsci.2022.108998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/26/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022]
|
12
|
Ding Y, Gao P, Mao Y, Liu H, Zhong W, Hu C, He D, Wang X. Assessment of the Physicochemical Properties of Fragrant Rapeseed Blended Hotpot Oil by Principal Component Analysis. J Oleo Sci 2023; 72:263-272. [PMID: 36878580 DOI: 10.5650/jos.ess22268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
In this study, a nutritious, healthy Chongqing hotpot oil with excellent flavor was blended while considering nutrition, flavor, and health aspects. Four blended hotpot oils prepared from fragrant rapeseed, palm, sesame, and chicken oils were analyzed to determine their physicochemical properties, antioxidant capacities, levels of harmful substances, and nutritional compositions, and their sensory qualities were evaluated. Principal component analysis was performed to identify the best hotpot oil (10% chicken oil + 20% palm oil + 10% sesame oil + 60% fragrant rapeseed oil), which exhibited good antioxidant capacity (Oxidation Stability Index: 7.95 h; 2,2-diphenyl-1-picrylhydrazyl: 168.6 μmol/kg, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate): 116.7 μmol/kg, and ferric-reducing/antioxidant power: 63.9 μmol/kg), a high sensory score (7.7/10), stable physicochemical properties (acid value: 0.27 mg/g and peroxide value: 0.01 g/100 g), and high tocopherol (54.22%), and phytosterol retention (98.52%) after boiling for 8 h. Although the 3,4-benzopyrene content of this hotpot oil exceeded the EU standard after boiling for 7 h, the increase in the amount of harmful substances was the lowest.
Collapse
Affiliation(s)
- Yunpeng Ding
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University
| | - Pan Gao
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University
| | - Yanni Mao
- Wuhan Institute for Food and Cosmetic Control
| | - Hui Liu
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University
| | - Wu Zhong
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University
| | - Chuanrong Hu
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University
| | - Dongping He
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University
| | - Xingguo Wang
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University.,International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University
| |
Collapse
|
13
|
Ma L, Cui Y, Wang F, Liu H, Cheng W, Peng L, Brennan C, Benjakul S, Xiao G. Fast and sensitive UHPLC-QqQ-MS/MS method for simultaneous determination of typical α,β-unsaturated aldehydes and malondialdehyde in various vegetable oils and oil-based foods. Food Chem 2023; 400:134028. [DOI: 10.1016/j.foodchem.2022.134028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022]
|
14
|
Oil Penetration of Batter-Breaded Fish Nuggets during Deep-Fat Frying: Effect of Frying Oils. Foods 2022; 11:foods11213369. [PMID: 36359982 PMCID: PMC9655036 DOI: 10.3390/foods11213369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 12/05/2022] Open
Abstract
Four frying oils (rapeseed, soybean, rice bran, and palm oils) were employed either as received (fresh) or after preheating at 180 °C for 10 h, and measured for their fatty acid composition, viscosity, and dielectric constant. Batter-breaded fish nuggets (BBFNs) were fried at 180 °C (60 s), and the effect of the oils’ quality on the oil penetration of fried BBFNs were investigated via the analysis of the absorption and the distribution of fat. Preheating increased the viscosity and dielectric constant of the oils. The total fat content using fresh oils was the greatest for palm oil (14.2%), followed by rice bran oil (12.2%), rapeseed oil (12.1%), and soybean oil (11.3%), a trend that was nearly consistent with the penetrated surface oil, except that the penetrated oil for soybean oil (6.8%) was higher than rapeseed oil (6.3%). The BBFNs which were fried using fresh oils possessed a more compact crust and smaller pores for the core and underwent a lower oil penetration compared to the preheated oils. The results suggested that the oils’ quality significantly affected the oil penetration of fried BBFNs.
