1
|
Borges F, Freitas R, Silva ALP, Soliz Rojas DL, Paniagua González G, Solé M. Could Mussel Populations Be Differentially Threatened by the Presence of Microplastics and Related Chemicals? TOXICS 2025; 13:181. [PMID: 40137508 PMCID: PMC11945407 DOI: 10.3390/toxics13030181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
Mussels serve as indicators of anthropogenic chemical pollution; however, the effects of microplastics and plastic-related chemicals on their health performance remain an emerging issue. In this study, mussels were exposed to a polyamide (PA; 5 μg/L) and tricresyl phosphate (TCP; 1 μg/L) for 28 days. The exposures to the two contaminants were performed independently or in combination and lasted 28 days. The results showed that the independent exposure altered enzyme activities more significantly than the combined one. Exposure to the PA significantly (p < 0.05) inhibited the antioxidant enzyme catalase (CAT) by 43.5% and the neurotransmitter enzyme acetylcholinesterase (AChE) by 40.6%, while TCP specifically inhibited carboxylesterase (CE) activity by 38.5%, all in respect to the solvent control. When both pollutants were combined, most biomarker responses were similar to control levels. To further investigate if the mussels' response to contaminants (here, chemical compounds only) could be population-specific, a comparative study between Atlantic and Mediterranean mussels was included. Firstly, baseline detoxification defenses were contrasted in the digestive glands of each mussel population, followed by an assessment of in vitro responses to a wide range of plastic additives. The results revealed that Mediterranean mussels expressed higher baseline activities for most detoxification enzymes, although the in vitro sensitivity to the targeted chemicals was similar in both populations. Of all the plastic additives tested, TCP significantly inhibited CE activity both in vivo and in vitro. The in vitro screening also indicated that other plastic additives could act as strong inhibitors of CE. However, additional in vivo exposures in mussels are needed to confirm CE suitability as a biomarker of these chemical exposures. All together, these results also suggest critical population-level differences in susceptibility to microplastic pollution, highlighting a need for targeted conservation efforts.
Collapse
Affiliation(s)
- Filipe Borges
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (F.B.); (R.F.); (A.L.P.S.)
| | - Rosa Freitas
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (F.B.); (R.F.); (A.L.P.S.)
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L. Patrício Silva
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (F.B.); (R.F.); (A.L.P.S.)
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Dulce Lucy Soliz Rojas
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, 28232 Madrid, Spain; (D.L.S.R.); (G.P.G.)
| | - Gema Paniagua González
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, 28232 Madrid, Spain; (D.L.S.R.); (G.P.G.)
| | - Montserrat Solé
- Institut de Ciències del Mar-Consejo Superior de Investigaciones Científicas, ICM-CSIC, 08003 Barcelona, Spain
| |
Collapse
|
2
|
Shao K, Zou R, Zhang Z, Mandemaker LDB, Timbie S, Smith RD, Durkin AM, Dusza HM, Meirer F, Weckhuysen BM, Alderete TL, Vermeulen R, Walker DI. Advancements in Assays for Micro- and Nanoplastic Detection: Paving the Way for Biomonitoring and Exposomics Studies. Annu Rev Pharmacol Toxicol 2025; 65:567-585. [PMID: 39270670 DOI: 10.1146/annurev-pharmtox-030424-112828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Although plastic pollution and exposure to plastic-related compounds have received worldwide attention, health risks associated with micro- and nanoplastics (MNPs) are largely unknown. Emerging evidence suggests MNPs are present in human biofluids and tissue, including blood, breast milk, stool, lung tissue, and placenta; however, exposure assessment is limited and the extent of human exposure to MNPs is not well known. While there is a critical need to establish robust and scalable biomonitoring strategies to assess human exposure to MNPs and plastic-related chemicals, over 10,000 chemicals have been linked to plastic manufacturing with no existing standardized approaches to account for even a fraction of these exposures. This review provides an overview of the status of methods for measuring MNPs and associated plastic-related chemicals in humans, with a focus on approaches that could be adapted for population-wide biomonitoring and integration with biological response measures to develop hypotheses on potential health effects of plastic exposures. We also examine the exposure risks associated with the widespread use of chemical additives in plastics. Despite advancements in analytical techniques, there remains a pressing need for standardized measurement protocols and untargeted, high-throughput analysis methods to enable comprehensive MNP biomonitoring to identify key MNP exposures in human populations. This review aims to merge insights into the toxicological effects of MNPs and plastic additives with an evaluation of analytical challenges, advocating for enhanced research methods to fully assess, understand, and mitigate the public health implications of MNPs.
