1
|
Turkiewicz IP, Tkacz K, Nowicka P, Wojdyło A. Investigating in vitro anticholinergic potential (anti-AChE and anti-BuChE) of Chaenomeles leaves extracts and its phytochemicals including chlorophylls, carotenoids and minerals. Sci Rep 2024; 14:23132. [PMID: 39367071 PMCID: PMC11452384 DOI: 10.1038/s41598-024-73595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
The goal of this work was to evaluate the chemical constitution and health-promoting potential of 12 varieties of Chaenomeles × superba, speciosa and japonica leaves. Carotenoids, chlorophylls, triterpenes, sugars, polyols and acids were analyzed quantitatively and qualitatively using high pressure liquid chromatography (LC) coupled with mass spectrometry (MS), while the mineral profile was determined using atomic absorption spectroscopy (AAS). Moreover, the in vitro anticholinergic potential (inhibition of acetyl-cholinesterase (AChE) and butyryl-cholinesterase (BuChE)) and antioxidant (ABTS, FRAP, ORAC) capacity were evaluated. For the first time in Chaenomeles genotypes 26 carotenoid derivatives and 22 chlorophyll derivatives were identified. Some varieties contained high amounts of carotenoids and chlorophylls (Ch. × superba 'Colour Trail', 'Nicoline', 'Pink Lady', 'Texas Scarlet'), and triterpenes (Ch. speciosa 'Simonii', 'Rubra', and Ch. × superba 'Colour Trail', 'Nicoline') and showed high ORAC antioxidant (Ch. × superba 'Pink Lady' and Ch. speciosa 'Simonii') and anticholinergic (Ch. speciosa species) activity. The studied leaves also contained sugars (3.1 to 16.5 mg/100 g), organic acids (3.9-8.1 g/100 g), and minerals (Ca, Cu, Fe, K, Mg, Mn, Na, and Zn). In conclusion, Chaenomeles leaves show potential as a new source for the production of nutraceuticals, as well as for medical and/or cosmetic purposes.
Collapse
Affiliation(s)
- Igor Piotr Turkiewicz
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, Wrocław, 51-630, Poland
| | - Karolina Tkacz
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, Wrocław, 51-630, Poland
| | - Paulina Nowicka
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, Wrocław, 51-630, Poland
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, Wrocław, 51-630, Poland.
| |
Collapse
|
2
|
Zhao J, Chen N, Zhu T, Zhao X, Yuan M, Wang Z, Wang G, Li Z, Du H. Simultaneous Quantification and Visualization of Photosynthetic Pigments in Lycopersicon esculentum Mill. under Different Levels of Nitrogen Application with Visible-Near Infrared Hyperspectral Imaging Technology. PLANTS (BASEL, SWITZERLAND) 2023; 12:2956. [PMID: 37631167 PMCID: PMC10459730 DOI: 10.3390/plants12162956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
Leaf photosynthetic pigments play a crucial role in evaluating nutritional elements and physiological states. In facility agriculture, it is vital to rapidly and accurately obtain the pigment content and distribution of leaves to ensure precise water and fertilizer management. In our research, we utilized chlorophyll a (Chla), chlorophyll b (Chlb), total chlorophylls (Chls) and total carotenoids (Cars) as indicators to study the variations in the leaf positions of Lycopersicon esculentum Mill. Under 10 nitrogen concentration applications, a total of 2610 leaves (435 samples) were collected using visible-near infrared hyperspectral imaging (VNIR-HSI). In this study, a "coarse-fine" screening strategy was proposed using competitive adaptive reweighted sampling (CARS) and the iteratively retained informative variable (IRIV) algorithm to extract the characteristic wavelengths. Finally, simultaneous and quantitative models were established using partial least squares regression (PLSR). The CARS-IRIV-PLSR was used to create models to achieve a better prediction effect. The coefficient determination (R2), root mean square error (RMSE) and ratio performance deviation (RPD) were predicted to be 0.8240, 1.43 and 2.38 for Chla; 0.8391, 0.53 and 2.49 for Chlb; 0.7899, 2.24 and 2.18 for Chls; and 0.7577, 0.27 and 2.03 for Cars, respectively. The combination of these models with the pseudo-color image allowed for a visual inversion of the content and distribution of the pigment. These findings have important implications for guiding pigment distribution, nutrient diagnosis and fertilization decisions in plant growth management.