Collapse
|
15
|
Zhu W, Han M, Bu Y, Li X, Yi S, Xu Y, Li J. Plant polyphenols regulating myoglobin oxidation and color stability in red meat and certain fish: A review. Crit Rev Food Sci Nutr 2022; 64:2276-2288. [PMID: 36102134 DOI: 10.1080/10408398.2022.2122922] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Color is an essential criterion for assessing the freshness, quality, and acceptability of red meat and certain fish with red muscle. Myoglobin (Mb), one of the significant pigment substances, is the uppermost reason to keep the color of red meat. Their oxidation and browning are easy to occur throughout the storage and processing period. Natural antioxidants are substances with antioxidant activity extracted from plants, such as plant polyphenols. Consumers prefer natural antioxidants due to safety concerns and limitations on the use of synthetic antioxidants. In recent years, plant polyphenols have been widely used as antioxidants to slow down the deterioration of product quality due to oxidation. As natural antioxidants, it is necessary to strengthen the researches on the antioxidant mechanism of plant polyphenols to solve the discoloration of red meat and certain fish. A fundamental review of the relationship between Mb oxidation and color stability is discussed. The inhibiting mechanisms of polyphenols on lipid and Mb oxidation are presented and investigated. Meanwhile, this review comprehensively outlines applications of plant polyphenols in improving color stability. This will provide reference and theoretical support for the rational application of plant polyphenols in green meat processing.
Collapse
Affiliation(s)
- Wenhui Zhu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Menglin Han
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Ying Bu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Shumin Yi
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Yongxia Xu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| |
Collapse
|
16
|
Chen J, Zhang L, Sagymbek A, Li Q, Gao Y, Yu X. Formation of oxidation products in polar compounds of different vegetable oils during French fries deep‐frying. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jia Chen
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province College of Food Science and Engineering Northwest A&F University, 22 Xinong Road Yangling Shaanxi P. R. China
| | - Lingyan Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province College of Food Science and Engineering Northwest A&F University, 22 Xinong Road Yangling Shaanxi P. R. China
| | - Altayuly Sagymbek
- Department of Food Science Saken Seifullin Kazakh Agrotechnical University 62 Zhenis Avenue, Nur‐Sultan 010011, R Kazakhstan
| | - Qi Li
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province College of Food Science and Engineering Northwest A&F University, 22 Xinong Road Yangling Shaanxi P. R. China
| | - Yuan Gao
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province College of Food Science and Engineering Northwest A&F University, 22 Xinong Road Yangling Shaanxi P. R. China
| | - Xiuzhu Yu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province College of Food Science and Engineering Northwest A&F University, 22 Xinong Road Yangling Shaanxi P. R. China
| |
Collapse
|
17
|
Lee J, Surh J. Effects of Sweet Potato Powder Selected Based on the Polar Paradox Hypothesis on Oil Oxidation in the Preparation of Deep-Fried Croquettes. Prev Nutr Food Sci 2022; 27:248-256. [PMID: 35919570 PMCID: PMC9309070 DOI: 10.3746/pnf.2022.27.2.248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 11/06/2022] Open
Abstract
This study investigated whether sweet potato powder (SPP) and purple SPP (PSPP) could prevent oil oxidation during deep-frying. A volume of soybean oil was repetitively used for deep-frying croquettes coated with either SPP or PSPP. An aliquot of the fried oil was collected (SPP and PSPP oils) before and after each frying to analyze moisture and lipid oxidation products (LOPs). With increasing numbers of frying, the moisture content in oils significantly increased without an appreciable difference between SPP and PSPP oils. The total oxidation values reflecting primary and secondary LOPs also significantly increased. However, the values were higher for PSPP oils despite the much higher antioxidant activity of the polar extracts from PSPP compared to SPP. This was attributed to the presence of transition metals. PSPP oils seemed to have association colloids whose interfaces were occupied more with polar antioxidants, thereby transition metals were easily reduced and their pro-oxidative activity increased. The polar paradox hypothesis stating that polar antioxidants are more effective in preventing lipid oxidation in bulk oil is not always applicable to real foods due to various food matrices.