Collapse
Affiliation(s)
- Kuanliang Shao
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA;
| | - Runyu Zou
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zhuoyue Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA;
| | - Laurens D B Mandemaker
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Sarah Timbie
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA;
| | - Ronald D Smith
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA;
| | - Amanda M Durkin
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hanna M Dusza
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Tanya L Alderete
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Roel Vermeulen
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA;
| |
Collapse
|
3
|
Neri I, Russo G, Grumetto L. Bisphenol A and its analogues: from their occurrence in foodstuffs marketed in Europe to improved monitoring strategies-a review of published literature from 2018 to 2023. Arch Toxicol 2024; 98:2441-2461. [PMID: 38864942 PMCID: PMC11272703 DOI: 10.1007/s00204-024-03793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
In this review article, the research works covering the analytical determination of bisphenol A (BPA) and its structural analogues published from 2018 to present (February 2024) were examined. The review offers an overview of the concentration levels of these xenoestrogens in food and beverages, and discusses concerns that these may possibly pose to the human health and scrutinises, from an analytical perspective, the main biomonitoring approaches that are applied. This comes as a natural evolution of a previous review that covered the same topic but in earlier years (up to 2017). As compared to the past, while the volume of published literature on this topic has not necessarily decreased, the research studies are now much more homogeneous in terms of their geographical origin, i.e., Southern Europe (mainly Italy and Spain). For this reason, an estimated daily intake of the European population could not be calculated at this time. In terms of the analytical approaches that were applied, 67% of the research groups exploited liquid chromatography (LC), with a detection that was prevalently (71%) afforded by mass spectrometry, with over one-fourth of the research teams using fluorescence (26%) and a minority (3%) detecting the analytes with diode array detection. One-third of the groups used gas chromatography (GC)-mass spectrometry achieving comparatively superior efficiency as compared to LC. Derivatisation was performed in 59% of the GC studies to afford more symmetrical signals and enhanced sensitivity. Although the contamination levels are well below the threshold set by governments, routinely biomonitoring is encouraged because of the possible accumulation of these contaminants in the human body and of their interplay with other xenoestrogens.
Collapse
Affiliation(s)
- Ilaria Neri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, 80131, Naples, Italy
- Centre of Biomedicine and Global Health, School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, Edinburgh, EH11 4BN, UK
- Consorzio Interuniversitario INBB, Viale Medaglie d'Oro, 305, 00136, Rome, Italy
| | - Giacomo Russo
- Centre of Biomedicine and Global Health, School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, Edinburgh, EH11 4BN, UK.
| | - Lucia Grumetto
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, 80131, Naples, Italy
- Consorzio Interuniversitario INBB, Viale Medaglie d'Oro, 305, 00136, Rome, Italy
| |
Collapse
|
4
|
Carro N, Fernández R, Cobas J, García I, Ignacio M, Mouteira A. Optimization of a modified Captiva EMR-lipid method based on micro-matrix solid-phase dispersion coupled with gas chromatography-mass spectrometry for the determination of nine bisphenols in mussel samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3957-3967. [PMID: 38847157 DOI: 10.1039/d4ay00738g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
This work describes a reliable, cheap, easy and fast method for analysis of nine bisphenols in mussel samples by gas chromatography-mass spectrometry after trimethylsilylation. The modified method consisted of miniaturized matrix solid phase dispersion (micro-MSPD) in a glass Pasteur pipette using Captiva EMR (enhanced matrix removal)-lipid as the sorbent. Good linearity was obtained in the work range (1-500 μg L-1) with a correlation coefficient (R2) ≥ 0.998. The method accuracy and precision were determined at two concentration levels. The results show recoveries ranging from 55 to 111%. The precision varied from 1.95 to 11.4% (RSD). The whole quantification limits were between 0.056 and 3.42 μg per kg dry weight. The analytical procedure was applied for the analyses of five mussel samples collected from Galician Rias. The major compound was BPA, and wild mussels from Rías de Ferrol, Vigo and A Coruña had the highest levels. The proposed method is suitable for the analysis of BPA and its analogues in mussel samples.