Collapse
Affiliation(s)
- Jiangui Zhao
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (J.Z.); (N.C.); (T.Z.); (X.Z.); (M.Y.); (Z.W.)
| | - Ning Chen
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (J.Z.); (N.C.); (T.Z.); (X.Z.); (M.Y.); (Z.W.)
| | - Tingyu Zhu
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (J.Z.); (N.C.); (T.Z.); (X.Z.); (M.Y.); (Z.W.)
| | - Xuerong Zhao
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (J.Z.); (N.C.); (T.Z.); (X.Z.); (M.Y.); (Z.W.)
| | - Ming Yuan
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (J.Z.); (N.C.); (T.Z.); (X.Z.); (M.Y.); (Z.W.)
| | - Zhiqiang Wang
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (J.Z.); (N.C.); (T.Z.); (X.Z.); (M.Y.); (Z.W.)
| | - Guoliang Wang
- Institute of Millet Research, Shanxi Agricultural University, Changzhi 046000, China;
| | - Zhiwei Li
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (J.Z.); (N.C.); (T.Z.); (X.Z.); (M.Y.); (Z.W.)
- College of Information Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Huiling Du
- Department of Basic Sciences, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
3
|
Warburton ML, Woolfolk SW, Smith JS, Hawkins LK, Castano-Duque L, Lebar MD, Williams WP. Genes and genetic mechanisms contributing to fall armyworm resistance in maize. THE PLANT GENOME 2023; 16:e20311. [PMID: 36866429 DOI: 10.1002/tpg2.20311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/18/2023] [Indexed: 06/20/2023]
Abstract
Maize (Zea mays L.) is a crop of major economic and food security importance globally. The fall armyworm (FAW), Spodoptera frugiperda, can devastate entire maize crops, especially in countries or markets that do not allow the use of transgenic crops. Host-plant insect resistance is an economical and environmentally benign way to control FAW, and this study sought to identify maize lines, genes, and pathways that contribute to resistance to FAW. Of the 289 maize lines phenotyped for FAW damage in artificially infested, replicated field trials over 3 years, 31 were identified with good levels of resistance that could donate FAW resistance into elite but susceptible hybrid parents. The 289 lines were genotyped by sequencing to provide single nucleotide polymorphism (SNP) markers for a genome-wide association study (GWAS), followed by a metabolic pathway analysis using the Pathway Association Study Tool (PAST). GWAS identified 15 SNPs linked to 7 genes, and PAST identified multiple pathways, associated with FAW damage. Top pathways, and thus useful resistance mechanisms for further study, include hormone signaling pathways and the biosynthesis of carotenoids (particularly zeaxanthin), chlorophyll compounds, cuticular wax, known antibiosis agents, and 1,4-dihydroxy-2-naphthoate. Targeted metabolite analysis confirmed that maize genotypes with lower levels of FAW damage tend to have higher levels of chlorophyll a than genotypes with high FAW damage, which tend to have lower levels of pheophytin, lutein, chlorophyll b and β-carotene. The list of resistant genotypes, and the results from the genetic, pathway, and metabolic study, can all contribute to efficient creation of FAW resistant cultivars.
Collapse
Affiliation(s)
- Marilyn L Warburton
- USDA ARS Plant Germplasm Introduction and Testing Research Unit, Pullman, WA, USA
| | - Sandra W Woolfolk
- USDA ARS Corn Host Plant Resistance Research Unit, Mississippi State, MS, USA
| | - J Spencer Smith
- USDA ARS Corn Host Plant Resistance Research Unit, Mississippi State, MS, USA
| | - Leigh K Hawkins
- USDA ARS Corn Host Plant Resistance Research Unit, Mississippi State, MS, USA
| | | | - Matthew D Lebar
- USDA ARS Food and Feed Safety Research Unit, New Orleans, LA, USA
| | - W Paul Williams
- USDA ARS Corn Host Plant Resistance Research Unit, Mississippi State, MS, USA
| |
Collapse
|
4
|
Serapicos M, Afonso S, Gonçalves B, Silva AP. Exogenous Application of Glycine Betaine on Sweet Cherry Tree ( Prunus avium L.): Effects on Tree Physiology and Leaf Properties. PLANTS (BASEL, SWITZERLAND) 2022; 11:3470. [PMID: 36559582 PMCID: PMC9784700 DOI: 10.3390/plants11243470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Biostimulants, such as glycine betaine (GB), are a sustainable way to boost productivity and quality in fruit crops, even in adverse environment conditions. Sweet cherry (Prunus avium L.) is an important crop, which is very sensitive to abiotic stress. Known primarily for its fruits, its leaves are also rich in bioactive substances, which, however, still have no commercial value. There are no studies about the effects of GB exogenous application on biochemical parameters of sweet cherry leaves and few studies about effects in sweet cherry tree physiology. This study was conducted in a Portuguese sweet cherry commercial orchard. Lapins sweet cherry trees were treated with a commercial product based on GB, at two different concentrations (0.25% and 0.40%). The applications were performed at three different phenological stages, according to the BBCH (Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie) scale: 77, 81 and 86 BBCH. Both GB treatments improved leaf water status, photosynthetic pigments, soluble solids content, total phenolic contents, and antioxidant activity, resulting in better leaf water status regulation, greater photosynthetic capacity, and higher antioxidant activity. These results shows that GB can benefit sweet cherry tree physiology and provide new opportunities for sweet cherry leaves valorisation.