Collapse
Affiliation(s)
- Jiyea Lee
- Department of Food and Nutrition, Kangwon National University, Gangwon 25949, Korea
| | - Jeonghee Surh
- Department of Food and Nutrition, Kangwon National University, Gangwon 25949, Korea
| |
Collapse
|
18
|
Chen J, Zhang L, Zhao P, Wang J, Li Q, Yu X. Comparison of non‐volatile degradation products formed from different vegetable oils during deep frying of French fries. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jia Chen
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering Northwest A&F University Yangling 712100 Shaanxi China
| | - Lingyan Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering Northwest A&F University Yangling 712100 Shaanxi China
| | - Peng Zhao
- College of Chemistry and Pharmacy Northwest A&F University Yangling 712100 Shaanxi China
| | - Jiayun Wang
- College of Chemistry and Pharmacy Northwest A&F University Yangling 712100 Shaanxi China
| | - Qi Li
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering Northwest A&F University Yangling 712100 Shaanxi China
| | - Xiuzhu Yu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering Northwest A&F University Yangling 712100 Shaanxi China
| |
Collapse
|
19
|
Karimi S, Goudarzi F, Soleimani D, Hazratian S, Mahaki B, Pourmehdi M, Nachvak SM, Fattahi N. Evaluation of acrylamide and malondialdehyde levels in Tah-Dig of fried starchy foods: a case study in Iran. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01343-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
The physicochemical properties of five vegetable oils exposed at high temperature for a short-time-interval. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104305] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Su C, Lu Y, Li J, Wang Y, Pan L, Zhang M. Effects of bile acids on aflatoxin B1 bioaccumulation, detoxification system, and growth performance of Pacific white shrimp. Food Chem 2022; 371:131169. [PMID: 34563967 DOI: 10.1016/j.foodchem.2021.131169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 08/20/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022]
Abstract
The potential of bile acids (BAs) to reduce aflatoxin B1 (AFB1) residues and toxicity in Litopenaeus vannamei was evaluated. Both juveniles and subadults were treated with 0, 0.05, 0.15 and 0.25 g/kg BAs for 60 days followed by 10-d AFB1 exposure (2000 μg/kg), and fifteen shrimp (five shrimp were pooled into one sample, n = 3) from each treatment were collected at five time points (30, 60, 63, 66 and 70 d). All parameters were determined using accepted and standard methods with acceptable accuracy (recovery) of 90-110%. Results demonstrated that BAs reduced the AFB1 residues in shrimp (limit of detection: 0.01 μg/L, relative standard deviation < 10% and recovery: 92.1-96.8%). BAs increased the detoxification of AFB1 and decreased the levels of oxidative stress products by increasing Phase II and antioxidant systems, avoiding AFB1-induced deterioration of shrimp meat and health risks to human. The confidence level was 95%.
Collapse
Affiliation(s)
- Chen Su
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China
| | - Yusong Lu
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China
| | - Jinbao Li
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China; Longchang Animal Health Products Co., Ltd, Jinan, Shandong 250000, China
| | - Yuxuan Wang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China.
| | - Mengyu Zhang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China
| |
Collapse
|
22
|
Tadesse Zula A, Fikre Teferra T. Effect of frying oil stability over repeated reuse cycles on the quality and safety of deep-fried Nile tilapia fish (Oreochromis niloticus): a response surface modeling approach. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2034851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Aemiro Tadesse Zula
- School of Nutrition, Food Science and Technology, Hawassa University, Awasa, Ethiopia
| | - Tadesse Fikre Teferra
- School of Nutrition, Food Science and Technology, Hawassa University, Awasa, Ethiopia
| |
Collapse
|
23
|
Zhao T, Sheng B, Ying X, Sanmartin C, Benjakul S, Ma L, Xiao G, Liu G. Role of lipid deterioration on the quality of aquatic products during low‐temperature storage: a lipidomics‐based study using large yellow croaker (
Larimichthys crocea
). Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Tengfei Zhao
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood Collaborative Innovation Center of Seafood Deep Processing College of Food and Pharmacy Zhejiang Ocean University Zhoushan China
| | - Bulei Sheng
- Department of Food Science Aarhus University Aarhus Denmark
| | - Xiaoguo Ying
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood Collaborative Innovation Center of Seafood Deep Processing College of Food and Pharmacy Zhejiang Ocean University Zhoushan China
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Chiara Sanmartin
- Department of Agriculture, Food and Environment (DAFE) Pisa University Pisa Italy
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla Thailand
| | - Lukai Ma
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou China
- Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Gengsheng Xiao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Guoqin Liu
- School of Food Science and Engineering South China University of Technology Guangzhou China
| |
Collapse
|