Collapse
Affiliation(s)
- N Carro
- Instituto Tecnolóxico para o Control Do Medio Mariño de Galicia, INTECMAR, Consellería Do Mar, Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain.
| | - R Fernández
- Instituto Tecnolóxico para o Control Do Medio Mariño de Galicia, INTECMAR, Consellería Do Mar, Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain.
| | - J Cobas
- Instituto Tecnolóxico para o Control Do Medio Mariño de Galicia, INTECMAR, Consellería Do Mar, Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain.
| | - I García
- Instituto Tecnolóxico para o Control Do Medio Mariño de Galicia, INTECMAR, Consellería Do Mar, Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain.
| | - M Ignacio
- Instituto Tecnolóxico para o Control Do Medio Mariño de Galicia, INTECMAR, Consellería Do Mar, Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain.
| | - A Mouteira
- Instituto Tecnolóxico para o Control Do Medio Mariño de Galicia, INTECMAR, Consellería Do Mar, Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain.
| |
Collapse
|
5
|
Megill C, Shaw K, Knauer K, Seeley M, Lynch J. Plastic additives in the ocean: Use of a comprehensive dataset for meta-analysis and method development. CHEMOSPHERE 2024; 358:142172. [PMID: 38685322 DOI: 10.1016/j.chemosphere.2024.142172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
In excess of 13,000 chemicals are added to plastics ('additives') to improve performance, durability, and production of plastic products. They are categorized into numerous chemical classes including flame retardants, light stabilizers, antioxidants, and plasticizers. While research on plastic additives in the marine environment has increased over the past decade, there is a lack of methodological standardization. To direct future measurement of plastic additives, we compiled a first-of-its-kind dataset of literature assessing plastic additives in marine environments, delineated by sample type (plastic debris, seawater, sediment, biota). Using this dataset, we performed a meta-analysis to summarize the state of the science. Currently, our dataset includes 217 publications published between 1978 and May 2023. The majority of publications analyzed plastic additives in biota collected from Europe and Asia. Analyses concentrated on plasticizers, brominated flame retardants, and bisphenols. Common sample preparation techniques included Solvent - Agitation extraction for plastic, sediment, and biota samples, and Solid Phase Extraction for seawater samples with dichloromethane and solvent mixtures including dichloromethane as the organic extraction solvent. Finally, most analyses were performed utilizing gas chromatography/mass spectrometry. There are a variety of data gaps illuminated by this meta-analysis, most notably the small number of compounds that have been targeted for detection compared to the large number of additives used in plastic production. The provided dataset facilitates future investigation of trends in plastic additive concentration data in the marine environment (allowing for comparison to toxicity thresholds) and acts as a starting point for optimizing and harmonizing plastic additive analytical methods.
Collapse
Affiliation(s)
- Cara Megill
- Hawai'i Pacific University Center for Marine Debris Research, 41-202 Kalaniana'ole Hwy Ste 9 Waimanalo, HI 96795-1898, USA.
| | - Katherine Shaw
- Hawai'i Pacific University Center for Marine Debris Research, 41-202 Kalaniana'ole Hwy Ste 9 Waimanalo, HI 96795-1898, USA; National Institute of Standards and Technology, 41-202 Kalaniana'ole Hwy Ste 9 Waimanalo, HI 96795-1898, USA
| | - Katrina Knauer
- National Renewable Energy Laboratory, 15013 Denver W Pkwy, Golden, CO 80401, USA; The BOTTLE Consortium, 15013 Denver W Pkwy, Golden, CO 80401, USA
| | - Meredith Seeley
- Hawai'i Pacific University Center for Marine Debris Research, 41-202 Kalaniana'ole Hwy Ste 9 Waimanalo, HI 96795-1898, USA; National Institute of Standards and Technology, 41-202 Kalaniana'ole Hwy Ste 9 Waimanalo, HI 96795-1898, USA
| | - Jennifer Lynch
- Hawai'i Pacific University Center for Marine Debris Research, 41-202 Kalaniana'ole Hwy Ste 9 Waimanalo, HI 96795-1898, USA; National Institute of Standards and Technology, 41-202 Kalaniana'ole Hwy Ste 9 Waimanalo, HI 96795-1898, USA
| |
Collapse
|
6
|
Castellani F, Vitali M, Antonucci A, Del Morrone G, Cofone L, D'Ancona G, Pindinello I, Mattiucci S, Protano C. Optimization of a fast and sensitive method based on matrix solid-phase dispersion-LC-ms/ms for simultaneous determination of phthalates and bisphenols in mussel samples. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:537-549. [PMID: 38547176 DOI: 10.1080/19440049.2024.2334300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/19/2024] [Indexed: 04/30/2024]
Abstract
Bisphenols and phthalates are wide classes of endocrine disrupting chemicals (EDCs) extensively used as additives in plastic products. In this study, a fast and reliable analytical method based on matrix solid-phase dispersion (MSPD) coupled with LC-MS/MS was developed and optimized for simultaneous determination of 8 bisphenols and 7 phthalates in raw mussel extract. The LC-MS/MS method was tested for linearity (R2), inter- and intra-day repeatability, limit of detection and quantification, both for matrix-free and matrix-matched solutions. The MSPD method was optimized in terms of ratio between sample and sorbent, and the type and quantity of the eluents in order to maximize the recoveries and to minimize matrix effects. The obtained recoveries (values between 75% and 113%), limits of detection (values between 0.048 and 0.36 µg kg-1), limits of quantification (values between 0.16 and 1.28 µg kg-1), repeatability (RSD% between 1.30% and 8.41%) and linearity (R2 > 0.998) were satisfactory and suitable for the determination of target micropollutants in food samples. In addition, the low solvent consumption and fast execution make this method ideal for routinely determinations of bisphenols and phthalates in mussels.