Collapse
Affiliation(s)
- Marta Serapicos
- Department of Agronomy, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Sílvia Afonso
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Ana Paula Silva
- Department of Agronomy, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
5
|
Wojdyło A, Turkiewicz IP, Tkacz K, Nowicka P, Bobak Ł. Nuts as functional foods: Variation of nutritional and phytochemical profiles and their in vitro bioactive properties. Food Chem X 2022; 15:100418. [PMID: 36211787 PMCID: PMC9532779 DOI: 10.1016/j.fochx.2022.100418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Nutritional, biological and in vitro anti-diabetic, -obesity, -cholinergic of nuts. Polymeric procyanidins dominant polyphenols. Oleanic and pomolic acids dominant triterpenes. Nuts are low in Cu, Zn, Mn, Na, but rich in K and Mg. All nuts showed high activity in inhibiting intestinal α-glucosidase.
The aim of the present study was to examine the nutritional (fat, fatty acids, minerals, sugars) and bioactive compounds (polyphenols, tocochromanols, triterpene) and their influence on in vitro anti-diabetic (pancreatic α-amylase and intestinal α-glucosidase), anti-obesity (pancreatic lipase) and anti-cholinergic (AChE and BuChE) inhibitory activity of 8 different popular nuts—pecan, pine, hazelnuts, pistachio, almonds, cashew, walnuts, and macadamia. The total content of phenolic compounds in nuts ranged from 432.9 (walnuts) to 5.9 (pistachio) mg/100 g. The dominant polyphenols are polymeric procyanidins (walnuts – 415.1 mg/100 g). Nuts are rich in tocochromanols (832.9–4377.5 μg/100 g), especially α- and γ-tocopherols. The highest content of α-tocopherol (vitamin E) was detected in hazelnuts and almonds (2551.0 and 2489.7 μg/100 g, respectively) while the lowest amounts were detected in macadamia, cashew and walnuts. The most abundant in nuts are oleanic and pomolic acids (35 and 22 % of total, respectively), while betulin, uvaol and erythrodiol are less characteristic triterpenes for nuts (<1%). Pine nuts are the nuts with the highest content of triterpene (690.3 mg/100 g). Pistachio and almonds are the richest in total fat (>45 %), but monounsaturated (17.5–79.3 %; hazelnuts, almonds, cashew, macadamia, pistachio and pecan) and polyunsaturated (7.5–69.3 %; pine, walnuts) are the dominant fatty acids. Moreover, nuts are low in Cu, Zn, Mn and Na content, but rich in K (464.5–1772.3 mg/100 g) and Mg (197.0–502.5 mg/100 g). Macadamia, walnuts and cashew are good sources of Se. Pistachio, almonds and cashew were characterized by the highest content of sugars, but the dominant sugar was saccharose (58.2–2399.3 mg/100 g). All nuts showed high activity in inhibiting intestinal α-glucosidase (>90 %), but lower ability to inhibit pancreatic α-amylase and pancreatic lipase activity. The activity in inhibiting acetyl- and butylcholinesterase was up to 30 %. As described above, all nuts contain various compounds that improve the nutritional value. Therefore they should be one of the important components of the daily human diet rich in functional foods.