Collapse
Affiliation(s)
- Federica Castellani
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Matteo Vitali
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Arianna Antonucci
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Giammarco Del Morrone
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Luigi Cofone
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Gabriele D'Ancona
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Ivano Pindinello
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Simonetta Mattiucci
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Carmela Protano
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
7
|
Gamarro EG, Rojas DLS, Garcinuño Martínez RM, Paniagua González G, Hernando PF. Occurrence of common plastic additives and contaminants in raw, steamed and canned mussel samples from different harvesting areas using MSPD-HPLC methodology. Food Res Int 2024; 181:114109. [PMID: 38448097 DOI: 10.1016/j.foodres.2024.114109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Microplastics are a complex mix of chemicals containing polymers and certain plastic additives such as bisphenols and phthalates. These particles are porous materials that can also sorb contaminants from their surroundings, and leach chemicals from the particle under certain circumstances. Aquatic animals can ingest microplastic particles, which mostly bioaccumulate in the gastrointestinal tract of animals. In terms of dietary exposure, small animals consumed whole such as mussels, contribute more to the dietary intake of microplastic particles. Plastic additives and contaminants are not chemically bound to the polymers, and certain processing methods or cooking processes result in the release of these chemicals that leach from the plastic particles, leaving them more available for absorption when ingested. Analytical methods are crucial for a better understanding of the occurrence of plastic additives and contaminants in aquatic products, and to know certain circumstances and treatments that influence human exposure. This study uses an MSPD-HPLC methodology for the simultaneous determination of 9 analytes (BPA, BPF, BPS, DEP, DBP, DEHP, DDD, DDT, and DDE) analyzing, for the first time, the occurrence of these chemicals in raw, steamed and canned mussels of two different harvesting areas (Atlantic and the Mediterranean), becoming one of the most efficient methodologies for determining the presence of these analytes in very complex food matrices, able to define the changes in cooking and processing activities. The results showed that the heat and pressure treatment could influence the migration of plastic additives from microplastic particles present in mussels to the cooking liquids.
Collapse
Affiliation(s)
- E Garrido Gamarro
- Fisheries and Aquaculture Division, Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153 Rome, Italy; Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED). Avda. Esparta s/n, Ctra. de Las Rozas-Madrid (M-505) Km. 5, 28232, Las Rozas Madrid, Spain
| | - D L Soliz Rojas
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED). Avda. Esparta s/n, Ctra. de Las Rozas-Madrid (M-505) Km. 5, 28232, Las Rozas Madrid, Spain
| | - R M Garcinuño Martínez
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED). Avda. Esparta s/n, Ctra. de Las Rozas-Madrid (M-505) Km. 5, 28232, Las Rozas Madrid, Spain
| | - G Paniagua González
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED). Avda. Esparta s/n, Ctra. de Las Rozas-Madrid (M-505) Km. 5, 28232, Las Rozas Madrid, Spain.
| | - P Fernández Hernando
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED). Avda. Esparta s/n, Ctra. de Las Rozas-Madrid (M-505) Km. 5, 28232, Las Rozas Madrid, Spain
| |
Collapse
|
8
|
Soliz DL, Garcinuño RM, Paniagua González G, Bravo JC, Fernández Hernando P. Assessing Matrix Solid-Phase Dispersion Extraction Strategies for Determining Bisphenols and Phthalates in Gilthead Sea Bream Samples. Foods 2024; 13:413. [PMID: 38338548 PMCID: PMC10855760 DOI: 10.3390/foods13030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Microplastics (MPs) and nanoplastics (NPs) are widely spread in the environment, generating significant concern due to their potential impact on environmental health. Marine species usually ingest plastic fragments, mistaking them for food. Many toxic compounds, such as plastic additives that are not chemically bound to the plastic matrix, can be released from MPs and NPs and reach humans via the food chain. This paper highlights the development and validation of a straightforward solid-liquid extraction clean-up procedure in combination with a matrix solid-phase dispersion method using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) detection, enabling facile, precise, and reliable identification and quantitation of a total of six bisphenols and phthalates in gilthead sea breams. Under the optimized conditions, the developed method showed good linearity (R2 > 0.993) for all target compounds. The recoveries obtained were between 70 and 92%. The relative standard deviations (RSDs) for reproducibility (inter-day) and repeatability (intra-day) were less than 9% and 10%, respectively. The limit of detection (LOD) and limit of quantification (LOQ) for the target compounds ranged from 0.11 to 0.68 µg/kg and from 0.37 to 2.28 µg/kg, respectively. A new, efficient extraction methodology for the determination of BPA, BPS, BPF, DBP, DEP, and DHEP in gilthead seabream has been optimized and validated.
Collapse
Affiliation(s)
| | - Rosa Ma Garcinuño
- Department of Analytical Science, Faculty of Science, National University of Distance Education, UNED, Las Rozas, 28232 Madrid, Spain; (D.L.S.); (G.P.G.); (J.C.B.); (P.F.H.)
| | | | | | | |
Collapse
|
9
|
Carro N, Cobas J, Otero A, Fernández R, García I, Ignacio M, Mouteira A. Spatial distribution and source identification of phthalates and organochlorine compounds in Galician mussels (NW Spain). MARINE POLLUTION BULLETIN 2023; 194:115393. [PMID: 37597416 DOI: 10.1016/j.marpolbul.2023.115393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/21/2023]
Abstract
The spatial distribution of five phthalate esters (PAEs) and 17 organochlorine compounds (OCs) in wild and raft mussels from Galician littoral collected in 2020, and its relationship with anthropogenic activities was studied in this work. The Rías de Foz and Muros-Noia were the most polluted by PAEs, while the Rías de Ferrol and Barqueiro by PCBs. The highest levels of all contaminants were present in wild mussel, except DEHP that were predominant in raft mussel. The levels of most PAEs were negatively correlated with levels of the lower chlorinated PCBs and OCPs. The spatial distribution of pollutants confirmed by PCA was affected by the proximity to anthropogenic sources, phthalates by urban wastewater and PCBs by industrial inputs, mainly. The study of human exposure assessment suggests that Risk Quotient values were < 1, so the consumption of Galician raft mussels did not pose a risk to human health.
Collapse
Affiliation(s)
- N Carro
- Instituto Tecnolóxico para o Control do Medio Mariño de Galicia, INTECMAR, Consellería do mar, Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain.
| | - J Cobas
- Instituto Tecnolóxico para o Control do Medio Mariño de Galicia, INTECMAR, Consellería do mar, Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain
| | - A Otero
- Instituto Tecnolóxico para o Control do Medio Mariño de Galicia, INTECMAR, Consellería do mar, Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain
| | - R Fernández
- Instituto Tecnolóxico para o Control do Medio Mariño de Galicia, INTECMAR, Consellería do mar, Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain
| | - I García
- Instituto Tecnolóxico para o Control do Medio Mariño de Galicia, INTECMAR, Consellería do mar, Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain
| | - M Ignacio
- Instituto Tecnolóxico para o Control do Medio Mariño de Galicia, INTECMAR, Consellería do mar, Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain
| | - A Mouteira
- Instituto Tecnolóxico para o Control do Medio Mariño de Galicia, INTECMAR, Consellería do mar, Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain
| |
Collapse
|
10
|
Occurrence and seasonal variation of plasticizers in sediments and biota from the coast of Mahdia, Tunisia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48532-48545. [PMID: 36759412 DOI: 10.1007/s11356-023-25687-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
Plasticizers are compounds often involved in the manufacturing of plastic products. Nevertheless, the ageing of the latter generates plasticizers that generally end up in the marine environment. In fact, marine pollution by phthalate acid esters (PAEs) and their alternatives has become an environmental and health issue of serious concern, as they are largely and ubiquitously present in the environment and aquatic organisms. In the present study, four PAEs, such as diethyl phthalate (DEP), diisobutyl phthalate (DiBP), dibutyl phthalate (DBP), and di(2-ethylhexyl) phthalate (DEHP), and one non-phthalate plasticizer (NPP), namely di-2-ethylhexyl terephthalate (DEHT), are wanted in different marine compartments from the coast of Mahdia in Tunisia such as sediment, seagrass, and mussel. The most abundant and frequently detected congener was DEHT at the concentrations reached 1.181 mg/kg in the sediment, 1.121 mg/kg in the seagrass, and 1.86 mg/kg in the mussel. This result indicates that the DEHT could emerge through the food chain and therefore bioaccumulate in marine compartments. In addition, we noticed that the seasonal variations of plasticizers were seriously affected by environmental factors including industrial and urban discharges.