Collapse
|
6
|
Anthocyanins, Carotenoids and Chlorophylls in Edible Plant Leaves Unveiled by Tandem Mass Spectrometry. Foods 2022; 11:foods11131924. [PMID: 35804744 PMCID: PMC9265259 DOI: 10.3390/foods11131924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Natural pigments are a quite relevant group of molecules that are widely distributed in nature, possessing a significant role in our daily lives. Besides their colors, natural pigments are currently recognized as having relevant biological properties associated with health benefits, such as anti-tumor, anti-atherogenicity, anti-aging and anti-inflammatory activities, among others. Some of these compounds are easily associated with specific fruits (such as blueberries with anthocyanins, red pitaya with betalain or tomato with lycopene), vegetables (carrots with carotenoids), plant leaves (chlorophylls in green leaves or carotenoids in yellow and red autumn leaves) and even the muscle tissue of vertebrates (such as myoglobin). Despite being less popular as natural pigment sources, edible plant leaves possess a high variety of chlorophylls, as well as a high variety of carotenoids and anthocyanins. The purpose of this review is to critically analyze the whole workflow employed to identify and quantify the most common natural pigments (anthocyanin, carotenoids and chlorophylls) in edible plant leaves using tandem mass spectrometry. Across the literature there, is a lack of consistency in the methods used to extract and analyze these compounds, and this review aims to surpass this issue. Additionally, mass spectrometry has stood out in the context of metabolomics, currently being a widely employed technique in this field. For the three pigments classes, the following steps will be scrutinized: (i) sample pre-preparation, including the solvents and extraction conditions; (ii) details of the chromatographic separation and mass spectrometry experiments (iii) pigment identification and quantification.
Collapse
|
7
|
Vieira MV, Turkiewicz IP, Tkacz K, Fuentes-Grünewald C, Pastrana LM, Fuciños P, Wojdyło A, Nowicka P. Microalgae as a Potential Functional Ingredient: Evaluation of the Phytochemical Profile, Antioxidant Activity and In-Vitro Enzymatic Inhibitory Effect of Different Species. Molecules 2021; 26:7593. [PMID: 34946676 PMCID: PMC8707863 DOI: 10.3390/molecules26247593] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
The functional food market has been in a state of constant expansion due to the increasing awareness of the impact of the diet on human health. In the search for new natural resources that could act as a functional ingredient for the food industry, microalgae represent a promising alternative, considering their high nutritional value and biosynthesis of numerous bioactive compounds with reported biological properties. In the present work, the phytochemical profile, antioxidant activity, and enzymatic inhibitory effect aiming at different metabolic disorders (Alzheimer's disease, Type 2 diabetes, and obesity) were evaluated for the species Porphyridium purpureum, Chlorella vulgaris, Arthorspira platensis, and Nannochloropsis oculata. All the species presented bioactive diversity and important antioxidant activity, demonstrating the potential to be used as functional ingredients. Particularly, P. purpureum and N. oculata exhibited higher carotenoid and polyphenol content, which was reflected in their superior biological effects. Moreover, the species P. purpureum exhibited remarkable enzymatic inhibition for all the analyses.
Collapse
Affiliation(s)
- Marta Vinha Vieira
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmonskiego Street, 51-630 Wrocław, Poland; (M.V.V.); (I.P.T.); (K.T.)
- International Iberian Nanotechnology Laboratory, Food Processing and Nutrition Research Group, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (L.M.P.); (P.F.)
| | - Igor Piotr Turkiewicz
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmonskiego Street, 51-630 Wrocław, Poland; (M.V.V.); (I.P.T.); (K.T.)
| | - Karolina Tkacz
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmonskiego Street, 51-630 Wrocław, Poland; (M.V.V.); (I.P.T.); (K.T.)
| | | | - Lorenzo M. Pastrana
- International Iberian Nanotechnology Laboratory, Food Processing and Nutrition Research Group, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (L.M.P.); (P.F.)
| | - Pablo Fuciños
- International Iberian Nanotechnology Laboratory, Food Processing and Nutrition Research Group, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (L.M.P.); (P.F.)
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmonskiego Street, 51-630 Wrocław, Poland; (M.V.V.); (I.P.T.); (K.T.)
| | - Paulina Nowicka
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmonskiego Street, 51-630 Wrocław, Poland; (M.V.V.); (I.P.T.); (K.T.)