Collapse
|
11
|
The measurement of food safety and security risks associated with micro- and nanoplastic pollution. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
12
|
Rios-Fuster B, Alomar C, Paniagua González G, Garcinuño Martínez RM, Soliz Rojas DL, Fernández Hernando P, Deudero S. Assessing microplastic ingestion and occurrence of bisphenols and phthalates in bivalves, fish and holothurians from a Mediterranean marine protected area. ENVIRONMENTAL RESEARCH 2022; 214:114034. [PMID: 35948144 DOI: 10.1016/j.envres.2022.114034] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/19/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Microplastic (MP) ingestion, along with accumulated plasticizers such as bisphenol A (BPA), bisphenol F (BPF), and bisphenol S (BPS), and phthalates represented by diethyl phthalate (DEP), dibutyl phthalate (DBP) and bis (2-ethylhexyl) phthalate (DEHP), were quantified in bivalves, fish, and holothurians collected from a coastal pristine area at the western Mediterranean Sea. MP ingestion in sediment-feeders holothurians (mean value 12.67 ± 7.31 MPs/individual) was statistically higher than ingestion in bivalves and fish (mean 4.83 ± 5.35 and 3 ± 4.44 MPs/individual, respectively). The main ingested polymers were polyethylene, polypropylene, and polystyrene. The levels of BPS, BPF, and DEHP were highest in bivalves' soft tissue; BPA and DBP had the highest levels in the holothurians' muscle. In addition, the levels of all plasticizers assessed were lowest in fish muscle; only BPA levels in fish were higher than in bivalves, with intermediate values between those of bivalves and holothurians. This study provides data on exposure to MPs and plasticizers of different species inhabiting Cabrera Marine Protected Area (MPA) and highlights the differences in MP ingestion and levels of plasticizers between species with different ecological characteristics and feeding strategies.
Collapse
Affiliation(s)
- Beatriz Rios-Fuster
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente S/n, 07015, Palma de Mallorca, Spain.
| | - Carme Alomar
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente S/n, 07015, Palma de Mallorca, Spain
| | - Gema Paniagua González
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Rosa Maria Garcinuño Martínez
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Dulce Lucy Soliz Rojas
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Pilar Fernández Hernando
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Salud Deudero
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente S/n, 07015, Palma de Mallorca, Spain
| |
Collapse
|
13
|
Yang C, Li J, Wang S, Wang Y, Jia J, Wu W, Hu J, Zhao Q. Determination of free fatty acids in Antarctic krill meals based on matrix solid phase dispersion. Food Chem 2022; 384:132620. [PMID: 35413776 DOI: 10.1016/j.foodchem.2022.132620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/28/2022]
Abstract
Amino-modified mesoporous silicawas prepared by modifying mesoporous silica with 3-aminopropyltriethoxysilane and used as adsorbents in matrix solid-phase dispersion (MSPD) to analyze free fatty acids (FFAs) in krill meals for the first time. The adsorption-desorption experiments and Fourier-transform infrared spectroscopy showed amino-modified mesoporous silica with ordered mesoporous structure was successfully synthesized. The adsorption experiments including static and dynamic adsorption showed thatabsorption capacity of amino-modified mesoporous silica towards FFAs was better than that of aminated silicon microspheres at all concentrations. Under optimal extraction conditions, outstanding linearity (0.1-12000 nmol g-1), low LODs (0.05-1.25 nmol g-1), satisfactory recoveries (82.17-96.43%) and precisions (0.19-5.26%) were obtained. Moreover, the application of MSPD for FFAs analysis avoided complicated lipid extraction procedures and accomplished the homogenization, crushing, extraction and cleaning of the samples in one step. Consequently, this approach provides an alternative choice to the existing approach for analyzing FFAs in solid and semi-solid samples.