| |
Collapse
|
8
|
Wojdyło A, Nowicka P. Profile of Phenolic Compounds of Prunus armeniaca L. Leaf Extract Determined by LC-ESI-QTOF-MS/MS and Their Antioxidant, Anti-Diabetic, Anti-Cholinesterase, and Anti-Inflammatory Potency. Antioxidants (Basel) 2021; 10:antiox10121869. [PMID: 34942972 PMCID: PMC8698879 DOI: 10.3390/antiox10121869] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
In view of the limited information available in the literature concerning leaves as by-products of Prunus armeniaca cultivation, the aim of this work was to identify and characterize their principal polyphenolic constituents by LC-ESI-QTOF-MS/MS and screening in vitro biological potency as antioxidant capacity (ABTS, online ABTS, FRAP, ORAC), antidiabetic (α-amylase, α-glucosidase), anti-obesity (pancreatic lipase), anti-cholinesterase (AChE and BChE), and anti-inflammatory (COX-1 and COX-2) inhibitory activity. Comparison of different polyphenolic extracts of P. armeniaca cultivar leaves according to their quantitative composition revealed them to be exceptional sources of hydroxycinnamic acids, and to a lesser extent as sources of flavonols. Polyphenol-rich apricot leaf extract (PrALe) showed the most effective anti-obesity action through inhibition of pancreatic lipase, COX-1 and antioxidant capacity, especially the oxygen radical absorbance capacity, which was particularly correlated with polyphenolic compounds. Online ABTS radical UPLC-PDA-PDA analysis clearly demonstrated that the three predominant compounds of PrALe are quercetin-3-O-rutinoside > 5-O- and 3-O-caffeoylquinic acid, which basically contribute to antioxidant potential. These results assist in the evaluation of plant sources of potential new raw materials for application in different commercial sectors, especially for food, cosmetics and pharmaceuticals production.
Collapse
|
9
|
Lesellier E, West C. Supercritical fluid chromatography for the analysis of natural dyes: From carotenoids to flavonoids. J Sep Sci 2021; 45:382-393. [PMID: 34633729 DOI: 10.1002/jssc.202100567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/29/2022]
Abstract
Plant-derived natural dyes are used in a variety of formulated products, from food to cosmetics and pharmaceutics. In addition to their color, they also provide some bioactivity. While they are mostly analyzed with high-performance liquid chromatography, supercritical fluid chromatography was also employed for several dye families, mostly for carotenoids and chlorophylls, and more recently for anthraquinones and flavonoids. These supercritical fluid chromatography methods are described in this review. Because the dyes have different structures and structural variations (polarity, isomers, etc.), the best chromatographic system to achieve their separation is not always the same. Hydrophobic stationary phases are preferred for the most hydrophobic dyes (chlorophylls and carotenoids) while polar stationary phases are preferred for the polar dyes (anthraquinones and flavonoids). Regarding the mobile phase composition, chlorophylls and carotenoids are best eluted with moderate proportions of co-solvent in CO2 (about 40%), while the most polar glycosylated flavonoids require higher proportions of co-solvent and acidic additives. Because dyes are colorful, ultraviolet-visible detection is often sufficient, while mass spectrometry offers additional structural information. Furthermore, fundamental information can also be gained through chromatographic analysis of dyes: either solubility in supercritical fluids, in view of their extraction, or retention behavior providing an understanding of stationary phase properties.
Collapse
Affiliation(s)
- Eric Lesellier
- Institut de Chimie Organique et Analytique, Centre National de la Recherche Scientifique, Unité mixte de recherche, 7311, University of Orleans, Orleans, France
| | - Caroline West
- Institut de Chimie Organique et Analytique, Centre National de la Recherche Scientifique, Unité mixte de recherche, 7311, University of Orleans, Orleans, France
| |
Collapse
|
10
|
Indrawati R, Zubaidah E, Sutrisno A, Limantara L, Brotosudarmo THP. Remnant photosynthetic pigments in tea dregs: identification, composition, and potential use as antibacterial photosensitizer. POTRAVINARSTVO 2021. [DOI: 10.5219/1651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The production of tea dregs is continually increasing along with the growth of people's interest in ready-to-drink beverages. However, the recent development of research on the use of tea dregs is still very limited. The present study was aimed to identify the remnant photosynthetic pigments in tea dregs, determine their composition, and evaluate their potential use as natural antibacterial agents based on light-induced reaction (photosensitization). The tea dregs from six commercial teas, consisting of green and black teas, were analyzed using high-performance liquid chromatography (HPLC) with a photodiode array detector, and the spectroscopic data were analyzed from 350 to 700 nm. Pigment identification was performed based on spectral characteristics, and pigment composition in the extracts from the dregs was determined by a three-dimensional multi-chromatogram analysis method. The dominant pigment fractions in both tea types were pheophytin a and its isomers, as well as pheophytin b. Although the dregs of black teas generally contain fewer remnant pigments, they possess residual chlorophyll b, which is not found in the dregs of green teas. In thirty-minutes illumination under 50 W red light-emitting diode, the presence of pigments from tea dregs caused up to 0.87 and 0.35 log reduction of Staphylococcus aureus and Escherichia coli, respectively. The disparity of pigments composition among tea types does not strongly influence their photosensitization activity against both bacteria. Hence, upon further application, the amount of total remnant pigments in the dregs could be taken as substantial consideration instead of tea types.
Collapse
|