Collapse
Affiliation(s)
- Chunyu Yang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shimiao Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yiran Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiao Jia
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wenfei Wu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Qi Zhao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
14
|
Capó X, Alomar C, Compa M, Sole M, Sanahuja I, Soliz Rojas DL, González GP, Garcinuño Martínez RM, Deudero S. Quantification of differential tissue biomarker responses to microplastic ingestion and plasticizer bioaccumulation in aquaculture reared sea bream Sparus aurata. ENVIRONMENTAL RESEARCH 2022; 211:113063. [PMID: 35271834 DOI: 10.1016/j.envres.2022.113063] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Marine aquaculture is considered a potential source of microplastics (MPs). MPs can induce oxidative stress and damage in marine species. In this study we evaluated the impact of MPs intake in the commercial fish, Sparus aurata, from aquaculture facilities and the antioxidant response associated to this MPs ingestion in caged specimens for 120 days. Sampling was carried out at the beginning of the study (T0), at 60 days (T60) and at 120 days (T120). At each sampling stage, gastrointestinal tract, blood, plasma, liver and muscle samples were obtained to analyse MPs intake (gastrointestinal tract), oxidative stress markers (blood, plasma and liver) and plasticizers bioaccumulation (muscle). Fish sampled at T60 presented the highest MPs intake and plasticizers accumulated in muscle over time, but with a different pattern according to type: bisphenols and phthalates. This indicates MPs ingestion induces a differential tissue response in S. aurata. Similarly, stress biomarkers presented a differential response throughout the study, depending on the analysed tissue. In the case of oxidative damage markers, for malondialdehyde (MDA) an increase throughout the study was observed both in liver and blood cells but with a progressive decrease in plasma. In the case of phase I detoxifying enzyme activities in liver, 7-ethoxyresorufin O-deethylase (EROD), 7-benzyloxy-4-[trifluoromethyl]-coumarin-O-debenzyloxylase (BFCOD) and carboxylesterases (CE), showed a comparable decrease at T60 with a slight recovery at T120. In contrast, glutathione-S-transferase (GST) activity was significantly enhanced at T60 compared to the other sampling stages. In conclusion, MPs ingestion occurs in aquaculture reared seabream where potentially associated plasticizers accumulate in the muscle and both could be responsible for plasma and liver oxidative stress damage and alterations on detoxifying biomarkers responses.
Collapse
Affiliation(s)
- Xavier Capó
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Mallorca, Spain.
| | - Carme Alomar
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Mallorca, Spain
| | - Monserrat Compa
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Mallorca, Spain
| | - Montserrat Sole
- Institut de Ciències del Mar, ICM-CSIC, E-08003, Barcelona, Spain
| | - Ignasi Sanahuja
- Institut de Ciències del Mar, ICM-CSIC, E-08003, Barcelona, Spain
| | - Dulce Lucy Soliz Rojas
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Gema Paniagua González
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Rosa Maria Garcinuño Martínez
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Salud Deudero
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Mallorca, Spain
| |
Collapse
|
15
|
High production volume chemicals in seafood: A review of analytical methods, occurrence and population risk. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Simultaneous Quantification of Bisphenol-A and 4-Tert-Octylphenol in the Live Aquaculture Feed Artemia franciscana and in Its Culture Medium Using HPLC-DAD. Methods Protoc 2022; 5:mps5030038. [PMID: 35645346 PMCID: PMC9149995 DOI: 10.3390/mps5030038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022] Open
Abstract
Aquaculture, a mass supplier of seafood, relies on plastic materials that may contain the endocrine disruptors bisphenol-A (BPA) and tert-octylphenol (t-OCT). These pollutants present toxicity to Artemia, the live aquaculture feed, and are transferred through it to the larval stages of the cultured organisms. The purpose of this work is the development and validation of an analytical method to determine BPA and t-OCT in Artemia and their culture medium, using n-octylphenol as the internal standard. Extraction of the samples was performed with H2O/TFA (0.08%)–methanol (3:1), followed by SPE. Analysis was performed in a Nucleosil column with mobile phases A (95:5, v/v, 0.1% TFA in H2O:CH3CN) and B (5:95, v/v, 0.08% TFA in H2O:CH3CN). Calibration curves were constructed in the range of concentrations expected following a 24 h administration of BPA (10 μg/mL) or t-OCT (0.5 μg/mL), below their respective LC50. At the end of exposure to the pollutants, their total levels appeared reduced by about 32% for BPA and 35% for t-OCT, and this reduction could not be accounted for by photodegradation (9–19%). The developed method was validated in terms of linearity, accuracy, and precision, demonstrating the uptake of BPA and t-OCT in Artemia.
Collapse
|
17
|
New method for the determination of endocrine disrupting chemicals in Mediterranean mussel (Mytilus galloprovincialis) using ultra-high performance liquid chromatography–tandem mass spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Rios-Fuster B, Alomar C, Capó X, Paniagua González G, Garcinuño Martínez RM, Soliz Rojas DL, Silva M, Fernández Hernando P, Solé M, Freitas R, Deudero S. Assessment of the impact of aquaculture facilities on transplanted mussels (Mytilus galloprovincialis): Integrating plasticizers and physiological analyses as a biomonitoring strategy. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127264. [PMID: 34879544 DOI: 10.1016/j.jhazmat.2021.127264] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 05/06/2023]
Abstract
The growing plastic production and its continuous use is a significant problem. In addition, aquaculture practices have experienced a considerable growth and plastic is widely used in these activities, hence plasticizers must be considered due to their potential ecotoxicological impacts on species. Mussels placed inside an Integrated Multi-Trophic Aquaculture (IMTA) system and at two control locations were employed to quantify the ingestion of anthropogenic particles and associated chemical plasticizers, such as bisphenol A (BPA) jointly to bisphenol F (BPF) and bisphenol S (BPS), and phthalates represented by diethyl phthalate (DEP), dibutyl phthalate (DBP) and bis(2-ethylhexyl) phthalate (DEHP). In addition, some metabolism and oxidative stress related parameters were measured in mussels' whole soft tissue. Anthropogenic particle ingestion of mussels increased over time at the three locations and the following order of abundance of pollutants was observed: BPA> BPF> DEHP> DBP> BPS> DEP. Even though no differences according to location were found for pollutants' occurrence, time trends were evidenced for BPA and DEHP. On the other hand, a location effect was observed for biomarkers with highest values detected in mussels located at the vicinities of the aquaculture facility. In addition, a reduced detoxification activity was observed over time parallel to BPA decrease.
Collapse
Affiliation(s)
- Beatriz Rios-Fuster
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain.
| | - Carme Alomar
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain
| | - Xavier Capó
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain
| | - Gema Paniagua González
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Rosa Maria Garcinuño Martínez
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Dulce Lucy Soliz Rojas
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Monica Silva
- Departamento de Biologia & CESAM, Universidade de Aveiro, Portugal
| | - Pilar Fernández Hernando
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | | | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, Portugal
| | - Salud Deudero
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain
| |
Collapse
|
19
|
Qiao L, Sun R, Tao Y, Yan Y. New low viscous hydrophobic deep eutectic solvents for the ultrasound-assisted dispersive liquid-liquid microextraction of endocrine-disrupting phenols in water, milk and beverage. J Chromatogr A 2021; 1662:462728. [PMID: 34902719 DOI: 10.1016/j.chroma.2021.462728] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/22/2022]
Abstract
In the present work, several new hydrophobic deep eutectic solvents (HDESs) were prepared with quaternary ammonium salts as hydrogen bond acceptors (HBAs) and salicylate esters as hydrogen bond donors (HBDs). Then, the obtained HDESs were used as extraction solvents to establish an ultrasound-assisted dispersive liquid-liquid microextraction method combined with high-performance liquid chromatography-ultraviolet detection technique for the determination of four endocrine-disrupting phenols (EDPs) compounds. One of the obtained HDESs composed of tetrabutylammonium chloride (N4444Cl) and methyl salicylate possessed a viscosity of 89.28 mPa•s lower than most reported ionic HDESs (>200 mPa•s), and the low viscous HDES was selected as the optimal extraction solvent. Several key parameters affecting the extraction efficiency were investigated, including the type and volume of HDES, ultrasound time, sample solution pH and salt addition. Under the optimized experimental conditions, the proposed method had good coefficients of determination (R2 > 0.9976) in the linear range of 0.5-400 µg•L-1, the limits of quantification and limits of detection respectively were 0.5-2.5 µg•L-1 and 0.25-1 µg•L-1, and the recoveries were in the range of 81.79-109.82%. Finally, the method was used for the preconcentration and determination of EDPs in different samples, including bottled water, tea beverage and milk.
Collapse
Affiliation(s)
- Lizhen Qiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China.
| | - Ruiting Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Yuan Tao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Yang Yan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
20
|
Carro N, Mouteira A, García I, Ignacio M, Cobas J. Fast determination of phthalates in mussel samples by micro-matrix solid-phase dispersion (micro-MSPD) coupled with GC–MS/MS. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractA fast, effective and low cost sample preparation method based on miniaturized matrix solid-phase dispersion (micro-MSPD) combined with gas chromatography coupled to tandem triple-quadrupole-mass spectrometry (GC–MS/MS) has been developed for the determination of six phthalate diesters (DMP, DEP, DBP, BzBP, DEHP and DnOP) in mussel samples. The six target compounds have been included in the list of priority pollutants by United States Environmental Protection Agency. The extraction step was optimized on real spiked mussel coming from Galician Rías by means of a factorial design. The final procedure involved the use of 0.45 g of sample, 0.5 g of dispersant agent (Florisil) and 3 mL of organic solvent (ethyl acetate). The optimized method was validated giving satisfactory analytical performance, low detection limits (0.09 to 6.73 ng g−1 dw) and high recoveries (93 and 114%). The validated method was applied to four real mussel samples coming from Galician Rías.
Collapse
|